Robots and reshoring: Evidence from Mexican labor markets

Marius Faber University of Basel

ASSA 2021

January 2021

In last 50 years, some countries have made leap from low-income to middle-income by using cheap, manual labor to their advantage

More recently, industrial robots have become powerful alternative to perform many routine, manual tasks

Worries whether export-led growth still a viable path to economic growth in age of automation, but empirical evidence focuses on developed world

Literature so far

- OECD countries: Gratz & Michaels (2018, REStat)
- United States: Acemoglu & Restrepo (2020, JPE)
- Germany: Dauth, Findeisen, Suedekum & Woessner (2020, R&R JEEA)

Research question

How do robots affect employment in offshoring countries?

Method

- Use context of Mexico and its trading relations with US
- Exploit variation in *exposure to foreign robots* across Mexican local labor markets between 1990 and 2015
- Construct instrumental variable based on robot adoption outside of US and Mexico to purge results from reverse causality

Results

- US robots reduce employment in Mexico
- Low-educated machine operators in manufacturing most affected
- Evidence for reshoring (reverse of offshoring) as mechanism

1. Empirical strategy and data

2. Main results

3. Mechanism

4. Conclusion

Accounting for foreign robots in Acemoglu & Restrepo (2020) framework

• Equilibrium response of employment in commuting zone c (L_c) to advances in robotic automation technology from AR (2020):

$$d \ln L_c = \beta_c \sum_{i \in I} \ell_{ci} \frac{dR_i}{L_i} + \epsilon_c, \quad \text{where } \ell_{ci} = \frac{L_{ci}}{L_c}$$
(1)

- In offshoring country, considerable share of employment in export-producing sector (\sim 30% of GDP in Mexico)
- Workers compete not only with *domestic* robots (R_i^d), but also *foreign* robots (R_i^f) in offshorable industries (indicator $O_i = 1$)
- Account for this by including *exposure to foreign robots*:

$$d \ln L_{c} = \beta_{c} \underbrace{\sum_{i \in I} \ell_{ci} \frac{dR_{i}^{d}}{L_{i}}}_{\text{Exposure to}} + \beta_{c} \underbrace{\sum_{i \in I} \ell_{ci}^{f} \frac{dR_{i}^{f} O_{i}}{L_{i}^{f}}}_{\text{Exposure to}} + \epsilon_{c}$$
(2)

Taking this to the data using four sources

- 1. Robots (IFR):
 - Shipments of industrial robots for 11 countries and 19 industries since 1993
 - Typical applications:
 - Handling, welding, assembling, packaging, dispensing (Manufacturing)
 - Harvesting (Agriculture)
 - Inspecting of structures and equipment (Utilities)
- 2. Mexican census (INEGI):
 - Employment status, municipality of residence and work place, and education level, among others
 - Can construct Commuting Zones (CZs)
- 3. Maquiladoras (UN CEPAL):
 - · Factories in Mexico required by law to export all goods they produce
 - Information on number of Maquiladora employees by industry and municipality in 1990
- 4. Exports (Mexico's Tax Administration Service, SAT):
 - Value of exports and number of export-producing plants
 - By municipality and product code, from 2004-2014

Exposure to
domestic robots
$$_{c,(t_0,t_1)} \equiv \sum_{i \in I} \ell_{ci,1990} \left(\frac{R_{i,t_1}^{MX} - R_{i,t_0}^{MX}}{L_{i,1990}} \right)$$

Exposure to
foreign robots
$$_{c,(t_0,t_1)} \equiv \sum_{i \in I} \ell^f_{ci,1990} \left(\frac{R^{US}_{i,t_1} - R^{US}_{i,t_0}}{L^f_{i,1990}} \right) O_{i,1992}$$

- $\ell_{ci,1990}$: 1990 share of Commuting Zone c employment in industry i (^f=exports sector)
- $L_{i,1990}$: 1990 employment in industry *i* (^{*f*} = exports sector)
- $-R_{i,t}^{j}$: Industrial robots in country j and industry i at time t
- $O_{i,1992}$: 1992 share of Mexican imports of US output in industry i

External instruments

External
exposure to
domestic robots
$$c_{i}(t_0,t_1) \equiv \sum_{i \in I} \ell_{ci,1990} \left(\frac{R_{i,t_1}^{WLD} - R_{i,t_0}^{WLD}}{L_{i,1990}} \right)$$

External exposure to foreign robots
$$c_{i,(t_0,t_1)} \equiv \sum_{i \in I} \ell^f_{ci,1990} \left(\frac{R^{WLD}_{i,t_1} - R^{WLD}_{i,t_0}}{L^f_{i,1990}} \right) \tilde{O}_{i,1990}$$

- $\ell_{ci,1990}$: 1990 share of Commuting Zone c employment in industry i (f=exports sector)
- $L_{i,1990}$: 1990 employment in industry *i* (^{*f*}=exports sector)
- $-R_{i,t}^{j}$: Industrial robots in country j and industry i at time t
- $\tilde{O}_{i,1990}$: 1990 share of offshorable intermediates in industry *i* in US (Feenstra & Hanson, 1999)

First-stage industry variation

A. Domestic robots

B. Foreign robots

Regional variation in external exposure to foreign robots

 $\Delta y_{c,(t_0,t_1)} = \beta^d \quad \frac{\text{Exposure to}}{\text{domestic robots}} + \beta^f \quad \frac{\text{Exposure to}}{\text{foreign robots}} + \gamma \mathbf{X}_{c,1990} + \delta_{(t_0,t_1)} + \varepsilon_{c,(t_0,t_1)}$

- *c*: Commuting Zone *c* (1,805 CZs)
- (t₀,t₁): Two stacked time periods (1990–2000 & 2000–15)
- y: Employment-to-population ratio as main dependent variable
- X_{c,1990}: Vector of covariates for Commuting Zone *c* in 1990
 - Region dummies
 - Main effects (Maquiladoras, US import reliance)
 - Demographic characteristics & initial conditions
 - Broad industry shares
 - Contemporaneous changes (Chinese imports, NAFTA, computers)
 - Commuting Zone trends (in stacked differences)

1. Empirical strategy and data

Marius Faber

2. Main results

3. Mechanism

4. Conclusion

Raw binned scatter plot

Stacked differences regressions (1990-2000 & 2000-15)

	(1)	(2)	(3)	(4)	(5)	(6)		
	Δ Employment-to-population ratio (2SLS)							
Exposure to	-0.57*	-0.07	0.30	-0.17	0.58**	-0.11		
domestic robots	(0.33)	(0.23)	(0.24)	(0.24)	(0.29)	(0.33)		
Exposure to	-0.67***	-0.75***	-0.58***	-0.61***	-0.72***	-0.52**		
foreign robots	(0.18)	(0.19)	(0.14)	(0.16)	(0.13)	(0.23)		
Kleibergen-Paap rank F	706	222	198	1318	159	104		
Period dummies	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Region & main effects	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Baseline covariates		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Contemp. changes			\checkmark	\checkmark	\checkmark	\checkmark		
Unweighted				\checkmark				
Only Maquiladora CZs					\checkmark			
CZ trends						\checkmark		
Observations	3,610	3,610	3,610	3,610	502	3,610		

	(1)	(2)	(3)	(4)	(5)	(6)	
	Δ Employment-to-population ratio (2SLS)						
	1990-2000			2000-2015			
Exposure to <i>domestic</i> robots	-4.73 (5.10)	0.69 (3.60)	3.14 (4.36)	-0.27 (0.33)	0.27 (0.26)	0.44 (0.29)	
Exposure to foreign robots	-0.23 (1.23)	-0.04 (1.52)	-0.02 (1.48)	-0.28** (0.14)	-0.44*** (0.15)	-0.66*** (0.13)	
Kleibergen-Paap rank F	84	98	99	62	75	82	
Region & main effects Baseline covariates Contemp. changes	\checkmark	\checkmark	√ √ √	\checkmark	\checkmark	\checkmark	
Observations	1,805	1,805	1,805	1,805	1,805	1,805	

Results robust to several alternative explanations:

- No significant pre-trends 1970–90
- Not driven by contemporaneous shocks to single industries
- Pattern arises from changes in employment, not migration
- Visible using alternative instruments
- Excluding top 1% of observations with respect to exposure to foreign robots
- Using fixed effects for 31 states instead of nine broad regions
- Using LASSO procedure for covariate selection

Effect heterogeneity

1. Empirical strategy and data

2. Main results

3. Mechanism

4. Conclusion

Reshoring as mechanism: Reduction in exports

	(1)	(2)	(3)	(4)	(5)	(6)	
	Δ 2004-2014 (2SLS)						
	Exports value per worker			Exports plants per worker			
Exposure to	5.23***	3.44	2.84	0.15***	0.02	0.05	
domestic robots	(1.87)	(2.89)	(3.03)	(0.05)	(0.06)	(0.05)	
Exposure to	-4.07***	-3.15***	-2.61**	-0.40***	-0.14***	-0.13***	
foreign robots	(1.06)	(1.07)	(1.03)	(0.08)	(0.04)	(0.04)	
Kleibergen-Paap rank F	57	120	116	57	58	69	
Region & main effects	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Baseline covariates		\checkmark	\checkmark		\checkmark	\checkmark	
Contemp. changes			\checkmark			\checkmark	
Observations	1,805	1,805	1,805	1,805	1,805	1,805	

Effect of US robots on exports by industry

1. Empirical strategy and data

Marius Faber

2. Main results

3. Mechanism

4. Conclusion

Conclusion

- US robots reduce employment in Mexico
- Regions with average exposure to foreign robots have 0.4 percentage points lower emp-to-pop ratio
- Nationally, amounts to roughly 270,000 fewer jobs
- Negative employment effect strongest for
 - men
 - less educated
 - machine operators
 - workers in manufacturing industry
- Reshoring as mechanism: Employment effects mirrored in reduced export volumes

⇒ Automation technologies capable of changing comparative advantages across countries