The Technical Default Spread

Emilio Bisetti HKUST Kai Li HKUST Jun Yu HKUST

AFA Ph.D. Student Poster Session Jan. 3, 2021

- Traditional macro-finance treats lenders as passive bystanders
 - Examples: Bernanke and Gertler (1989), Kiyotaki and Moore (1997)

Fig.1 Traditional view of control rights (source: Nini et al (2012))

- In practice, lenders write loan covenants to ensure loan repayment
 - Covenants are a pervasive tool to discipline borrowers
 - Virtually all private credit agreements contain at least one covenant (Roberts and Sufi (2009))
 - Breaching a covenant known as *technical default*, results in transfer of control rights

Fig.2 Technical default and lender control

- Some examples of creditor control rights after covenant violation
 - Stronger voice in corporate decisions
 - Resolution plan (Roberts and Sufi (2009), Lou and Otto (2018))
 - Mandatory consultant call-in
 - · Projects actually taken over by lenders
 - Known as "step-in rights" in project finance (Madykov (2015), Rossi (2018))
- ⇒ What is the quantitative impact of covenants on corporate investment, risk taking, and cost of capital?
 - In the time series?
 - In the cross-section?

- Some examples of creditor control rights after covenant violation
 - Stronger voice in corporate decisions
 - Resolution plan (Roberts and Sufi (2009), Lou and Otto (2018))
 - Mandatory consultant call-in
 - Projects actually taken over by lenders
 - Known as "step-in rights" in project finance (Madykov (2015), Rossi (2018))
- ⇒ What is the quantitative impact of covenants on corporate investment, risk taking, and cost of capital?
 - In the time series?
 - In the cross-section?

This Paper: Theory

- Presents a dynamic GE model of corporate investment with endogenous loan covenants
 - Builds on Bernanke, Gertler, and Gilchrist (1999)
 - Technical default assigns investment control rights to lenders (Chava and Roberts (2008), Nini et al. (2009))
- Studies effects of technical default on investment, risk taking, and cost of equity
- Shows that payoffs of lenders/entrepreneurs lead to
 - Different investment choices
 - Concave payoffs induce lender to choose risk-less investments
 - Convex payoffs and losin contract induce entrepreneur in choose risky investments
 - Different exposure to aggregate shock
 - Firm has less exposure to aggregate shock, earns lower expected returns in technical default

This Paper: Theory

- Presents a dynamic GE model of corporate investment with endogenous loan covenants
 - Builds on Bernanke, Gertler, and Gilchrist (1999)
 - Technical default assigns investment control rights to lenders (Chava and Roberts (2008), Nini et al. (2009))
- Studies effects of technical default on investment, risk taking, and cost of equity
- Shows that payoffs of lenders/entrepreneurs lead to
 - Different investment choices
 - Concave payoffs induce lender to choose risk-less investments
 - Convex payoffs and lown contract induce entrepreneur to choose risky investments
 - Different exposure to aggregate shock
 - Firm has less exposure to aggregate shock, earns lower expected returns in technical default

This Paper: Theory

- Presents a dynamic GE model of corporate investment with endogenous loan covenants
 - Builds on Bernanke, Gertler, and Gilchrist (1999)
 - Technical default assigns investment control rights to lenders (Chava and Roberts (2008), Nini et al. (2009))
- Studies effects of technical default on investment, risk taking, and cost of equity
- Shows that payoffs of lenders/entrepreneurs lead to
 - Different investment choices
 - Concave payoffs induce lender to choose risk-less investments
 - Convex payoffs and loan contract induce entrepreneur to choose risky investments
 - Different exposure to aggregate shock
 - Firm has *less* exposure to aggregate shock, earns *lower* expected returns in technical default

This Paper: Empirics

- Uses Murfin (2012) loan covenant strictness as a measure of distance to technical default
 - Probability that firm will breach a covenant next quarter
- Shows that high-strictness firms
 - Have more conservative investment policies
 - Earn lower future returns
 - E.g., particles of finns in top strictness quintile same average 4% inverse annual returns than particles of firms in bottom quintile.
 - Results extremely robust, not related to distress aroundly
- Sets up calibration evaluating observed patterns

This Paper: Empirics

- Uses Murfin (2012) loan covenant strictness as a measure of distance to technical default
 - Probability that firm will breach a covenant next quarter
- Shows that high-strictness firms
 - · Have more conservative investment policies
 - Earn lower future returns
 - E.g., portfolio of firms in top strictness quintile earns average 4% *lower* annual returns than portfolio of firms in bottom quintile
 - Results extremely robust, not related to distress anomaly
 - Results also confirmed in RDD framework
- Sets up calibration evaluating observed patterns

This Paper: Empirics

- Uses Murfin (2012) loan covenant strictness as a measure of distance to technical default
 - · Probability that firm will breach a covenant next quarter
- Shows that high-strictness firms
 - · Have more conservative investment policies
 - Earn lower future returns
 - E.g., portfolio of firms in top strictness quintile earns average 4% *lower* annual returns than portfolio of firms in bottom quintile
 - Results extremely robust, not related to distress anomaly
 - Results also confirmed in RDD framework
- Sets up calibration evaluating observed patterns

Model

Bernanke, Gertler, and Gilchrist (BGG) Model Overview

Two Major Departures from BGG

- 1. Firm can invest (1θ) fraction of assets in risk-free bank deposit
- 2. Technical default based on signal of ω

Entrepreneur in Control

• Investment policy θ decided by entrepreneur (as in BGG)

What Happens in Technical Default?

• Investment policy θ decided by lender

Optimal Investment Choice: Overview

- Lender in control choose $\theta = 0$
 - Wants to preserve concave payoff
- Entrepreneur in control choose $\theta = 1$
 - If ω is low, entrepreneur better off giving up control
 - Lender would make the same investment choice as she would, but charge lower loan payment
 - $\Rightarrow\,$ Entrepreneur optimally gives up control rights in exchange for lower loan rate
 - As in Demiroglu and James (2010)

Firms: Production Technology and Labor Choice

At time t, firm i uses capital K_{it} and labor L_{it} to produce output Y_{it} according to

$$Y_{i,t} = \bar{Z}_t \left(\exp \left(\omega_{i,t} \right) K_{i,t} \right)^{\alpha} \left(L_{i,t} \right)^{1-\alpha},$$

with $\alpha \in (0, 1)$ and \overline{Z}_t an aggregate productivity shock

- Capital is traded on competitive markets at price Q_t , depreciates at rate $\delta \in (0, 1)$
- The return on capital from *t* to *t* + 1 is

$$R_{t+1}^{K} = \frac{1}{Q_t} \left[M P K_{t+1} + (1-\delta) Q_{t+1} \right], \tag{1}$$

- $MPK_{t+1}K_{t+1}$ is the firm's dividend at t + 1
- $(1 \delta) Q_{t+1} K_{t+1}$ is the value of the firm's undepreciated capital at t + 1

Entrepreneurs: Idiosyncratic Productivity, Signal Structure

- Each entrepreneur *i* receives idiosyncratic productivity shock ω_i
 - Turns one unit of productive capital into $\exp(\omega_i)$ productive units

• Similar to Bernanke et al. (1999)

• Idiosyncratic shock between time t - 1 and t is sum of two shocks

$$\omega_{it} ~=~ \omega_{it}^0 + \omega_{it}^1,$$

• $\omega_{it}^0, \omega_{it}^1$ are normally-distributed *iid* shocks

- Assumption: ω⁰_{it} and ω¹_{it} are realized at different stages
 ω⁰_{it} is realized in the middle of t − 1, before investment decision
 - We think of it as a *signal* on the entrepreneur's risky cash flows at *t*
 - ω_{it}^1 is realized at the end of t 1, after investment decision

- Each period *t* is divided into three sub-periods
- Stage 1:
 - Entrepreneurs with wealth N_{it} meet with lenders, sign loan contract
 Contract features endogenous covenant timebold of a set of the set of
- Stage 2:
 - Idiosyncratic signal ω_{it+1}^0 is realized
 - Control rights allocation, investment θ_{it+1} based on ω_{it+1}^0 and $\bar{\omega}_{it+1}^0$
- Stage 3:
 - Idiosyncratic shock ω_{t+1}^1 and aggregate shock Z_{t+1} are realized
 - Entrepreneurs default if, for given θ_{it+1} , ω_{it+1}^0

 $\left[\theta_{il+1} \exp\left(\omega_{il+1}^0 + \omega_{il+1}^1\right) R_{t+1}^K + \left(1 - \theta_{it+1}\right) R^D\right] A_{it} < R_{il+1}^B B_{il}$

Lenders recover fraction 1 — ζ of firm's assets.

- Each period *t* is divided into three sub-periods
- Stage 1:
 - Entrepreneurs with wealth N_{it} meet with lenders, sign loan contract
 - Contract features endogenous covenant threshold $\bar{\omega}^0_{it+1}$
- Stage 2:
 - \circ Idiosyncratic signal ω^0_{it+1} is realized
 - Control rights allocation, investment θ_{it+1} based on ω_{it+1}^0 and $\bar{\omega}_{it+1}^0$
- Stage 3:
 - Idiosyncratic shock ω_{t+1}^1 and aggregate shock Z_{t+1} are realized
 - Entrepreneurs default if, for given θ_{it+1} , ω_{it+1}^0

 $\left[\theta_{it+1} \exp\left(\omega_{it+1}^0 + \omega_{it+1}^1\right) R_{t+1}^K + (1 - \theta_{it+1}) R^D\right] A_{it} < R_{it+1}^B B_{it}$

Lenders recover fraction 1 — ζ of firm's assets

- Each period *t* is divided into three sub-periods
- Stage 1:
 - Entrepreneurs with wealth N_{it} meet with lenders, sign loan contract
 - Contract features endogenous covenant threshold $\bar{\omega}^0_{it+1}$
- Stage 2:
 - Idiosyncratic signal ω_{it+1}^0 is realized
 - Control rights allocation, investment θ_{it+1} based on ω_{it+1}^0 and $\bar{\omega}_{it+1}^0$
- Stage 3:
 - Idiosyncratic shock ω_{t+1}^1 and aggregate shock Z_{t+1} are realized
 - Entrepreneurs default if, for given θ_{it+1} , ω_{it+1}^0

 $\left[\theta_{it+1} \exp\left(\omega_{it+1}^{0} + \omega_{it+1}^{1}\right) R_{t+1}^{K} + \left(1 - \theta_{it+1}\right) R^{D}\right] A_{it} < R_{it+1}^{B} B_{it}$

Lenders recover fraction 1 — ζ of firm's assets.

- Each period *t* is divided into three sub-periods
- Stage 1:
 - Entrepreneurs with wealth N_{it} meet with lenders, sign loan contract
 - Contract features endogenous covenant threshold $\bar{\omega}^0_{it+1}$
- Stage 2:
 - Idiosyncratic signal ω_{it+1}^0 is realized
 - Control rights allocation, investment θ_{it+1} based on ω_{it+1}^0 and $\bar{\omega}_{it+1}^0$
- Stage 3:
 - Idiosyncratic shock ω_{t+1}^1 and aggregate shock Z_{t+1} are realized
 - Entrepreneurs default if, for given θ_{it+1} , ω_{it+1}^0 ,

$$\left[\theta_{it+1} \exp\left(\omega_{it+1}^0 + \omega_{it+1}^1\right) R_{t+1}^K + \left(1 - \theta_{it+1}\right) R^D\right] A_{it} < R_{it+1}^B B_{it}$$

- Lenders recover fraction $1 - \zeta$ of firm's assets

Financial Contract Problem

• Ex ante, the endogenous loan terms maximize entrepreneurs' ex-ante value given lender break-even

$$\left(B_{it}, R^B_{it+1}, \bar{\omega}^0_{it+1}\right)^* = \arg \max_{\left(B_{it}, R^B_{it+1}, \bar{\omega}^0_{it+1}\right)} V_{it}$$

subject to

$$W_{it} = R^B_{it+1}B_{it}$$

where

$$V_{it} = \int_{-\infty}^{\bar{\omega}_{i,t+1}^{0}} V_{it}^{L} dF\left(\omega_{i,t+1}^{0}\right) + \int_{\bar{\omega}_{i,t+1}^{0}}^{\infty} V_{it}^{E} dF\left(\omega_{i,t+1}^{0}\right),$$
(2)

$$W_{it} = \int_{-\infty}^{\bar{\omega}_{i,t+1}^{0}} W_{it}^{L} dF\left(\omega_{i,t+1}^{0}\right) + \int_{\bar{\omega}_{i,t+1}^{0}}^{\infty} W_{it}^{E} dF\left(\omega_{i,t+1}^{0}\right).$$
(3)

- *V*^{*L*}_{*it*} is value of entrepreneur when lender in control
- V_{it}^E is value of entrepreneur when herself in control

Results: Expected Returns

- Two sets of results simplify model computation
 - Optimal contract features same terms across all entrepreneurs
 - Allows us to achieve aggregation
 - Optimal investment choice implies $\theta^E = 1$ and $\theta^L = 0$
- Relationship between expected return and covenant strictness:

$$R_{i,t+1} = \begin{cases} R_{t+1}^{D} \\ \exp(\omega_{i,t+1}) R_{t+1}^{K} (1+H_{t}) - R_{t+1}^{B} H_{t} \\ 0 \end{cases}$$

$$\begin{array}{l} \text{if } \omega_{i,t+1}^0 < \bar{\omega}_{i,t+1}^0 \\ \text{if } \omega_{i,t+1}^0 \geq \bar{\omega}_{i,t+1}^0 \text{ and } \omega_{i,t+1}^1 \geq \hat{\omega}_{i,t+1}^1, \\ \text{otherwise,} \end{array}$$

where *H* is leverage ratio B/N

- When signal is low, lender is in control, choose risk-less asset
 - Expected return on equity is low
- When signal is high, entrepreneur in control choose risky asset
 - Expected return on equity is high

Empirical Analysis

- LPC Dealscan: Terms (including covenants) for syndicated and bilateral private loans
 - More than 75% of value of commercial loans in the US (Bradley and Roberts (2015))
 - Data sourced from SEC filings, private contracts
- Compustat/CRSP: Quarterly financial data, returns
- Greg Nini: Covenant violation data
 - Sourced from firm SEC filings
- Sample frequency and period: Quarterly, 1996q1-2016q4

Investment Conservatism for Strictness-Sorted Portfolios

	Low	2	3	4	High	High-4	High-Low	4-Low
Δ CAPX/Asset	-0.08*	-0.03	-0.03	-0.03	-0.11*	-0.08*	-0.03	0.04*
<i>t</i> -stat.	-1.78	-1.10	-1.00	-0.77	-1.80	-1.94	-0.66	1.66
Δ ACQU/Asset	-0.18***	-0.10	-0.19***	-0.09	-0.34***	-0.25**	-0.17	0.08
<i>t</i> -stat.	-2.99	-1.09	-2.96	-1.12	-3.15	-2.36	-1.58	0.97

- We sort firms into five portfolios based on their strictness
 - Constructed following Murfin (2012)
 - Portfolios are rebalanced quarterly
- Firms in high-strictness portfolio feature conservative investment
 - Both relative to low-strictness and to 4th portfolio
 - Investment conservatism measured with CAPEX and acquisition expenditure growth (Nini et al. (2012))
 - Consistent with recent empirical evidence (Chava and Roberts (2008), Nini et al. (2009, 2012), Falato and Liang (2016), Ersahin et al. (2017))

	Low	2	3	4	High	High-4	High-Low	4-Low
Excess Return (pp)	6.76*	8.40**	6.90*	10.36**	2.64	-7.72**	-4.12	3.60*
t-stat.	1.90	2.27	1.83	2.59	0.49	-2.32	-1.52	1.88
α^{FF5}	-2.76*	-2.03	-3.06	-0.79	-6.56***	-5.77*	-3.80	1.97
t-stat.	-1.84	-1.12	-1.45	-0.42	-2.68	-1.97	-1.64	1.19
β^{MKT}	1.06***	1.03***	1.08***	1.09***	1.18***	0.10	0.12*	0.02
t-stat.	30.64	27.18	29.53	21.09	24.88	1.58	1.88	0.56
β^{SMB}	0.09	0.24***	0.19***	0.30***	0.37***	0.07	0.28***	0.21***
t-stat.	1.70	3.55	2.75	4.31	6.37	0.85	3.09	3.53
β^{HML}	0.05	0.02	0.12*	0.17	0.21**	0.04	0.17**	0.13
t-stat.	0.58	0.18	1.69	1.31	2.18	0.37	2.03	1.41
β^{RMW}	0.29***	0.45***	0.32***	0.39***	-0.09	-0.48***	-0.37***	0.10
t-stat.	4.86	4.65	4.42	4.74	-0.68	-3.82	-2.75	1.38
β^{CMA}	0.06	0.13	-0.02	0.13	-0.25	-0.37***	-0.30*	0.07
t-stat.	0.80	1.28	-0.17	1.23	-1.57	-2.64	-1.87	0.76

Excess Returns for Strictness-Sorted Portfolios

- Firms in high-strictness portfolio earn *lower* expected returns
 - Similar pattern observed for investment conservatism
- Pattern arises from exposure to investment and profitability factors (Fama and French (2015), Hou et al. (2015))
 - Findings provide supportive evidence for mechanism

Robustness and Additional Tests

- Strictness strongly predicts future covenant violation
- Strictness-return relationship strong and robust to
 - Fama-MacBeth cross-sectional regression specifications
 - Pooled OLS regression specifications
 - Alternative specifications for strictness measure
- RDD tests show that covenant violation is associated with reduction in future excess returns
- Results are not driven by financially-distressed firms
 - E.g., stronger results for low-failure-probability firms
 - Suggests our mechanism arises from different economic forces than distress anomaly (e.g., Garlappi and Yan (2011))

Validation

Distress

- Quantitative analysis of the model
 - Aggregate implications:
 - Covenants alter impulse response functions of aggregate variables relative to Bernanke et al. (1999)
 - Time-varying strictness is an important state variable in the economy
 - Cross-sectional implications:
 - Firms close to technical default have less exposures to aggregate shocks, thus *lower* expected return

- We build dynamic model of firm borrowing with endogenous loan covenants and transfer of control rights
 - Investment control rights transferred to lenders when covenants are breached
- We provide evidence for mechanism in the data
 - Firms closer to technical default
 - Exhibit more conservative investment
 - Have 4% lower expected returns

Appendix

	Dep	Dependent Variable: Covenant Violation		
	(1)	(2)	(3)	
One-Quarter Lag Strictness	0.109*** (0.00)	0.065*** (0.01)	0.058*** (0.01)	
Firm FE	No	Yes	Yes	
Year-Quarter FE R-Squared Observations	No 0.069 72,781	No 0.249 72,639	Yes 0.257 72,639	

• Strictness is positively correlated with future covenant violations

Fama-MacBeth

	Dependent Variable: Monthly Excess Returns					
	(1)	(2)	(3)	(4)		
Strictness	-0.357***	-0.327***	-0.364***	-0.330***		
	(0.12)	(0.12)	(0.12)	(0.12)		
Size	-0.088*	-0.100**	-0.066	-0.079*		
	(0.05)	(0.05)	(0.05)	(0.05)		
Log B/M	0.141	0.136	0.081	0.075		
	(0.13)	(0.12)	(0.12)	(0.11)		
Reversal	-0.016**	-0.016**	-0.016**	-0.017**		
	(0.01)	(0.01)	(0.01)	(0.01)		
Book Leverage	-0.112	-0.081	-0.415	-0.407		
	(0.48)	(0.47)	(0.46)	(0.46)		
ROA	5.082	3.217	5.139	3.376		
	(3.87)	(3.53)	(3.65)	(3.42)		
Pr(Failure)		-80.929** (31.79)		-91.997*** (28.05)		
EDF			0.192 (2.48)	2.272 (2.41)		
R-Squared	0.041	0.047	0.049	0.054		
Observations	219,331	218,952	214,750	214,699		

	Dependent Variable: Monthly Excess Returns				
	(1)	(2)	(3)	(4)	
Str. Portfolio 2	0.013	0.011	0.038	0.027	
	(0.09)	(0.09)	(0.08)	(0.08)	
Str. Portfolio 3	-0.026	-0.034	0.002	-0.008	
	(0.10)	(0.09)	(0.08)	(0.08)	
Str. Portfolio 4	-0.162	-0.169	-0.147	-0.147	
	(0.11)	(0.11)	(0.11)	(0.10)	
High Str. Portfolio	-0.310**	-0.296**	-0.317**	-0.298**	
	(0.12)	(0.12)	(0.13)	(0.13)	
Pr(Failure)		-84.430*** (32.18)		-94.865*** (28.83)	
EDF			0.119 (2.52)	2.216 (2.42)	
Other Controls	Yes	Yes	Yes	Yes	
R-Squared	0.044	0.050	0.052	0.057	
Observations	219,247	218,872	214,669	214,619	

Fama-MacBeth with Portfolio Dummies

• Dummies for firms belonging to strictness portfolios

Pooled OLS

	Dependent Variable: Monthly Excess Returns					
	(1)	(2)	(3)	(4)		
Strictness	-0.440***	-0.445***	-0.482***	-0.480***		
	(0.16)	(0.17)	(0.17)	(0.17)		
Size	-0.119**	-0.111*	-0.091	-0.088		
	(0.06)	(0.06)	(0.06)	(0.06)		
Log B/M	0.159	0.149	0.071	0.078		
	(0.13)	(0.13)	(0.13)	(0.13)		
Reversal	-0.032**	-0.032**	-0.033**	-0.033**		
	(0.01)	(0.01)	(0.02)	(0.02)		
Book Leverage	-0.116	-0.176	-0.505	-0.478		
	(0.51)	(0.51)	(0.55)	(0.55)		
ROA	-1.235	-0.789	-0.500	0.071		
	(6.11)	(5.50)	(6.16)	(5.73)		
Pr(Failure)		3.513 (2.77)		2.600 (2.95)		
EDF			2.226* (1.16)	1.959 (1.23)		
R-Squared	0.151	0.151	0.151	0.151		
Observations	219,331	218,952	214,750	214,699		

RDD Tests

	Depe	endent Variable: Exce	ss Returns
	(1)	(2)	(3)
Violation	-0.443*** (0.11)	-0.309*** (0.11)	-0.272* (0.15)
Distance	0.134*** (0.03)	0.109*** (0.03)	-0.017 (0.07)
Violation × Distance	-0.224*** (0.04)	-0.180*** (0.04)	0.083 (0.13)
Size		-0.021 (0.02)	-0.024 (0.02)
Log B/M		0.068 (0.05)	0.076 (0.05)
Book Leverage		-0.475** (0.21)	-0.309 (0.23)
ROA		4.407*** (1.60)	3.981** (1.62)
High Order Polynomials	No	No	Yes
Year-Quarter FE R-Squared Observations	Yes 0.214 67,591	Yes 0.220 64,451	Yes 0.220 64,451

Distressed Firms

	$EDF \leq 90$ th Percentile		$\Pr(Failure) \le 90$ th $Percentile$	
	(1)	(2)	(3)	(4)
Str. Portfolio 2	-0.005	0.011	0.022	0.031
	(0.08)	(0.08)	(0.08)	(0.08)
Str. Portfolio 3	-0.097	-0.072	-0.096	-0.085
	(0.08)	(0.08)	(0.08)	(0.08)
Str. Portfolio 4	-0.203**	-0.171*	-0.156*	-0.139
	(0.10)	(0.10)	(0.09)	(0.09)
High Str. Portfolio	-0.328**	-0.308**	-0.347***	-0.324**
	(0.14)	(0.14)	(0.13)	(0.14)
Distress Controls	No	Yes	No	Yes
Other Controls	Yes	Yes	Yes	Yes
R-Squared	0.044	0.052	0.041	0.051
Observations	193,327	193,281	197,033	193,338

- Expected Default Frequency (EDF) from Bharath and Shumway (2008)
- Failure Probability from Campbell et al. (2008)

