Monetary Policy Disconnect Presentation AEA 2021

BENEDIKT BALLENSIEFEN¹, ANGELO RANALDO², HANNAH WINTERBERG³

Monday 4th January, 2021

¹University of St. Gallen and World Bank Group, E-mail: benedikt.ballensiefen@unisg.ch.

²University of St. Gallen and Swiss Finance Institute, E-mail: angelo.ranaldo@unisg.ch.

³University of St. Gallen and University of Maryland, E-mail: hannah.winterberg@unisg.ch.

Motivation

"...there is a risk that, under the current framework, some short-term market rates would **not respond fully** to changes in our key interest rates or, even if they would, that a continued dispersion of short-term rates would **adversely impact** the transmission of our monetary policy stance."

-Benoît Cœuré in May 2018

Paper in a nutshell

Two aspects of the central bank framework designed to support monetary policy can disconnect the monetary policy **transmission**:

- Banks' access to central bank deposits.
- Quantitative Easing (QE).

We show that....

- Lending rates of banks with access to the deposit facility are less responsive to the monetary policy rate.
- Repo rates secured by assets eligible for QE programs are more disconnected from the policy rate.
- Both effects create rate dispersion and add to one another in weakening the monetary policy transmission.

Contribution

Literature on the effectiveness of monetary policy.

- Duffie and Krishnamurthy, 2016, and Drechsler, Savov, and Schnabl, 2017, analyze the interest-rate pass-through in the United States.
- On a macro-wide level, Avouyi-Dovi, Horny, and Sevestre, 2017, find a slowdown of the interest rates transmission mechanism, which Al-Eyd and Berkmen, 2013, associate with segmentation along country lines.

Literature on short-term funding markets

- Arrata et al., 2020, and Corradin and Maddaloni, 2020, investigate the effects of QE purchases on *special* repo rates. Kraenzlin and Nellen, 2015, analyze segmentation effects in the Swiss unsecured money market.
- Cross-sectional dispersion in repo rates in Europe (e.g., Mancini, Ranaldo, and Wrampelmeyer, 2016; Boissel et al., 2017; Ranaldo, Schaffner, and Vasios, 2020; Ballensiefen and Ranaldo, 2020) and the United States (e.g., Bartolini et al., 2011; Gorton and Metrick, 2012; Copeland, Martin, and Walker, 2014; Krishnamurthy, Nagel, and Orlov, 2014; Infante, 2020).

The monetary policy framework

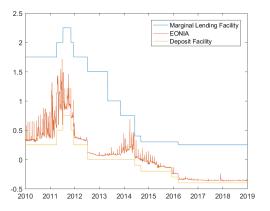


Figure: Rate corridor

5/17

The importance of the repo market

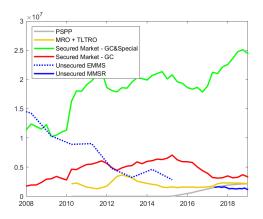


Figure: Different market turnovers (in euro million)

ECB access

Only euro area banks can access the ECB deposit facility.

- Deposit facility represents a safe and convenient way to store liquidity.
- It is **more convenient** when the repo rate falls below the deposit facility rate.
- Importance of the deposit rate and access to the central bank's facilities is stressed in the theoretical (Cúrdia and Woodford, 2011; Bech and Monnet, 2016; Williamson, 2019) and empirical (Bech and Klee, 2011; Kraenzlin and Nellen, 2015) literature.

Hypothesis I

Banks with (without) access to the ECB deposit facility lend at repo rates less (more) aligned to the monetary policy target rate.

Theoretical Framework: Link, Dispersion: Link, Volume and Spread: Link

Access/nonaccess banks

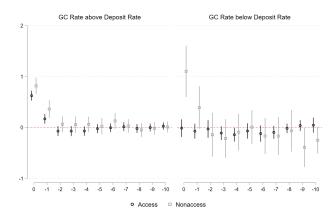


Figure: Impulse response after changes in policy rate

ECB Access Introduction 000

Regression results

Table: ECB access - German collateral

	(1) $\Delta repo^{GC}$	(2) $\Delta repo^{GC}$	(3) $\Delta repo^{GC}$
	ON/TN b/t	ON/TN b/t	ON/TN b/t
$\Delta PolRate$	0.539*** (15.700)	0.717*** (10.745)	0.675*** (8.781)
D^{Dep}	$-0.046^{**} (-2.265)$		-0.047^{**} (-2.338)
$\Delta PolRate \cdot D^{Dep}$	$-0.176** \\ (-2.216)$		0.265** (2.082)
D^{Access}		$-0.001 \\ (-0.071)$	
$\Delta PolRate \cdot D^{Access}$		$-0.264^{***} (-3.549)$	
$\Delta PolRate \cdot D^{Access} \cdot D^{Dep}$			-0.719*** (-4.970)
$\Delta repo^{GC}$ lagged	-0.332*** (-14.230)		
N R ²	10,001 0.210	10,001 0.213	10,001 0.220

All regressions include basket-month-term fixed effects and heteroscedasticity-robust standard errors.

Robustness checks:

All European countries different fixed effects

other monetary policy target rates

 Introduction
 Setting
 ECB Access
 QE Eligibility
 Extensions
 Conclusion

 ○○
 ○○
 ○○
 ○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○

Collateral eligibility

Assets that qualify for the QE asset purchase program.

- Comparing repo lending rates of eligible and noneligible assets.
- Employ the provisions of the Public Sector Purchase Program (PSPP) since the start of QE and retrospectively to compare time trends between (hypothetically) eligible and noneligible assets (difference-in-difference estimation setting).
- Role of central bank purchases is highlighted in the theoretical (Gertler and Karadi, 2013; Araújo, Schommer, and Woodford, 2015; Piquard and Salakhova, 2019) and empirical (Koijen et al., 2017; Avdjiev, Everett, and Shin, 2019; Schlepper et al., 2017; Arrata et al., 2020; Corradin and Maddaloni, 2020) literature.

Hypothesis II

Repos whose collateral is (not) eligible for QE programs is more (less) misaligned from the monetary policy rate. Observing similar reactions of both types of collateral before QE would imply common trends and allow us to interpret the results as causal.

Theoretical framework: Link, Dispersion measure: Link Volume and Spread: Link

QE Eligibility Introduction

Regression results

Table: QE eligibility - German collateral

	(1) $\Delta repo^{Special}$	(2) $\Delta repo^{Special}$	(3) $\Delta repo^{Special}$
	TN/SN b/t	TN/SN b/t	TN/SN b/t
$\Delta PolRate$	0.106*** (19.644)	0.098*** (12.937)	0.109*** (13.130)
D^{QE}	-0.016 (-1.462)		-0.016 (-1.434)
$\Delta PolRate \cdot D^{QE}$	-0.150*** (-15.837)		-0.120*** (-8.154)
$D^{Eligible}$		0.004 (0.454)	0.004 (0.440)
$\Delta PolRate \cdot D^{Eligible}$		0.006 (0.537)	-0.005 (-0.463)
$\Delta PolRate \cdot D^{Eligible} \cdot D^{QE}$		-0.172^{***} (-14.035)	-0.052^{***} (-2.737)
$\Delta repo^{Special}$ lagged	$-0.364^{***} (-20.719)$	-0.364^{***} (-20.716)	$-0.364^{***} (-20.719)$
$\frac{N}{R^2}$	301,608 0.119	301,608 0.119	301,608 0.119

All regressions include ISIN-month-term fixed effects and heteroscedasticity-robust standard errors.

Robustness checks:

All European countries different fixed effects

different standard errors other monetary policy target rates

Extensions

Our results do not rely on the choice of the EONIA as the monetary policy target rate. We also employ:

- EONIA-€STR combination with €STR rates beginning in March 2017.
- Overnight euro LIBOR.
- Overnight point of the OIS-implied zero curve and the EURIBOR-implied zero curve.
- One-week OIS rate.
- Rate on the ECB GC Pooling Basket.

We consider the **joint effects** of the two features of the central bank framework:

- GC baskets with a higher share of collateral assets that are eligible for asset purchase are less sensitive to changes in the monetary policy rate.
 Results
- Access banks also react less sensitively in the special market after controlling for asset eligibility. Results

Conclusion & Policy Implications

Although designed to support monetary policy, two crucial aspects of the central bank framework have led to a disconnect of repo rates from the monetary policy rate.

The idea that unconventional policies "safeguard the transmission of our monetary policy," as pointed out by ECB President Christine Lagarde to justify the new Pandemic Emergency Purchase Programme (PEPP), may be short-sighted.

At the heart of the **CRR amendments** "to facilitate bank lending in the Union amid COVID-19", there is the exclusion of central bank reserves from the calculation of the leverage ratio. This policy could encourage additional amounts to be deposited creating more segmentation and the opposite effect to its aim.

Conclusion

References I

- Al-Eyd, M. A., Berkmen, P., 2013. Fragmentation and monetary policy in the euro area. International Monetary Fund Working Paper (No.13-208) .
- Araújo, A., Schommer, S., Woodford, M., 2015. Conventional and unconventional monetary policy with endogenous collateral constraints. American Economic Journal: Macroeconomics 7, 1–43.
- Arrata, W., Nguyen, B., Rahmouni-Rousseau, I., Vari, M., 2020. The scarcity effect of quantitative easing on repo rates: Evidence from the euro area, Journal of Financial Economics (forthcoming).
- Avdjiev, S., Everett, M., Shin, H. S., 2019. Following the imprint of the ECB's asset purchase programme on global bond and deposit flows. BIS Quarterly Review, March 2019, 69-81.
- Avouyi-Dovi, S., Horny, G., Sevestre, P., 2017. The stability of short-term interest rates pass-through in the euro area during the financial market and sovereign debt crises. Journal of Banking and Finance 79, 74–94.
- Ballensiefen, B., Ranaldo, A., 2020. Safe asset carry trade. Working Paper, University of St Gallen
- Bartolini, L., Hilton, S., Sundaresan, S., Tonetti, C., 2011. Collateral values by asset class: Evidence from primary securities dealers. Review of Financial Studies 24, 248–278

Conclusion

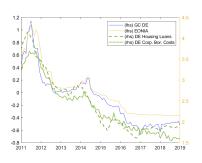
References II

- Bech, M., Klee, E., 2011. The mechanics of a graceful exit: Interest on reserves and segmentation in the federal funds market. Journal of Monetary Economics 58, 415–431.
- Bech, M., Monnet, C., 2016. A search-based model of the interbank money market and monetary policy implementation. Journal of Economic Theory 164, 32–67.
- Boissel, C., Derrien, F., Ors, E., Thesmar, D., 2017. Systemic risk in clearing houses: Evidence from the European repo market. Journal of Financial Economics 125, 511–536.
- Copeland, A., Martin, A., Walker, M., 2014. Repo runs: Evidence from the tri-party repo market. Journal of Finance 69, 2343–2380.
- Corradin, S., Maddaloni, A., 2020. The importance of being special: Repo markets during the crisis, Journal of Financial Economics (forthcoming).
- Cúrdia, V., Woodford, M., 2011. The central-bank balance sheet as an instrument of monetary policy. Journal of Monetary Economics 58, 54–79.
- Drechsler, I., Savov, A., Schnabl, P., 2017. The deposits channel of monetary policy. The Quarterly Journal of Economics 132, 1819–1876.

Conclusion

References III

- Duffie, D., Krishnamurthy, A., 2016. Pass-through efficiency in the Fed's new monetary policy setting. Designing resilient monetary policy frameworks for the future, a symposium sponsored by the Federal Reserve Bank of Kansas City, Jackson Hole August 25-27, 2016, 21-102,
- Gertler, M., Karadi, P., 2013. QE 1 vs. 2 vs. 3...: A framework for analyzing large-scale asset purchases as a monetary policy tool. International Journal of Central Banking 9, 5–53.
- Gorton, G., Metrick, A., 2012. Securitized banking and the run on repo. Journal of Financial Economics 104, 425-451.
- Infante, S., 2020. Private money creation with safe assets and term premia. Journal of Financial Economics 136, 828–856.
- Koijen, R. S., Koulischer, F., Nguyen, B., Yogo, M., 2017. Euro-area guantitative easing and portfolio rebalancing. American Economic Review 107, 621-627.
- Kraenzlin, S., Nellen, T., 2015. Access policy and money market segmentation. Journal of Monetary Economics 71, 1-12.
- Krishnamurthy, A., Nagel, S., Orlov, D., 2014. Sizing up repo. Journal of Finance 69, 2381-2417.
- Mancini, L., Ranaldo, A., Wrampelmeyer, J., 2016. The euro interbank repo market. Review of Financial Studies 29, 1747-1779.


References IV

- Piquard, T., Salakhova, D., 2019. Secured and unsecured interbank markets: Monetary policy, substitution and the cost of collateral. Banque de France Working Paper 703.
- Ranaldo, A., Schaffner, P., Vasios, M., 2020. Regulatory effects on short-term interest rates. Journal of Financial Economics forthcoming.
- Schlepper, K., Riordan, R., Hofer, H., Schrimpf, A., 2017. Scarcity effects of QE: A transaction-level analysis in the Bund market. Deutsche Bundesbank Discussion Paper 06/2017.
- Williamson, S. D., 2019. Interest on reserves, interbank lending, and monetary policy. Journal of Monetary Economics 101, 14–30.

Appendix: Interest rate co-movements

(a) Eurozone government bond rates

(b) German real sector lending rates

Appendix: Monetary policy pass-through to lending rates

Table 1. Repo dispersion and the pass-through to lending rates

	(1)	(2)
	Non-Fin. Corporate	New Housing
	Δr^L	Δr^L
	b/t	b/t
$\Delta PolRate$	0.470***	0.729***
	(5.335)	(8.118)
$\Delta PolRate \cdot D^{Dispersion}$	-0.351***	-0.444***
	(-2.739)	(-3.379)
$\Delta PolRate \cdot PSPP^{Volume}$	-0.034*	-0.042**
	(-1.651)	(-2.066)
N	991	907
adi. R^2	0.073	0.089

The table reports the regression results examining the pass-through of changes in the monetary policy target rate into lending rates faced by corporate borrowers and private households. The dependent variable is the change of a given lending rate Δr^L . Non-financial corporate borrowing rates refer to the annualized borrowing costs of non-financial firms for new loans, while new housing rates refer to bank interest rates on new loans to households for house purchases with an initial rate fixation period of between one and five years. Both lending rates are available from the ECB's monetary financial institutions (MFI) interest rate statistics. $\Delta PolRate$ denotes the change in the policy rate. $D^{Dispersion}$ equals 1 if a country's dispersion in GC rates between access and nonaccess banks is above its mean. PSPP^{Volume} denotes the monthly purchasing volumes of the PSPP in euro bn. ***, **, and * represent significance at a 1, 5, and 10% level, respectively: t-statistics are in parentheses. All regressions include country-year fixed effects and heteroskedastic-robust standard errors. Data are at a monthly frequency for all European countries for the time-period 2010-2018.

Appendix: Dispersion measure of GC repo rates

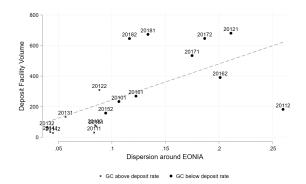


Figure: Dispersion of access and nonaccess rates

Appendix: Dispersion measure of special repo rates

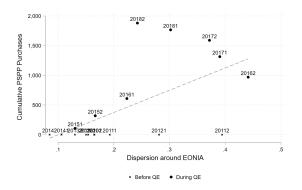


Figure: Dispersion of eligible and noneligible rates

Appendix: Access/nonaccess model

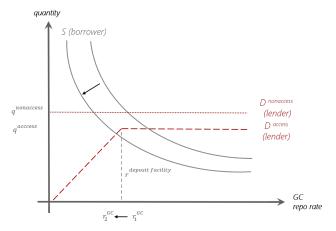


Figure: Impact of supply shock in the GC market

Appendix: Eligible/noneligible model

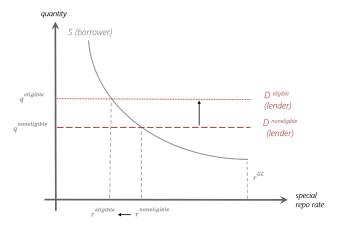


Figure: Impact of demand shock in the special repo market

Appendix: Access/nonaccess by term type

Table 3.6. ECB access: Germany

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Δrepo ^{GC} ON b/t	Δrepo ^{GC} TN b/t	Δrepo ^{GC} ON/TN b/t	Δrepo ^{GC} ON b/t	Δrepo ^{GC} TN b/t	Δrepo ^{GC} ON/TN b/t	Δrepo ^{GC} ON b/t	Δrepo ^{GC} TN b/t	Δrepo ^{Cl} ON/TN b/t
$\Delta PolRate$	0.742*** (10.017)	0.456*** (11.476)	0.539*** (15.700)	0.646*** (6.547)	0.760*** (8.970)	0.717*** (10.745)	0.601*** (5.285)	0.719*** (7.428)	0.675** (8.781)
D^{Dep}	-0.042 (-1.102)	-0.045* (-1.890)	-0.046** (-2.265)				-0.043 (-1.136)	-0.047** (-1.986)	-0.047* (-2.338
$\Delta PolRate \cdot D^{Dep}$	-0.130 (-0.891)	-0.210** (-2.229)	-0.176** (-2.216)				0.238 (1.477)	0.287 (1.614)	0.265** (2.082)
DAcces				-0.003 (-0.142)	0.001 (0.067)	-0.001 (-0.071)	-0.001 (-0.080)	0.001 (0.074)	-0.000 (-0.033
$\Delta PolRate \cdot D^{Access}$				0.114 (0.912)	-0.424*** (-4.685)	-0.264*** (-3.549)	0.194 (1.387)	-0.337*** (-3.274)	-0.177^{*} (-2.100
$\Delta PolRate \cdot D^{Access} \cdot D^{Dep}$							-0.625** (-2.461)	-0.760*** (-4.037)	-0.719* (-4.970
$\Delta repo^{GC}$ lagged	-0.311*** (-7.411)	-0.326*** (-11.237)	-0.332*** (-14.230)	-0.311*** (-7.531)	-0.321*** (-10.978)	-0.332*** (-14.147)	-0.313*** (-7.491)	-0.321*** (-11.027)	-0.332* (-14.15
N R ²	2,828 0.332	7,173 0.161	10,001 0.210	2,828 0.332	7,173 0.172	10,001 0.213	2,828 0.336	7,173 0.179	10,001 0.220

The table reports the regression results examining the impact of across to the ECTA deposit facility on the pass-through of the monetary policy testy at an inter GC report near. The deposited variative flow the change in the CC or acts $\Delta expe^{i\phi_{i}}$. $\Delta G fifther denotes the change in the EQT was in Figure 1 if a country <math>i \in C$ near to below the deposit facility, $D^{inseric}$ equals 1 if a leading bank has accoss to the deposit facility, $e^{i\phi_{i}}$, $e^{i\phi_{i}}$ and $e^{i\phi_{i}}$ and e

Appendix: Access/nonaccess by term type

Table 3.7. ECB access: Core countries

	(1) $\Delta repo^{GC}$	(2) $\Delta repo^{GC}$	(3) $\Delta repo^{GC}$	(4) $\Delta repo^{GC}$	(5) $\Delta repo^{GC}$	(6) $\Delta repo^{GC}$	(7) $\Delta repo^{GC}$	(8) $\Delta repo^{GC}$	(9) $\Delta repo^{GC}$
	ON b/t	TN b/t	ON/TN b/t	ON b/t	TN b/t	ON/TN b/t	ON b/t	TN b/t	ON/TN b/t
$\Delta PolRate$	0.679*** (15.740)	0.376*** (16.033)	0.472*** (23.035)	0.810*** (13.089)	0.624*** (11.957)	0.683*** (16.875)	0.801*** (10.747)	0.576*** (10.245)	0.643*** (14.261)
D^{Dep}	-0.020 (-1.132)	-0.037*** (-2.682)	-0.032*** (-2.940)				-0.017 (-1.014)	-0.038*** (-2.794)	-0.032** (-2.922)
$\Delta PolRate \cdot D^{Dep}$	-0.219*** (-2.637)	0.030 (0.438)	-0.048 (-0.897)				0.045 (0.472)	0.450*** (4.129)	0.298*** (3.968)
D^{Access}				$-0.002 \\ (-0.231)$	$-0.006 \\ (-0.801)$	-0.005 (-0.819)	-0.002 (-0.226)	$-0.005 \\ (-0.685)$	-0.004 (-0.743)
$\Delta PolRate \cdot D^{Access}$				-0.201*** (-2.692)	-0.324*** (-5.644)	-0.284*** (-6.242)	-0.155* (-1.782)	-0.263*** (-4.261)	-0.222*** (-4.423)
$\Delta PolRate \cdot D^{Access} \cdot D^{Dep}$							-0.528*** (-3.986)	-0.604*** (-4.584)	-0.561*** (-5.885)
$\Delta repo^{GC}$ lagged	-0.302*** (-15.168)	-0.345*** (-18.622)	-0.337*** (-24.685)	-0.303*** (-15.259)	-0.340*** (-18.181)	-0.335*** (-24.388)	-0.303*** (-15.180)	$-0.341^{***} (-18.237)$	-0.335** (-24.410
$\frac{N}{R^2}$	12,219 0.253	22,863 0.143	35,082 0.180	12,219 0.254	22,863 0.150	35,082 0.185	12,219 0.257	22,863 0.153	35,082 0.187

The table reports the regression results examining the impact of access to the ECT's deposit facility on the poss-through of the monetary policy target rate into GC report stee. The deposition variable is the change in the GC rate $\Delta report = 2\pi e^{-2\pi i k_B T}$ which desires the change in the ρ -combard if a few country SC Crate is before the deposit facility ρ -combard if a few country SC Crate is before the deposit facility ρ -free quality if a few country SC Crate is before the deposit facility ρ -free quality if it is sufficiently as the contract of the contract in the cont

Appendix: Access/nonaccess by term type

Table 3.8. ECB access: All countries

	(1) $\Delta repo^{GC}$	$\Delta repo^{GC}$	(3) $\Delta repo^{GC}$	$\Delta repo^{GC}$	(5) $\Delta repo^{GC}$	(6) $\Delta repo^{GC}$	(7) $\Delta repo^{GC}$	(8) $\Delta repo^{GC}$	(9) $\Delta repo^{GC}$
	ON b/t	TN b/t	ON/TN b/t	ON b/t	TN b/t	ON/TN b/t	ON b/t	TN b/t	ON/TN b/t
$\Delta PolRate$	0.660*** (19.491)	0.304*** (15.542)	0.424*** (24.699)	0.708*** (10.666)	0.520*** (12.869)	0.589*** (16.774)	0.694*** (9.670)	0.484*** (11.494)	0.560*** (15.106)
D^{Dep}	0.033*** (2.675)	-0.020° (-1.775)	0.001 (0.143)				0.034*** (2.774)	-0.020° (-1.775)	0.002 (0.221)
$\Delta PolRate \cdot D^{Dep}$	-0.200** (-2.562)	0.122* (1.882)	0.011 (0.220)				0.169* (1.808)	0.525*** (5.546)	0.384*** (5.668)
D^{Access}				$-0.002 \\ (-0.302)$	-0.004 (-0.726)	$-0.003 \\ (-0.755)$	-0.002 (-0.273)	-0.004 (-0.674)	-0.003 (-0.709)
$\Delta PolRate \cdot D^{Access}$				-0.085 (-1.152)	-0.279*** (-6.199)	-0.223*** (-5.687)	-0.047 (-0.594)	-0.240*** (-5.104)	-0.184** (-4.438)
$\Delta PolRate \cdot D^{Access} \cdot D^{Dep}$							-0.657*** (-5.109)	-0.595*** (-5.022)	-0.595** (-6.733)
$\Delta repo^{GC}$ lagged	-0.324*** (-15.436)	-0.382*** (-25.063)	$^{-0.372^{***}}_{(-30.291)}$	-0.324*** (-15.482)	-0.381*** (-24.915)	-0.371*** (-30.133)	-0.324*** (-15.452)	-0.381*** (-24.929)	-0.371** (-30.167
N R ²	21,894 0.248	36,289 0.140	58,183 0.174	21,894 0.248	36,289 0.145	58,183 0.177	21,894 0.250	36,289 0.147	58,183 0.178

The table reports the regression results examining the impact of access to the ECR's deposit facility on the pass through of the monetary policy target rate into GO rays rates. The deposition visualities is the change in the CO rate $\Delta reports^{-1}$. $\Delta PR/Relle$ denotes the change in the policy rate, $D^{0,0}$ equals 1 if a country ϕ (O rate is the object being); $\nabla Proposition = 1$ and $\Delta Proposition = 1$

Appendix: Access/nonaccess by fixed effect specification

Table 3.9. ECB access: Germany, different fixed effect specifications

	(1)	(2)	(3)	(4)	(5)
	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$
	ON/TN b/t	ON/TN b/t	ON/TN b/t	ON/TN b/t	ON/TN b/t
$\Delta PolRate$	0.675*** (8.781)	0.684*** (9.301)	0.712*** (9.197)	0.725*** (8.733)	0.725*** (8.709)
D^{Dep}	-0.047** (-2.338)	-0.047** (-2.274)	-0.027** (-2.068)	-0.032*** (-3.605)	-0.021* (-1.795)
$\Delta PolRate \cdot D^{Dep}$	0.265** (2.082)	0.269** (2.350)	0.279** (2.225)	0.313** (2.358)	0.293** (2.228)
D ^{Access}	$-0.000 \\ (-0.035)$	-0.002 (-0.147)	0.003 (0.265)	0.002 (0.155)	0.003 (0.339)
$\Delta PolRate \cdot D^{Access}$	-0.177** (-2.100)	-0.149° (-1.766)	-0.130 (-1.456)	-0.138 (-1.461)	-0.139 (-1.468)
$\Delta PolRate \cdot D^{Access} \cdot D^{Dep}$	$-0.719^{***} (-4.970)$	-0.686*** (-4.821)	-0.665*** (-4.400)	-0.591*** (-3.616)	-0.583*** (-3.608)
$\Delta repo^{GC}$ lagged	-0.332*** (-14.151)	-0.321*** (-14.032)	-0.307*** (-12.483)	-0.298*** (-12.005)	-0.299*** (-12.072)
FE	Basket× Month× Term	Basket× Month	Basket× Year	Basket	Year
$\frac{N}{R^2}$	10,001 0.220	10,098 0.239	10,165 0.227	10,168 0.220	10,168 0.223

The table reports the regression used seasoning the largest of access to the KETM departs for the pose-length of the monetary golds regard rate in the GPT cases. The dependent variable is the change in the policy rate, the change in the GCT are $\Delta c_{\rm PP}^{\rm CP} = \Delta D d$ flux denotes the change in the policy rate, $D^{\rm CP} = \eta_{\rm PP} = 1$ and the change in the policy rate, $D^{\rm CP} = \eta_{\rm PP} = 1$ and the change in the policy rate is the policy of the change of the contract of the change of the ch

Appendix: Access/nonaccess by fixed effect specification

Table 3.10. ECB access: Core countries, different fixed effect specifications

	(1)	(2)	(3)	(4)	(5)
	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$
	ON/TN	ON/TN	ON/TN	ON/TN	ON/TN
	b/t	b/t	b/t	b/t	b/t
$\Delta PolRate$	0.643***	0.672***	0.709***	0.716***	0.715***
	(14.261)	(15.044)	(15.028)	(14.735)	(14.721)
D^{Dep}	-0.032***	-0.027**	-0.019***	-0.018***	-0.015**
	(-2.922)	(-2.434)	(-2.594)	(-4.059)	(-2.243)
$\Delta PolRate \cdot D^{Dep}$	0.298***	0.293***	0.298***	0.326***	0.310***
	(3.968)	(4.140)	(3.908)	(4.127)	(3.966)
D^{Access}	-0.004 (-0.743)	$-0.004 \\ (-0.662)$	$-0.002 \\ (-0.331)$	-0.003 (-0.487)	$-0.001 \\ (-0.156)$
$\Delta PolRate \cdot D^{Access}$	-0.222^{***}	-0.230***	-0.227***	-0.227***	-0.225***
	(-4.423)	(-4.565)	(-4.262)	(-4.162)	(-4.126)
$\Delta PolRate \cdot D^{Access} \cdot D^{Dap}$	-0.561^{***}	-0.512***	-0.482^{***}	-0.429***	-0.423***
	(-5.885)	(-5.599)	(-5.029)	(-4.262)	(-4.230)
$\Delta repo^{GC}$ lagged	-0.335*** (-24.410)	-0.327*** (-23.978)	$^{-0.310^{***}}_{(-22.599)}$	-0.303*** (-22.093)	$-0.304^{***} (-22.134)$
FE	Basket× Month× Term	Basket× Month	Basket× Year	Basket	Year
N	35,082	35,376	35,624	35,631	35,631
R ²	0.187	0.199	0.192	0.188	0.190

The table reports the regression results examining the impact of access to the ECTs deposit for the pass through of the monetary soft super rise in fact Ger posits. The deposits which is the change in the GCT rise $\Delta reports^{(1)} = \Delta r \delta H date denotes the change in the policy rise, <math>D^{(2)} = \epsilon_{\rm pol} + 1$ the change in the GCT rise $\Delta reports^{(2)} = \Delta r \delta H date denotes the change in the policy rise, <math>D^{(2)} = \epsilon_{\rm pol} + 1$ deposit facility. "The $\epsilon_{\rm pol} = \epsilon_{\rm pol} + 1$ deposits and $\epsilon_{\rm pol} = \epsilon_{\rm pol} + 1$ deposits and $\epsilon_{\rm pol} = \epsilon_{\rm pol} + 1$ deposits as in particular, and is presentable are in positions." Describes the regression include different face effect specifications and between the contract of th

Appendix: Access/nonaccess by fixed effect specification

Table 3.11. ECB access: All countries, different fixed effect specifications

(1)	(2)	(3)	(4)	(5)
$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$
ON/TN b/t	ON/TN b/t	ON/TN b/t	ON/TN b/t	ON/TN b/t
0.560*** (15.106)	0.583*** (15.963)	0.616*** (16.619)	0.622*** (16.527)	0.621*** (16.500)
0.002 (0.221)	0.005 (0.553)	$-0.002 \\ (-0.311)$	-0.011*** (-2.815)	-0.002 (-0.530)
0.384*** (5.668)	0.383*** (5.995)	0.397*** (5.843)	0.429*** (6.082)	0.417*** (5.976)
-0.003 (-0.709)	-0.004 (-0.816)	-0.003 (-0.746)	-0.004 (-1.009)	-0.003 (-0.904)
-0.184*** (-4.438)	-0.188*** (-4.586)	-0.190*** (-4.537)	-0.182^{***} (-4.259)	-0.180*** (-4.217)
-0.595*** (-6.733)	-0.533*** (-6.303)	-0.495*** (-5.567)	-0.454^{***} (-4.889)	-0.444*** (-4.817)
-0.371*** (-30.167)	-0.363*** (-30.027)	-0.347*** (-28.923)	$-0.342^{***} (-28.550)$	$-0.342^{***} (-28.577)$
Basket× Month× Term	Basket× Month	Basket× Year	Basket	Year
58,183 0.178	58,626 0.191	58,983 0.188	58,996 0.186	58,997 0.188
	Δrepo ^{GC} ON/TN b/t 0.560*** (15.106) 0.002 (0.221) 0.384*** (5.668) -0.003 (-0.709) -0.184*** (-4.438) -0.596*** (-6.733) -0.371*** (-30.167) Basket × Month × Term	Δετρμό ²⁰	$\Delta \operatorname{crgs}^{(0)} \otimes \Delta \operatorname{crg}^{(0)} \otimes \Delta \operatorname$	$\Delta \exp p e^{i \phi}$ $\Delta \exp p $

The table reports the regression results examining the impact of access to the KCD deposit forlight on the pass through of the monetary policy tarks into GPC persons. The depositions whitable the change in the GCT such arrays $^{-1}$ a. Γe^{-1} and the contract of the change in the policy was D^{-1} request in the contract of the contract of

Appendix: Access/nonaccess by clustered standard errors

Table 3.12. ECB access: Germany

	(1)	(2)	(3)
	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$
	b/t	b/t	b/t
$\Delta PolRate$	0.539* (7.367)	0.717* (10.556)	0.675* (9.705)
D^{Dep}	-0.046 (-4.366)		-0.047 (-4.723)
$\Delta PolRate \cdot D^{Dep}$	-0.176 (-0.631)		0.265 (3.538)
D^{Access}		-0.001 (-0.126)	$-0.000 \\ (-0.060)$
$\Delta PolRate \cdot D^{Access}$		$-0.264^{**} (-15.995)$	
$\Delta PolRate \cdot D^{Access} \cdot D^{Dep}$			-0.719^{*} (-11.802)
$\Delta repo^{GC}$ lagged		-0.332** (-55.699)	-0.332** (-31.902)
$_{R^{2}}^{N}$	10,001 0.210	10,001 0.213	10,001 0.220

The table reports the regression results cannible the largest of seven to the EGS -depends fastility on the pass density of the measured of the most relative by lex starget, rate into GG repor rates using clustered standard errors. The dependent variable is the change in the Cruz $\Delta regressive - \Delta refellate context the change in the Cruz <math display="inline">\Delta regressive - \Delta refellate density is the cluster of the change in the Cruz <math display="inline">\Delta regressive - \Delta refellate density is the context of the cluster of$

Appendix: Access/nonaccess by clustered standard errors

Table 3.13. ECB access: Core countries

	(1) $\Delta repo^{GC}$ b/t	(2) $\Delta repo^{GC}$ b/t	$\Delta repo^{GC}$ b/t
$\Delta PolRate$	0.472* (6.571)	0.683** (16.968)	0.643** (17.549)
D^{Dep}	$-0.032 \\ (-3.318)$		$-0.032 \\ (-2.634)$
$\Delta PolRate \cdot D^{Dep}$	$-0.048 \ (-0.209)$		0.298* (7.263)
D^{Access}		$-0.005 \\ (-2.577)$	
$\Delta PolRate \cdot D^{Access}$		$^{-0.284^{***}}_{(-74.521)}$	
$\Delta PolRate \cdot D^{Access} \cdot D^{Dep}$			-0.561** (-28.590)
$\Delta repo^{GC}$ lagged		-0.335** (-52.065)	
$_{R^{2}}^{N}$	35,082 0.180	35,082 0.185	35,082 0.187

The table reports the regression results examining the impact of secret the ECD's depoit facility on the pass-through of the monetary pole jet target rate into GC repo rates using clustered standard errors. The deposited variable is the change in the GC rate $\Delta x p p e^{i N_c}$. $\Delta P Relitate denotes the change in the policy rate. <math display="inline">D^{i N_c}$ equals 1 if a country's GC rate to the deposite cluster in the policy rate. $D^{i N_c}$ equals 1 if a country's GC rate in the deposite cluster in the policy rate. The proper significance at a 1, 5, and 10% level, respectively; relatatistics are in parentheses. All regressions include backet emotive-term fixed effects and standard errors accounting for clustering at the backet and access level. Data include CC repo transactions of the country of the c

Appendix: Access/nonaccess by clustered standard errors

Table 3.14. ECB access: All countries

	(1) $\Delta repo^{GC}$ b/t	(2) $\Delta repo^{GC}$ b/t	(3) $\Delta repo^{GC}$ b/t
$\Delta PolRate$	0.424* (6.626)	0.589** (18.599)	0.560** (18.663)
D^{Dep}	0.001 (0.079)		0.002 (0.107)
$\Delta PolRate \cdot D^{Dep}$	0.011 (0.047)		0.384 (6.133)
D^{Access}		$-0.003 \ (-2.754)$	$-0.003 \ (-2.053)$
$\Delta PolRate \cdot D^{Access}$		-0.223 (-6.139)	-0.184 (-5.411)
$\Delta PolRate \cdot D^{Access} \cdot D^{Dep}$			-0.595** (-17.311)
$\Delta repo^{GC}$ lagged	-0.372** (-21.546)	-0.371** (-21.317)	-0.371** (-21.424)
$\frac{N}{R^2}$	58,183 0.174	58,183 0.177	58,183 0.178

The table reports the regression results examining the impact of second to the ECR3 deposits facility on the pose brough of the measurement of the transfer of the property starget rate into GC tope rates using clustered standard errors. The deposited variable is the change in the Crit zor $\Delta repo^{(1)}$. $\Delta related$ to note the change in the $\Omega related$ $\Omega related$ to note the change in the $\Omega related$ $\Omega related$ in the other content of the change in the Crit and $\Omega related$ $\Omega related$ and $\Omega related$ in the content of the change in the $\Omega related$ $\Omega related$ $\Omega related$ in the final transfer of the change in the change

Appendix: Alternative Rates and access/nonaccess banks

Table 6, ECB access: Germany

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
	EONIA	€STR	euro LIBOR	zero OIS	zero EURIBOR	OIS 1W	GC Pooling	
	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$	
	ON/TN b/t	ON/TN b/t	ON/TN b/t	ON/TN b/t	ON/TN b/t	ON/TN b/t	ON/TN b/t	
$\Delta PolRate$	0.675*** (8.781)	0.705*** (9.274)	0.480*** (9.220)	0.334*** (6.013)	0.179*** (5.055)	0.329*** (4.349)	0.723*** (14.246)	
D^{Dep}	-0.047^{**} (-2.338)	-0.026** (-2.059)	-0.051** (-2.520)	$-0.021 \\ (-1.564)$	-0.029^{**} (-2.061)	-0.029^{**} (-2.249)	-0.041** (-2.108)	
$\Delta PolRate \cdot D^{Dep}$	0.265** (2.082)	0.253** (2.086)	0.356*** (4.003)	0.268** (2.571)	0.179** (2.196)	0.363*** (3.249)	0.277** (2.320)	
D^{Access}	$-0.000 \\ (-0.035)$	0.002 (0.183)	0.004 (0.339)	0.001 (0.120)	-0.004 (-0.361)	0.001 (0.090)	-0.005 (-0.482)	
$\Delta PolRate \cdot D^{Access}$	-0.177** (-2.100)	$-0.128 \ (-1.474)$	-0.117^* (-1.743)	-0.165*** (-2.702)	-0.072* (-1.887)	$-0.046 \\ (-0.516)$	-0.162*** (-2.702)	
$\Delta PolRate \cdot D^{Access} \cdot D^{Dep}$	-0.719*** (-4.970)	-0.648^{***} (-4.425)	-0.670*** (-5.607)	-0.378*** (-3.377)	-0.264^{***} (-3.058)	-0.258* (-1.740)	-0.657^{***} (-4.166)	
$\Delta repo^{GC}$ lagged	-0.332*** (-14.151)	$-0.311^{***} (-12.972)$	$-0.420^{***} (-15.125)$	$-0.323^{***} (-12.711)$	-0.311*** (-12.876)	$-0.324^{***} (-12.113)$	-0.307*** (-11.913)	
N R ²	10,001 0.220	10,158 0.231	9,952 0.187	9,778 0.124	9,758 0.114	10,078 0.144	10,060 0.297	

see results for core countries, all countries

Back to presentation

Appendix: Alternative policy rates

Table 3.16, ECB access: Core countries

	(1) EONIA	(2) €STR	(3) euro LIBOR	(4) zero OIS	(5) zero EURIBOR	(6) OIS 1W
	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$
	ON/TN b/t	ON/TN b/t	ON/TN b/t	ON/TN b/t	ON/TN b/t	ON/TN b/t
$\Delta PolRate$	0.643*** (14.261)	0.704*** (15.067)	0.440*** (8.908)	0.312*** (9.306)	0.135*** (7.426)	0.348*** (6.378)
D^{Dep}	-0.032^{***} (-2.922)	-0.018** (-2.488)	-0.030*** (-2.770)	-0.020** (-2.575)	-0.025*** (-3.260)	-0.022^{**} (-2.961)
$\Delta PolRate \cdot D^{Dep}$	0.298*** (3.968)	0.299*** (3.943)	0.375*** (5.581)	0.210*** (3.317)	0.198*** (4.152)	0.319*** (4.315)
D^{Access}	$^{-0.004}_{(-0.743)}$	$-0.001 \\ (-0.192)$	-0.005 (-0.785)	$-0.001 \\ (-0.231)$	-0.006 (-1.033)	-0.004 (-0.619)
$\Delta PolRate \cdot D^{Access}$	$-0.222^{***} (-4.423)$	-0.226^{***} (-4.310)	-0.122^{**} (-2.094)	-0.186^{***} (-5.242)	-0.059*** (-2.947)	-0.117^{*} (-2.006)
$\Delta PolRate \cdot D^{Access} \cdot D^{Dep}$	$-0.561^{***} (-5.885)$	$-0.497^{***} (-5.259)$	-0.417*** (-4.766)	$-0.240^{***} (-3.612)$	-0.231*** (-4.533)	-0.233** (-2.711)
$\Delta repo^{GC}$ lagged	-0.335*** (-24.410)	-0.313*** (-22.963)	-0.401^{***} (-26.606)	-0.318*** (-22.834)	-0.305*** (-22.875)	-0.318** (-22.775)
N R ²	35,082 0.187	35,607 0.195	34,949 0.168	34,606 0.118	34,519 0.106	35,295 0.135

The table reports the robustness results examining the impact of access to the ECDs deposit facility on the monetary policy poss-through for alternative monetary policy poss-through varieble in the Cause in the CG rate $\Delta repolic^G$. $\Delta PORRate$ denotes the change in different policy rates. D^{Drp} equals if if a country's CC rate is below the deposit facility. D^{Armo} capital if is lending bank has access to the deposit facility. r^{Armo} , r^{Armo} , r^{Armo} report excited positions at a 1.5. and 10% level, respectively; f-statistics are in parentheses. All regressions include baske-month-term fixed effects and respectively; restrictions are in the contractive of the correct European countries pooled across the countries of the contractive of the con

Appendix: Alternative policy rates

Table 3.17. ECB access: All countries

	(1)	(2)	(3)	(4)	(5)	(6)
	EONIA	€STR	euro LIBOR	zero OIS	zero EURIBOR	OIS 1W
	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$
	ON/TN b/t	$_{\rm b/t}^{\rm ON/TN}$	ON/TN b/t	ON/TN b/t	ON/TN b/t	ON/TN b/t
$\Delta PolRate$	0.560*** (15.106)	0.612*** (16.587)	0.379*** (10.586)	0.250*** (10.923)	0.127*** (10.831)	0.262*** (6.977)
D^{Dep}	0.002 (0.221)	-0.002 (-0.354)	0.003 (0.340)	-0.003 (-0.468)	-0.007 (-1.055)	-0.005 (-0.804)
$\Delta PolRate \cdot D^{Dep}$	0.384*** (5.668)	0.400*** (5.872)	0.396*** (6.898)	0.289*** (5.154)	0.210*** (5.112)	0.417*** (6.987)
D^{Access}	-0.003 (-0.709)	-0.002 (-0.509)	-0.003 (-0.641)	-0.002 (-0.447)	-0.004 (-0.961)	-0.002 (-0.535)
$\Delta PolRate \cdot D^{Access}$	-0.184*** (-4.438)	-0.193*** (-4.635)	-0.112*** (-2.677)	-0.142*** (-5.732)	-0.052*** (-4.004)	-0.102** (-2.462)
$\Delta PolRate \cdot D^{Access} \cdot D^{Dep}$	-0.595*** (-6.733)	-0.500*** (-5.763)	-0.362*** (-4.753)	-0.283*** (-4.711)	-0.231*** (-5.198)	-0.200** (-2.713)
$\Delta repo^{GC}$ lagged	$-0.371^{***} (-30.167)$	$-0.350^{***} (-29.208)$	-0.416^{***} (-30.883)	-0.354*** (-28.331)	-0.346*** (-27.758)	-0.345^{**} (-28.558)
N R ²	58,183 0.178	58,961 0.189	57,864 0.160	57,214 0.133	57,026 0.128	58,447 0.139

The table reports the robustness results examining the impact of access to the ECD's deposit facility on the monetary policy pass-through for alternative monetary policy pass-through or alternative monetary policy rapest rates. The dependent variable is the change in the GC rate $\Delta rep e^{iG} \sim \Delta PeRent$ denotes the change in different policy rates. D^{inp} equals if a country's GC rate is below the deposit facility. $T^{inper} = (appendix)$ if a lending bath has access to the deposit facility, $T^{inper} = (appendix)$ is far in the particular policy and $T^{inper} = (appendix)$ in the particular policy $T^{inper} = (appendix)$ in the particular policy $T^{inper} = (appendix)$ in T^{inpe

Appendix: Eligible/noneligible by term type

Table 4.6. Collateral eligibility: Germany

	(1) Δrepo ^{spectal} TN b/t	$\Delta repo^{Special}$	(3) Δrepo ^{Spectal} TN/SN b/t	(4) Δrepo ^{Special} TN b/t	(5) Διτερο ^{έφεσεαl} SN b/t	(6) Δrepo ^{Special} TN/SN b/t	(7) Δrepo ^{riportal} TN b/t	(8) Δrepo ^{Special} SN b/t	(9) Δrepo ^{Special} TN/SN b/t
		SN b/t							
$\Delta PolRate$	0.190*** (17.260)	0.061*** (11.084)	0.105*** (19.644)	0.171*** (11.689)	0.058*** (6.992)	0.098*** (12.937)	0.186*** (11.598)	0.066*** (7.315)	0.109*** (13.130)
D^{QE}	-0.022 (-0.996)	-0.010 (-0.877)	-0.016 (-1.462)				-0.022 (-0.995)	-0.010 (-0.839)	-0.016 (-1.434)
$\Delta PolRate \cdot D^{QE}$	-0.206*** (-10.786)	-0.119*** (-12.683)	-0.150*** (-15.837)				-0.165*** (-5.586)	-0.095*** (-6.505)	-0.120*** (-8.154)
$D^{Klighle}$				-0.001 (-0.013)	0.005 (0.575)	0.004 (0.454)	-0.001 (-0.051)	0.005 (0.568)	0.004 (0.440)
$\Delta PolRate \cdot D^{Eligible}$				0.023 (1.097)	-0.001 (-0.127)	0.006 (0.537)	0.008 (0.356)	-0.010 (-0.837)	-0.005 (-0.463)
$\Delta PolRate \cdot D^{Elayable} \cdot D^{QE}$				-0.235*** (-9.456)	-0.138*** (-11.374)	-0.172*** (-14.035)	-0.070* (-1.820)	-0.043** (-2.290)	-0.052^{***} (-2.737)
$\Delta repo^{Special}$ lagged	-0.424*** (-56.995)	$-0.312^{***} (-9.357)$	$-0.364^{***} (-20.719)$	$-0.424^{***} (-56.981)$	-0.312*** (-9.356)	$-0.364^{***} (-20.716)$	-0.424*** (-56.992)	-0.312*** (-9.357)	-0.364*** (-20.719)
N R ²	106,105 0.159	195,503 0.084	301,608 0.119	106,105 0.159	195,563 0.084	301,608 0.119	106,105 0,159	195,503 0.084	301,908 0.119

The table report the regression conductanting the impact of some digibility for quantitative using on the pose-though of the inscensor policy targett mate temperal reports. The dependence variable is the change in the precision point on $E_{\rm cond}^{\rm opt} = 0.000$ for the precision point of the

Appendix: Eligible/noneligible by term type

Table 4.7. Collateral eligibility: Core countries

	$\Delta repo^{Special}$	$\begin{array}{c} (2) \\ \Delta repo^{Special} \end{array}$	$\begin{array}{c} (3) \\ \Delta repo^{Special} \end{array}$	$\Delta repo^{Special}$	(5) $\Delta repo^{Special}$	(6) $\Delta repo^{Special}$	$\frac{(7)}{\Delta repo^{Special}}$	$\frac{(8)}{\Delta repo^{Special}}$	(9) $\Delta repo^{Specia}$
	TN b/t	SN b/t	TN/SN b/t	TN b/t	SN b/t	TN/SN b/t	TN b/t	SN b/t	TN/SN b/t
$\Delta PolRate$	0.184*** (26.371)	0.063*** (18.168)	0.105*** (31.179)	(14.900)	(10.447)	0.095*** (17.681)	0.157*** (14.724)	0.071*** (10.779)	0.103*** (17.810)
D_{GE}	-0.010 (-0.719)	-0.006 (-0.802)	-0.008 (-1.187)				-0.010 (-0.709)	-0.005 (-0.760)	-0.008 (-1.158)
$\Delta PolRate \cdot D^{QE}$	-0.160*** (-12.396)	-0.110^{***} (-17.603)	-0.126*** (-19.814)				-0.124*** (-5.922)	-0.092*** (-8.172)	-0.104*** (-9.643)
Distribute				0,000 (0,013)	0.008 (1.179)	0.005 (0.972)	0.000 (0.007)	0.008 (1.181)	0.005 (0.969)
$\Delta PolRate \cdot D^{Eligible}$				0.055*** (4.088)	-0.004 (-0.526)	0.011 (1.592)	(3.169)	-0.011 (-1.472)	0.002 (0.295)
$\Delta PolRate \cdot D^{Elegable} \cdot D^{QE}$				-0.182*** (-11.145)	-0.120*** (-16.192)	-0.137*** (-17.552)	-0.058** (-2.189)	-0.028** (-2.005)	-0.033** (-2.453)
$\Delta repo^{Special}$ lagged	$-0.409^{***} (-81.121)$	$-0.316^{***} (-19.471)$	-0.357*** (-39.267)	-0.409*** (-81.084)	-0.316*** (-19.470)	-0.357*** (-39.259)	-0.409*** (-81.092)	$-0.316^{***} (-19.472)$	-0.357*** (-39.264)
N R ^o	238,165 0.146	467,468 0.088	705,633 9,115	238,165 0.146	067,468 0.008	705,633 0.115	238,165 0,146	467,468 0.088	705,633 0.115

The table reports the regression results cannuing the impact of sear slightly for questionis using a new parameter, the impact of pact slightly for questionis using a new parameter pack of the context policy target sear the appeal and the packet pack of the packet pa

Appendix: Eligible/noneligible by term type

Table 4.8. Collateral eligibility: All countries

	(1) Δrepo ^{Special}	(2) Δrepo ^{Special}	(3) Δrepo ^{Special}	(4) Δrepo ^{Special}	$\Delta repo^{Special}$	(6) $\Delta repo^{Special}$	(7) Δrepo ^{Special}	$\Delta repo^{Special}$	(9) Δrepo ^{Special}
	TN b/t	SN b/t	TN/SN b/t	TN b/t	SN b/t	TN/SN b/t	TN b/t	SN b/t	TN/SN b/t
$\Delta PolRate$	0.174*** (26.299)	0.061*** (17.227)	(30.205)	0.145*** (15.800)	0.062*** (10.508)	0.094*** (18.394)	0.153*** (15.406)	(10.844)	0.101*** (18.358)
D^{QE}	-0.021 (-1.046)	-0.012 (-1.404)	-0.017° (-1.752)				-0.021 (-1.047)	-0.012 (-1.375)	-0.016° (-1.740)
$\Delta PolRate \cdot D^{QE}$	-0.126*** (-10.342)	-0.105*** (-16.347)	-0.108*** (-17.339)				-0.094*** (-4.601)	-0.088*** (-7.479)	-0.089*** (-8.198)
$D_{\rm Situate}$				-0.007 (-0.658)	0.009 (1.374)	0.004 (0.669)	-0.007 (-0.675)	0.009 (1.365)	0.004 (0.629)
$\Delta PolRate \cdot D^{Eligible}$				(3.259)	-0.005 (-0.625)	0.004 (0.562)	(2.508)	-0.012 (-1.545)	-0.004 (-0.565)
$\Delta PolRate \cdot D^{Eligible} \cdot D^{QE}$				-0.145*** (-9.463)	-0.114*** (-14.766)	-0.117*** (-15.319)	-0.051** (-1.995)	-0.026* (-1.869)	-0.028** (-2.119)
$\Delta repo^{Special}$ lagged	-0.412*** (-95.132)	-0.324*** (-27.036)	-0.362*** (-51.918)	-0.412*** (-95.101)	-0.324*** (-27.036)	$-0.362^{***} (-51.911)$	-0.412*** (-95.110)	-0.324*** (-27.037)	-0.362*** (-51.915)
N R ^o	323,263 0.151	620,086 0.093	943,349 0.118	323,263 0.151	620,086 0.003	943,349 0.118	323,263 0.151	620,086 0.063	943,349 0.118

The table reports the regression results examining the impact of near digibility for quantitative using on the puse-brough of the montacy policy tages rate into special reports. The dependent contable is the change in the reports of more precision of precisions. The dependent contable is change in the precision of the report of the precision of

Appendix: Eligible/noneligible by fixed effect specification

Table 4.9. Collateral eligibility: Germany, different fixed effect specifications

	(1)	(2)	(3)	(4)	(5)
	Δrepo ^{Special} TN/SN b/t	Δrepo ^{Special} TN/SN b/t	Δrepo ^{Special} TN/SN b/t	$\Delta repo^{Special}$ TN/SN b/t	$\Delta repo^{Special}$ TN/SN b/t
$\Delta PolRate$	0.109*** (13.130)	0.111*** (13.151)	0.117*** (13.619)	0.118*** (13.718)	0.119*** (13.765)
D^{QE}	-0.016 (-1.434)	-0.016 (-1.428)	0.048*** (9.022)	0.013*** (5.858)	0.048*** (9.408)
$\Delta PolRate \cdot D^{QE}$	-0.120*** (-8.154)	-0.121*** (-8.170)	-0.129*** (-8.598)	-0.129*** (-8.558)	-0.131*** (-8.715)
$D^{Eligible}$	0.004 (0.440)	0.004 (0.505)	-0.010** (-2.344)	$-0.002 \\ (-0.827)$	$-0.000 \\ (-0.017)$
$\Delta PolRate \cdot D^{Eligible}$	-0.005 (-0.463)	-0.006 (-0.511)	$-0.002 \\ (-0.219)$	-0.003 (-0.302)	-0.004 (-0.348)
$\Delta PolRate \cdot D^{Etigitle} \cdot D^{QE}$	-0.052*** (-2.737)	-0.053*** (-2.739)	-0.053*** (-2.711)	-0.051*** (-2.596)	-0.052^{**} (-2.642)
$\Delta repo^{Special} \text{ lagged}$	-0.364*** (-20.719)	-0.360*** (-21.031)	-0.350*** (-20.941)	-0.349*** (-20.941)	-0.349*** (-20.950)
FE	ISIN× Month× Term	ISIN× Month	ISIN× Year	ISIN	Year
$\frac{N}{R^2}$	301,608 0.119	301,859 0.123	301,896 0.121	301,897 0.121	301,897 0.121

The table reports the regression results examining the impact of a seet eligibility for quantitative usuing on the practicative that the property of the prop

Appendix: Eligible/noneligible by fixed effect specification

Table 4.10. Collateral eligibility: Core countries, different fixed effect specifications

	(1)	(2)	(3)	(4)	(5)
	$\Delta repo^{Special}$	$\Delta repo^{Special}$	$\Delta repo^{Special}$	Δrepo ^{Special}	$\Delta repo^{Special}$
	TN/SN b/t	TN/SN b/t	TN/SN b/t	TN/SN b/t	TN/SN b/t
$\Delta PolRate$	0.103*** (17.810)	0.106*** (18.194)	0.114*** (19.593)	0.115*** (19.711)	0.115*** (19.745)
D^{QE}	-0.008 (-1.158)	-0.008 (-1.148)	0.045*** (13.006)	0.010*** (7.362)	0.045*** (13.513)
$\Delta PolRate \cdot D^{QE}$	-0.104*** (-9.643)	-0.107*** (-9.860)	-0.119*** (-10.855)	-0.119*** (-10.823)	-0.121*** (-11.030)
$D^{Eligible}$	0.005 (0.969)	0.005 (0.972)	-0.007** (-2.470)	-0.002 (-1.324)	0.001 (0.599)
$\Delta PolRate \cdot D^{Eligible}$	0.002 (0.295)	0.003 (0.400)	0.006 (0.858)	0.005 (0.764)	0.005 (0.722)
$\Delta PolRate \cdot D^{Eligible} \cdot D^{QE}$	-0.033** (-2.453)	-0.033** (-2.426)	-0.031** (-2.305)	-0.029** (-2.096)	-0.030** (-2.179)
$\Delta repo^{Special}$ lagged	-0.357*** (-39.264)	-0.352^{***} (-39.715)	-0.341^{***} (-39.287)	-0.340^{***} (-39.274)	-0.340*** (-39.297)
FE	ISIN× Month× Term	ISIN× Month	ISIN× Year	ISIN	Year
$\frac{N}{R^2}$	705,633 0.115	706,207 0.119	706,252 0.116	706,255 0.116	706,255 0.116

The table reports the tragenoise results examining the impact of seast eligibility for equatitative using on the poset-longsh of the monetary policy sugars, time into special per parts. The dependent surface bits the change in the special separate monetary policy sugars, the interpolicy area, the dependent surface is $D^{0.0}$ equals 1 during the PSPP. $D^{0.00}$ —will quals 1 discovered by the property of the

Appendix: Eligible/noneligible by fixed effect specification

Table 4.11. Collateral eligibility: All countries, different fixed effect specifications

	(1)	(2)	(3)	(4)	(5)
	Δrepo ^{Special}	$\Delta repo^{Special}$	Δrepo ^{Special}	$\Delta repo^{Special}$	$\Delta repo^{Special}$
	TN/SN	TN/SN	TN/SN	TN/SN	TN/SN
	b/t	b/t	b/t	b/t	b/t
$\Delta PolRate$	0.101***	0.105***	0.113***	0.114***	0.114***
	(18.358)	(18.825)	(20.418)	(20.554)	(20.584)
D^{QE}	$-0.016* \\ (-1.740)$	-0.017* (-1.764)	0.038*** (10.253)	0.011*** (8.196)	0.039*** (11.222)
$\Delta PolRate \cdot D^{QE}$	-0.089***	-0.092***	-0.104***	-0.104***	-0.106***
	(-8.198)	(-8.437)	(-9.547)	(-9.563)	(-9.737)
$D^{Eligible}$	0.004	0.004	-0.007***	-0.001	0.001
	(0.649)	(0.727)	(-2.867)	(-0.652)	(0.611)
$\Delta PolRate \cdot D^{Eligible}$	$-0.004 \\ (-0.565)$	-0.003 (-0.369)	0.001 (0.181)	0.001 (0.096)	0.000 (0.057)
$\Delta PolRate \cdot D^{Eligible} \cdot D^{QE}$	-0.028** (-2.119)	-0.029** (-2.165)	-0.031^{**} (-2.310)	-0.028** (-2.076)	-0.029** (-2.170)
$\Delta repo^{Special}$ lagged	-0.362^{***} (-51.915)	-0.356*** (-52.505)	-0.345*** (-51.939)	$-0.344^{***} (-51.934)$	$-0.344^{***} (-51.964)$
FE	ISIN× Month× Term	ISIN× Month	ISIN× Year	ISIN	Year
$_{R^{2}}^{N}$	943,349	944,265	944,331	944,335	944,335
	0.118	0.122	0.119	0.119	0.119

The table reports the regression results examining the impact of sacet digibility for quantitative using on the post-trough of the monetary policy usages rules into special rep reason. The dispendent variables her design in the special report net $\Delta report = 1.2$ $\Delta relation to the change in the policy rate. <math>D^{GG}$ equal 1 during the PSPP. $D^{GD} = 0$ qual 1 descriped by the properties of the properti

Appendix: Eligible/noneligible by clustered standard errors

Table 4.12. Collateral eligibility: Germany

	(1)	(2)	(3)
	$\Delta repo^{Special}$	$\Delta repo^{Special}$	$\Delta repo^{Special}$
	b/t	b/t	b/t
$\Delta PolRate$	0.106** (32.158)	0.098** (33.661)	0.109** (36.511)
D^{QE}	-0.016 (-0.832)		-0.016 (-0.835)
$\Delta PolRate \cdot D^{QE}$	-0.150 (-5.792)		-0.120** (-20.932)
$D^{Eligible}$		0.004 (0.400)	0.004 (0.400)
$\Delta PolRate \cdot D^{Eligible}$		0.006 (1.925)	-0.005 (-1.309)
$\Delta PolRate \cdot D^{Eligible} \cdot D^{QE}$		-0.172*** (-175.810)	-0.052* (-8.421)
$\Delta repo^{Special}$ lagged	-0.364** (-22.869)	-0.364** (-22.935)	-0.364** (-22.804)
$\frac{N}{R^2}$	301,608 0.119	301,608 0.119	301,608 0.119

The table reports the regression results examining the impact of asset eligibility for quantitative using on the menetary poly pase-through using clustered standard errors. The dependent variable is the change in the special report and $\Delta repolession Architecture and the change in officers produce the regular 1 during the Architecture of the change in different pole, rate, <math>D^{(0)}$ regular 1 during the the PSP $\gamma^{(0)}$, $\gamma^{(0)}$, $\gamma^{(0)}$, and $\gamma^{(0)}$ reports significance of a 1, 5, and 10% level, respectively, clustation are in pararellasses. All regression include ISIN mass other them fixed effects and standard errors accounting for clustering at the ISIN and eligibility level. Data include Currana product layer to an architecture of the control of the

Appendix: Eligible/noneligible by clustered standard errors

Table 4.13. Collateral eligibility: Core countries

	(1)	(2)	(3)
	$\Delta repo^{Special}$	$\Delta repo^{Special}$	$\Delta repo^{Special}$
	b/t	b/t	b/t
$\Delta PolRate$	0.105***	0.095***	0.103***
	(134.397)	(72.001)	(81.078)
D^{QE}	-0.008		-0.008
	(-0.716)		(-0.694)
$\Delta PolRate \cdot D^{QE}$	-0.126°		-0.104**
	(-8.472)		(-39.994)
$D^{Eligible}$		0.005	0.005
		(1.050)	(1.028)
$\Delta PolRate \cdot D^{Eligible}$		0.011*	0.002
		(7.979)	(1.168)
$\Delta PolRate \cdot D^{Eligible} \cdot D^{QE}$		-0.137***	-0.033**
		(-195.384)	(-12.887)
$\Delta repo^{Special}$ lagged	-0.357**	-0.357**	-0.357**
	(-29.353)	(-29.473)	(-29.314)
N	705,633	705,633	705,633
R^2	0.115	0.115	0.115

The table reports the regression results examining the impact of a set eligibility for quantitative using on the monetary policy near-through using clustered standard errors. The dependent variable is the change in the special repo rate $\Delta repo^{\rm policion}$ $\Delta Perblinde denote the change in efficient policy rates, D^{\rm Per} capable I during the$ $<math>\Delta Perblinde denote the change in efficient policy rates, D^{\rm Per} capable I during the$ the PSPP ***, ***, and **represent significance at a 1, 5, and 10% feed, respectively,relatation are in parentheses. All regression include ISIN month-term fixed effectsand standard errors accounting for clustering at the ISIN and eligibility level. Datathrough the PSP *** Department of the PSP *** Depar

Appendix: Eligible/noneligible by clustered standard errors

Table 4.14. Collateral eligibility: All countries

	(1) $\Delta repo^{Special}$	(2) $\Delta repo^{Special}$	(3) $\Delta repo^{Special}$
	Δrepo-r	Δrepo	Δrepo-r
	b/t	b/t	b/t
$\Delta PolRate$	0.099** (45.807)	0.094*** (110.286)	0.101*** (99.326)
D^{QE}	-0.017 (-0.666)		-0.016 (-0.661)
$\Delta PolRate \cdot D^{QE}$	-0.108* (-8.733)		-0.089** (-48.349)
$D^{Eligible}$		0.004 (0.702)	0.004 (0.667)
$\Delta PolRate \cdot D^{Eligible}$		0.004 (3.383)	-0.004 (-1.931)
$\Delta PolRate \cdot D^{Eligible} \cdot D^{QE}$		-0.117*** (-186.211)	-0.028** (-31.726)
$\Delta repo^{Special}$ lagged	-0.362** (-43.257)	-0.362** (-43.367)	-0.362** (-43.092)
$\frac{N}{R^2}$	943,349 0.118	943,349 0.118	943,349 0.118

The table reports the regression results examining the impact of a sext eligibility for quantitative using on the monetary polytops as bettoom being clustered standard errors. The dependent variable is the change in the special report and $\Delta Pol/Bate$ about the change in officers polye rates, $D^{\rm Pol}$ capable 1 during the the change in the special report polar 1 during the the 18 per capable 1 during the the proper capable 1 during the the 18 per capable 1 during the the proper value of the properties, and 1 represent significance at a 1, 5, and 10% level, respectively; relatation are in parentheses. All represents include 18 Nm and slightling level. Data values of the properties of

Appendix: Alternative Rates and eligible/noneligible collateral

Table 7. Asset eligibility: Germany

	(1) EONIA	(2) STR	(3) euro LIBOR	(4) zero OIS	(5) zero EURIBOR	(6) OIS 1W	(7) GC Pooling	
	$\Delta repo^{Special}$	$\Delta repo^{Special}$	$\Delta repo^{Special}$	$\Delta repo^{Special}$	$\Delta repo^{Special}$	$\Delta repo^{Special}$	$\Delta repo^{Special}$	
	TN/SN b/t	TN/SN b/t	TN/SN b/t	TN/SN b/t	TN/SN b/t	TN/SN b/t	TN/SN b/t	
$\Delta PolRate$	0.109*** (13.130)	0.109*** (13.130)	0.105*** (11.394)	0.054*** (9.442)	0.046*** (9.250)	0.101*** (12.053)	0.117*** (13.854)	
D_{GE}	-0.016 (-1.434)	-0.016 (-1.421)	-0.040*** (-3.105)	-0.028** (-2.303)	-0.031** (-2.465)	-0.039*** (-3.456)	0.042*** (3.461)	
$\Delta PolRate \cdot D^{QE}$	-0.120*** (-8.154)	-0.116*** (-7.867)	-0.109*** (-9.346)	-0.025*** (-3.565)	-0.019*** (-2.984)	-0.039** (-2.427)	0.406*** (6.250)	
DEtigible	0.004 (0.440)	0.004 (0.435)	0.003 (0.316)	0.003 (0.314)	0.002 (0.254)	0.002 (0.187)	0.002 (0.202)	
$\Delta PolRate \cdot D^{Eligible}$	-0.005 (-0.463)	-0.005 (-0.463)	-0.000 (-0.015)	0.015** (1.987)	0.002 (0.355)	-0.022** (-2.059)	0.013 (1.172)	
$\Delta PolRate \cdot D^{Eligible} \cdot D^{QE}$	-0.052*** (-2.737)	-0.044** (-2.289)	-0.023 (-1.491)	-0.031*** (-3.346)	-0.017** (-2.021)	-0.023 (-1.086)	-0.216*** (-2.972)	
$\Delta repo^{Special}$ lagged	-0.364^{***} (-20.719)	-0.364^{***} (-20.719)	-0.365^{***} (-20.277)	$-0.363^{***} (-19.856)$	-0.363^{***} (-19.668)	$-0.359^{***} (-20.195)$	-0.356*** (-69.536)	
N R ²	301,608 0.119	301,608 0.119	299,889 0.120	290,153 0.119	289,058 0.120	298,718 0.116	303,446 0.119	

see results for core countries,

all countries

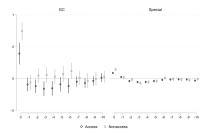
Appendix: Alternative policy rates

Table 4.16. Collateral eligibility: Core countries

	(1)	(2)	(3)	(4)	(5)	(6)
	EONIA	€STR	euro LIBOR	zero OIS	zero EURIBOR	OIS 1W
	$\Delta repo^{Special}$	$\Delta repo^{Special}$	$\Delta repo^{Special}$	$\Delta repo^{Special}$	$\Delta repo^{Special}$	$\Delta repo^{Special}$
	TN/SN b/t	TN/SN b/t	TN/SN b/t	TN/SN b/t	TN/SN b/t	TN/SN b/t
$\Delta PolRate$	0.103*** (17.810)	0.103*** (17.810)	0.099*** (15.179)	0.055*** (13.493)	0.041*** (11.908)	0.074*** (12.705)
D_{GE}	-0.008 (-1.158)	-0.008 (-1.140)	-0.033*** (-3.990)	-0.023*** (-2.845)	-0.026*** (-3.244)	-0.032*** (-4.581)
$\Delta PolRate \cdot D^{QE}$	-0.104*** (-9.643)	-0.097*** (-8.995)	-0.094*** (-10.427)	-0.037*** (-7.136)	-0.023^{***} (-4.925)	-0.001 (-0.049)
$D^{Eligible}$	0.005 (0.969)	0.005 (0.959)	0.006 (1.003)	0.004 (0.688)	0.003 (0.612)	0.004 (0.629)
$\Delta PolRate \cdot D^{Eligible}$	0.002 (0.295)	0.002 (0.295)	0.017** (2.108)	0.005 (1.112)	0.001 (0.270)	0.028*** (3.810)
$\Delta PolRate \cdot D^{Eligible} \cdot D^{QE}$	-0.033** (-2.453)	-0.028** (-2.133)	-0.028** (-2.517)	-0.010 (-1.591)	-0.005 (-0.937)	-0.026^{*} (-1.754)
$\Delta repo^{Special}$ lagged	-0.357*** (-39.264)	-0.357*** (-39.264)	-0.359^{***} (-38.341)	-0.356*** (-37.516)	-0.356^{***} (-37.058)	-0.352^{***} (-38.194)
N R ²	705,633 0.115	705,633 0.115	701,859 0.117	681,324 0.114	678,897 0.115	699,266 0.113

The table reports the regression results examining the impact of sext eligibility for quantitative costage and the monetary policy positrough for all remarks reconstray policy upper tast. The depotent variable is the change in the potential power for $\Delta V_{\rm P} \delta H m \delta t$ denotes the change in different policy rates. $D_{\rm P}^{\rm D} c_{\rm P} c_{\rm P} \delta t$ denotes the change in different policy rates. $D_{\rm P}^{\rm D} c_{\rm P} c_{\rm P} \delta t$ denotes the change in different policy rates. $D_{\rm P}^{\rm D} c_{\rm P} c_{\rm P} \delta t$ denotes the PSPP $D^{\rm D} c_{\rm P} c_{\rm P} \delta t$ and $D_{\rm P}^{\rm D} c_{\rm P} \delta t$ denotes the scale of the properties of the

Appendix: Alternative policy rates


Table 4.17. Collateral eligibility: All countries

	(1)	(2)	(3)	(4)	(5)	(6)
	EONIA	€STR	euro LIBOR	zero OIS	zero EURIBOR	OIS 1W
	$\Delta repo^{Special}$	$\Delta repo^{Special}$	$\Delta repo^{Special}$	$\Delta repo^{Special}$	$\Delta repo^{Special}$	$\Delta repo^{Special}$
	TN/SN b/t	TN/SN b/t	TN/SN b/t	TN/SN b/t	TN/SN b/t	TN/SN b/t
$\Delta PolRate$	0.101*** (18.358)	0.101*** (18.358)	0.092*** (15.576)	0.055*** (14.263)	0.040*** (12.556)	0.065*** (11.882)
D^{QE}	$-0.016* \\ (-1.740)$	-0.016^{*} (-1.729)	-0.039*** (-3.990)	-0.031*** (-3.185)	-0.034*** (-3.471)	-0.040*** (-4.399)
$\Delta PolRate \cdot D^{QE}$	-0.089*** (-8.198)	-0.083*** (-7.669)	-0.086*** (-9.474)	-0.033*** (-6.308)	-0.018*** (-3.803)	0.030** (2.538)
$D^{Eligible}$	0.004 (0.649)	0.004 (0.642)	0.004 (0.685)	0.001 (0.218)	0.001 (0.124)	0.002 (0.298)
$\Delta PolRate \cdot D^{Eligible}$	-0.004 (-0.565)	-0.004 (-0.565)	0.007 (0.902)	-0.003 (-0.634)	-0.003 (-0.659)	0.039*** (5.593)
$\Delta PolRate \cdot D^{Etigible} \cdot D^{QE}$	-0.028** (-2.119)	-0.024^{*} (-1.781)	-0.005 (-0.439)	-0.001 (-0.103)	-0.002 (-0.287)	-0.013 (-0.857)
$\Delta repo^{Special} \text{ lagged}$	-0.362^{***} (-51.915)	-0.362^{***} (-51.915)	-0.363*** (-50.806)	-0.360^{***} (-49.173)	-0.360^{***} (-48.554)	-0.358*** (-50.579)
$N \atop R^2$	943,349 0.118	943,349 0.118	938,391 0.120	913,396 0.118	910,329 0.118	934,884 0.117

The table reports the regression results examining the impact of asset eligibility for quantitative cosing on the most post-strongly for allerative monstary policy parts rate. The depondent variable is the change in the special pope rate $\Delta e p P_{\rm off} = 2 e^{-i k_{\rm off}}$ and $\Delta P_{\rm o$

Appendix: Market spillover

Appendix: Regression results for Joint Effects - Eligible Share in GC Baskets

Table 5. Joint effects of both forms of segmentation

		Germany			Core		All		
	(1a)	(1b)	(2)	(3a)	(3b)	(4)	(5a)	(5b)	(6)
	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{Special}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{Special}$	$\Delta repo^{GC}$	$\Delta repo^{GC}$	$\Delta repo^{Specia}$
	ON/TN b/t	ON/TN b/t	TN/SN b/t	ON/TN b/t	ON/TN b/t	TN/SN b/t	ON/TN b/t	ON/TN b/t	TN/SN b/t
$\Delta PolRate$	0.475*** (5.030)	0.599*** (6.026)	0.159*** (12.959)	0.576*** (10.521)	0.606*** (10.483)	0.154*** (17.617)	0.606*** (12.420)	0.653*** (12.430)	0.160*** (18.668)
D^{Dep}	-0.067** (-2.456)	-0.066** (-2.400)	0.015*** (2.794)	-0.037*** (-2.699)	-0.037*** (-2.733)	0.005 (1.575)	$-0.024^{**} (-2.077)$	-0.024** (-2.095)	0.006** (2.147)
$\Delta PolRate \cdot D^{Dep}$	0.361*** (2.692)	0.458*** (2.814)	0.012 (0.416)	0.383*** (4.260)	0.389*** (4.343)	0.103*** (4.510)	0.349*** (4.165)	0.362*** (4.358)	0.105*** (4.686)
D^{Access}	-0.004 (-0.265)	-0.003 (-0.193)	-0.005**** (-2.582)	$-0.006 \\ (-1.018)$	-0.006 (-0.940)	-0.005**** (-4.127)	-0.005 (-0.908)	-0.005 (-0.794)	-0.005*** (-4.455)
$\Delta PolRate \cdot D^{Access}$	-0.181** (-2.015)	-0.183° (-1.836)	-0.062*** (-5.181)	-0.260^{***} (-4.594)	-0.265*** (-4.732)	-0.063*** (-7.875)	-0.311*** (-6.132)	-0.311*** (-6.135)	-0.074*** (-9.305)
$\Delta PolRate \cdot D^{Access} \cdot D^{Dep}$	-0.606*** (-3.775)	$-0.795^{***} (-4.232)$	-0.161*** (-5.413)	-0.456^{***} (-4.341)	$-0.525^{***} (-4.890)$	-0.225*** (-9.418)	$-0.402^{***} (-4.035)$	-0.477*** (-4.719)	-0.214*** (-8.988)
D^{QE}	-0.113 (-1.489)	-0.119 (-1.519)	-0.014 (-1.231)	-0.047 (-1.340)	-0.053 (-1.503)	-0.007 (-0.983)	-0.056 (-1.071)	$-0.062 \\ (-1.191)$	-0.012 (-1.309)
$D^{Eligible}$	-0.017 (-1.509)	$-0.008 \\ (-0.681)$	0.003 (0.371)	-0.010** (-2.047)	0.010* (1.910)	0.005 (0.911)	-0.010** (-2.180)	0.007 (1.603)	0.005 (0.908)
$\Delta PolRate \cdot D^{Eligible}$	0.252*** (3.338)	0.045 (0.490)	-0.006 (-0.541)	0.141*** (3.255)	0.077* (1.782)	0.006 (0.816)	0.102** (2.576)	0.006 (0.138)	0.005 (0.643)
$\Delta PolRate \cdot D^{Eligible} \cdot D^{QE}$	-0.315*** (-2.872)	$-0.040 \\ (-0.261)$	-0.097*** (-5.713)	-0.429^{***} (-6.802)	-0.301*** (-5.256)	-0.104*** (-9.822)	-0.349*** (-5.467)	$-0.220^{***} (-3.633)$	-0.110*** (-11.432)
$\Delta repo$ lagged	-0.340*** (-11.817)	-0.341*** (-11.603)	-0.364^{***} (-20.711)	-0.338****(-22.734)	-0.338*** (-22.683)	-0.357*** (-35.249)	-0.337*** (-24.814)	-0.338*** (-24.821)	-0.360*** (-40.685)
N R ²	6,802 0.262	6,484 0,255	301,475 0.119	30,314 0,239	29,996 0.237	628,208 0.115	37,453 0,233	37,135 0.231	759,772 0.118

All regressions include basket-month-term fixed effects and heteroscedasticity-robust standard errors.

Repo market

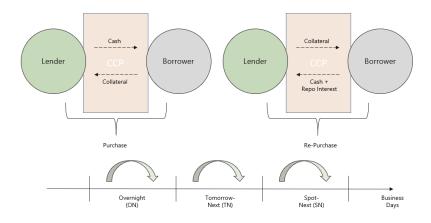
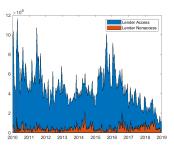
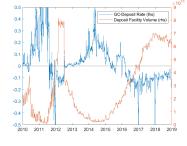


Figure: Repo market

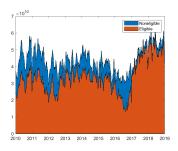

Regression results


Table 4. Asset eligibility: time since eligibility

	Germany		Core		All	
	$\Delta repo^{Special}$ TN/SN b/t	$\Delta repo^{Specia}$ TN/SN b/t				
$\Delta PolRate$	0.106*** (19.643)	0.106*** (19.643)	0.105*** (31.179)	0.105*** (31.179)	0.099*** (30.205)	0.099*** (30.205)
D^{QE}	-0.015 (-1.380)	-0.016 (-1.423)	-0.008 (-1.102)	-0.008 (-1.157)	-0.016^{*} (-1.699)	-0.016^* (-1.736)
$\Delta PolRate \cdot D^{QE}$	-0.094*** (-9.018)	-0.120*** (-8.469)	-0.080*** (-11.341)	-0.103*** (-9.773)	-0.070*** (-10.103)	-0.082*** (-7.509)
$\Delta PolRate \cdot TSE$	-0.001*** (-9.635)		-0.001*** (-9.882)		-0.001*** (-10.592)	
$\Delta PolRate*$						
TSE^1_{Bucket}		-0.008 (-0.486)		-0.010 (-0.847)		-0.022^* (-1.802)
TSE^2_{Bucket}		-0.279*** (-5.995)		-0.086** (-2.491)		-0.036 (-1.344)
TSE^3_{Bucket}		-0.470^{***} (-6.521)		-0.459^{***} (-9.542)		-0.382*** (-11.200)
$\Delta repo^{Special}$ lagged	-0.364^{***} (-20.715)	-0.364^{***} (-20.716)	-0.357^{***} (-39.263)	-0.357^{***} (-39.265)	$-0.362^{***} (-51.913)$	-0.362^{***} (-51.917)
$\frac{N}{R^2}$	301,608 0.119	301,608 0.119	705,633 0.115	705,633 0.115	943,349 0.118	943,349 0.118

All regressions include ISIN-month-term fixed effects and heteroscedasticity-robust standard errors.

ECB access



(a) General collateral trading volume

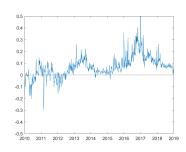

(b) Spread between GC and deposit facility rate

Figure: General collateral repo market

Collateral eligibility

(a) Special collateral trading volume

(b) Spread between (hypothetically) eligible and noneligible collateral

Figure: Special collateral repo market