
The Distributional Consequences of Trade: Evidence from the Repeal of the Corn Laws

Stephan Heblich, Stephen J. Redding and Yanos Zylberberg

- Resurgence of interest in the distributional consequences of trade
 - China shock: Autor, Dorn & Hanson (2013) and Pierce & Schott (2016)

- Resurgence of interest in the distributional consequences of trade
 - China shock: Autor, Dorn & Hanson (2013) and Pierce & Schott (2016)
- We provide new theory and evidence on these distributional consequences using the 1846 repeal of the Corn Laws in Britain
 - Opened British markets to the New World "grain invasion" in the second half of the 19th century (especially after the end of American Civil War)
 - Distributional conflict between urban proletariat and rural aristocracy

- Resurgence of interest in the distributional consequences of trade
 - China shock: Autor, Dorn & Hanson (2013) and Pierce & Schott (2016)
- We provide new theory and evidence on these distributional consequences using the 1846 repeal of the Corn Laws in Britain
 - Opened British markets to the New World "grain invasion" in the second half of the 19th century (especially after the end of American Civil War)
 - Distributional conflict between urban proletariat and rural aristocracy
- Research on the Corn Laws has traditionally emphasized the distributional effects across factors or industries
 - Heckscher-Ohlin and Specific-Factors models

- Resurgence of interest in the distributional consequences of trade
 - China shock: Autor, Dorn & Hanson (2013) and Pierce & Schott (2016)
- We provide new theory and evidence on these distributional consequences using the 1846 repeal of the Corn Laws in Britain
 - Opened British markets to the New World "grain invasion" in the second half of the 19th century (especially after the end of American Civil War)
 - Distributional conflict between urban proletariat and rural aristocracy
- Research on the Corn Laws has traditionally emphasized the distributional effects across factors or industries
 - Heckscher-Ohlin and Specific-Factors models
- We provide evidence on distributional consequences across different geographical areas within England and Wales
 - New, spatially-disaggregated data on population, employment and land values for around 11,000 parishes from 1801-1911
 - Exogenous trade exposure measure based on agroclimatic conditions
 - Quantitative spatial model to evaluate the impact of this trade shock on industrialization, urbanization and income distribution
 - Quantify role of labor mobility for the distributional effects of trade

- Key advantage of empirical setting is the difference in agroclimatic conditions between Western and Eastern parts of England and Wales
 - Warm ocean current of North Atlantic Drift and prevailing SW winds
 - Western areas have greater cloud cover, more precipitation and lower average temperatures, and also more mountainous
 - Western grazing (pastoral) and Eastern corn (arable) locations
 - Exogenous exposure measure based on agroclimatic suitability for wheat

- Key advantage of empirical setting is the difference in agroclimatic conditions between Western and Eastern parts of England and Wales
 - Warm ocean current of North Atlantic Drift and prevailing SW winds
 - Western areas have greater cloud cover, more precipitation and lower average temperatures, and also more mountainous
 - Western grazing (pastoral) and Eastern corn (arable) locations
 - Exogenous exposure measure based on agroclimatic suitability for wheat
- Substantial estimated treatment effects of the grain invasion following the Repeal of the Corn Laws for high-wheat suitability regions
 - Population (around -20 percent)
 - Migration (track individuals over time)
 - Structural transformation
 - Urbanization
 - Rateable values (land and buildings)

- Key advantage of empirical setting is the difference in agroclimatic conditions between Western and Eastern parts of England and Wales
 - Warm ocean current of North Atlantic Drift and prevailing SW winds
 - Western areas have greater cloud cover, more precipitation and lower average temperatures, and also more mountainous
 - Western grazing (pastoral) and Eastern corn (arable) locations
 - Exogenous exposure measure based on agroclimatic suitability for wheat
- Substantial estimated treatment effects of the grain invasion following the Repeal of the Corn Laws for high-wheat suitability regions
 - Population (around −20 percent)
 - Migration (track individuals over time)
 - Structural transformation
 - Urbanization
 - Rateable values (land and buildings)
- · Consistent with historical narrative of "great agricultural depression"

- Key advantage of empirical setting is the difference in agroclimatic conditions between Western and Eastern parts of England and Wales
 - Warm ocean current of North Atlantic Drift and prevailing SW winds
 - Western areas have greater cloud cover, more precipitation and lower average temperatures, and also more mountainous
 - Western grazing (pastoral) and Eastern corn (arable) locations
 - Exogenous exposure measure based on agroclimatic suitability for wheat
- Substantial estimated treatment effects of the grain invasion following the Repeal of the Corn Laws for high-wheat suitability regions
 - Population (around -20 percent)
 - Migration (track individuals over time)
 - Structural transformation
 - Urbanization
 - Rateable values (land and buildings)
- Consistent with historical narrative of "great agricultural depression"
- Develop a spatial equilibrium model of trade and production to account for these empirical findings qualitatively and quantitatively

Related Literature

Local labor market effects of international trade shocks

 Topalova (2010), Autor, Dorn & Hanson (2013, 2016), Autor, Dorn, Hanson & Song (2014), Kovak (2013), Kovak & Dix-Carneiro (2015), Choi et al. (2020)

Distributional consequences of international trade

- Stolper & Samuelson (1941), Jones (1971), Mussa (1974)

Urbanization and structural transformation

 Matsuyama (1992), Uy, Yi & Zhang (2013), Bustos, Caprettini & Ponticelli (2016, 2020), Fajgelbaum & Redding (2018), Eckert & Peters (2018)

Quantitative spatial models

Redding & Sturm (2008), Allen & Arkolakis (2014), Redding (2016), Ramondo, Rodríguez-Clare & Saborío-Rodríguez (2016), Redding & Rossi-Hansberg (2017), Desmet, Nagy & Rossi-Hansberg (2018), Caliendo, Parro, Rossi-Hansberg & Sarte (2018), Galle, Rodríguez-Clare & Yi (2018), Allen & Donaldson (2018), Monte, Redding & Rossi-Hansberg (2018), Fajgelbaum & Redding (2018), Caliendo, Parro & Dvorkin (2019), Fajgelbaum, Morales, Suárez Serrato & Zidar (2019)

Economic history of the corn laws, agricultural depression, industrial revolution, and decline of aristocracy in 19th-century Britain

Graham (1892) Nicholson (1904) Barnes (1930), Irwin (1989), Williamson (1990),
 O'Rourke (1997), Howe (1998), Schonhardt-Bailey (2006), Sharp (2009), Sharp &
 Weisdorf (2013), Cannadine (2019), Caprettini & Voth (2019)

Outline

- · Historical Background
- Data
- · Reduced-form Evidence
- · Theoretical Model
- Quantitative Evidence

- Origins of the corn laws date back to laws of 1463 and 1670
 - Sliding scale of import duties that part of regulations to stabilize the price of bread as the main source of sustenance
 - Initially, mostly self-sufficient in wheat and suspended in scarcity

- Origins of the corn laws date back to laws of 1463 and 1670
 - Sliding scale of import duties that part of regulations to stabilize the price of bread as the main source of sustenance
 - Initially, mostly self-sufficient in wheat and suspended in scarcity
- Population and economic growth with industrial revolution after 1760
 - Britain systematic net importer of wheat (mostly from Prussia/Russia)

- Origins of the corn laws date back to laws of 1463 and 1670
 - Sliding scale of import duties that part of regulations to stabilize the price of bread as the main source of sustenance
 - Initially, mostly self-sufficient in wheat and suspended in scarcity
- Population and economic growth with industrial revolution after 1760
 - Britain systematic net importer of wheat (mostly from Prussia/Russia)
- Revolutionary and Napoleonic Wars from 1792-1815
 - Loss of wheat imports from continental Europe (blockade)
 - Large rise domestic wheat price and wheat production

- Origins of the corn laws date back to laws of 1463 and 1670
 - Sliding scale of import duties that part of regulations to stabilize the price of bread as the main source of sustenance
 - Initially, mostly self-sufficient in wheat and suspended in scarcity
- Population and economic growth with industrial revolution after 1760
 - Britain systematic net importer of wheat (mostly from Prussia/Russia)
- Revolutionary and Napoleonic Wars from 1792-1815
 - Loss of wheat imports from continental Europe (blockade)
 - Large rise domestic wheat price and wheat production
- · Corn Law of 1815 motivated by fears of agricultural crisis
 - Prohibited wheat imports when price were under 82.5 shillings per quarter (ports largely closed to wheat imports until 1825)
 - Political conflict between wheat consumers (urban proletariat and Anti-Corn Law League) and producers (rural aristocracy)

- Origins of the corn laws date back to laws of 1463 and 1670
 - Sliding scale of import duties that part of regulations to stabilize the price of bread as the main source of sustenance
 - Initially, mostly self-sufficient in wheat and suspended in scarcity
- Population and economic growth with industrial revolution after 1760
 - Britain systematic net importer of wheat (mostly from Prussia/Russia)
- Revolutionary and Napoleonic Wars from 1792-1815
 - Loss of wheat imports from continental Europe (blockade)
 - Large rise domestic wheat price and wheat production
- · Corn Law of 1815 motivated by fears of agricultural crisis
 - Prohibited wheat imports when price were under 82.5 shillings per quarter (ports largely closed to wheat imports until 1825)
 - Political conflict between wheat consumers (urban proletariat and Anti-Corn Law League) and producers (rural aristocracy)
- Repeal of Corn Laws 1846 by Robert Peel to stem political discontent

- Origins of the corn laws date back to laws of 1463 and 1670
 - Sliding scale of import duties that part of regulations to stabilize the price of bread as the main source of sustenance
 - Initially, mostly self-sufficient in wheat and suspended in scarcity
- Population and economic growth with industrial revolution after 1760
 - Britain systematic net importer of wheat (mostly from Prussia/Russia)
- Revolutionary and Napoleonic Wars from 1792-1815
 - Loss of wheat imports from continental Europe (blockade)
 - Large rise domestic wheat price and wheat production
- · Corn Law of 1815 motivated by fears of agricultural crisis
 - Prohibited wheat imports when price were under 82.5 shillings per quarter (ports largely closed to wheat imports until 1825)
 - Political conflict between wheat consumers (urban proletariat and Anti-Corn Law League) and producers (rural aristocracy)
- Repeal of Corn Laws 1846 by Robert Peel to stem political discontent
- Following American Civil War of 1861-65, new transport technologies of steamship and railroad led to new-world "grain invasion"
 - Repeal ensured that British markets remain open
 - "Great agricultural depression" after 1870

Outline

- · Historical Background
- · Data
- · Reduced-form Evidence
- · Theoretical Model
- Quantitative Evidence

Data

- Parish-level Population Census data for England and Wales
 - Around 11,000 parishes, aggregated into poor law unions and counties
 - Population by residence from 1801-1911
 - Employment by occupation from 1851 onwards
- Individual-level population census data
 - Name match individuals across population census waves (migration)
 - Data for 1851, 1861 and every census decade from 1881-1901
- · Rateable value data
 - Rateable value data by parish from 1815-1896
 - Market rental value of land and buildings after deducting expenses for repair and maintenance
- Domestic prices, import values and quantities of wheat
- Global Agro-Ecological Zones (GAEZ) crop suitability, endowments of other natural resources (e.g. coal and iron), urban & rural status etc

Individual-Level Data

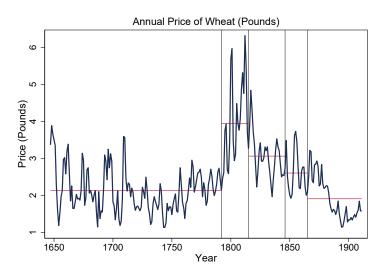
- Follow closely the name matching algorithms used to construct linked population census data in US (Abramitzky et al. 2020)
 - Match on name, year of birth, and county of birth for men

Period	Obs	Mover	Mover	Mover
	Matched	Parish	Reg District	County
		11,425	575	58
1851-1861	5,323,072	0.39	0.32	0.19
1861-1881	3,686,306	0.56	0.48	0.30
1881-1891	7,527,280	0.38	0.31	0.20
1891-1901	12,151,542	0.47	0.32	0.19
1861-1901	1,003,442	0.75	0.59	0.35

Individual-Level Data

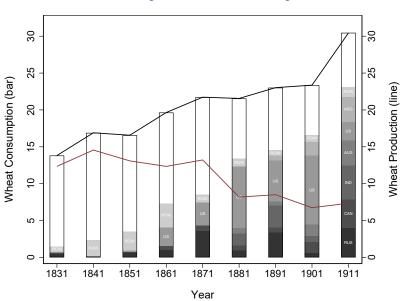
- Follow closely the name matching algorithms used to construct linked population census data in US (Abramitzky et al. 2020)
 - Match on name, year of birth, and county of birth for men

Period	Obs	Mover	Mover	Mover
	Matched	Parish	Reg District	County
		11,425	575	58
1851-1861	5,323,072	0.39	0.32	0.19
1861-1881	3,686,306	0.56	0.48	0.30
1881-1891	7,527,280	0.38	0.31	0.20
1891-1901	12,151,542	0.47	0.32	0.19
1861-1901	1,003,442	0.75	0.59	0.35


Period	Obs	Mover Birth County
1851	17,563,681	0.40
1861	19,582,103	0.42
1881	25,954,290	0.41
1891	28,902,486	0.44
1901	31,909,682	0.45

Outline

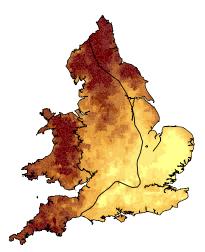
- · Historical Background
- Data
- Reduced-form Evidence
- · Theoretical Model
- Quantitative Evidence


Corn Laws & Grain Invasion

Price of Wheat

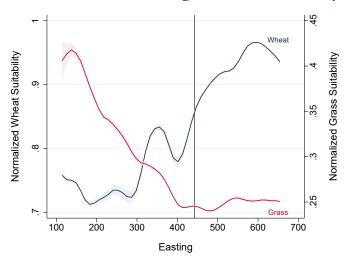
Annual average price of wheat per quarter at Eton (Lord Ernle 1912)

UK Consumption, Production and Imports of Wheat



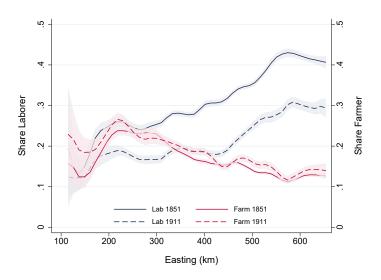
Wheat Suitability

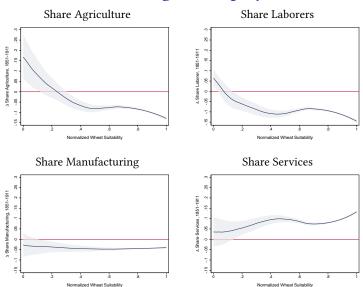
Wheat Suitability



(a) Caird (1852)

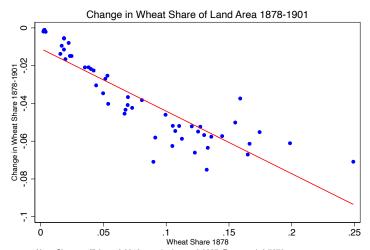
(b) Wheat Suitability (UN GAEZ)


Average Wheat Suitability


- · Eastings of British National Grid (London Guildhall: 532)
- Vertical line: Avg. easting of Caird line separating grazing and corn counties

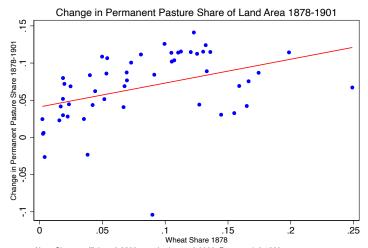
Structural Transformation

Laborers and Farmers 1851 & 1911



Change in Employment Shares

Arable Land Reallocation Away from Wheat


• County data from the agricultural census from the 1870s onwards

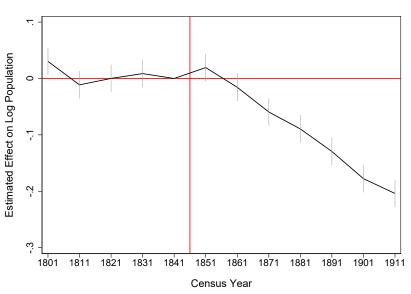
Note: Slope coefficient: -0.3312; standard error: 0.0327; R-squared: 0.7679.

Arable Land Reallocation to Permanent Pasture

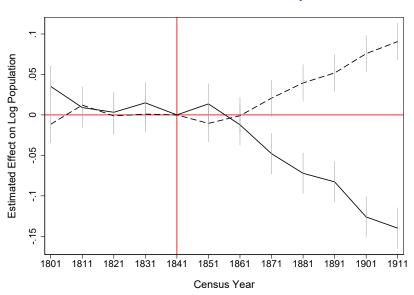
· County data from the agricultural census from the 1870s onwards

Note: Slope coefficient: 0.3208; standard error: 0.0922; R-squared: 0.1620.

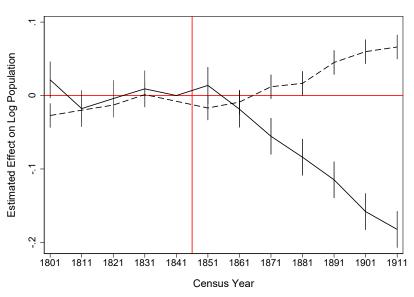
Event-Study Specifications


Reduced-Form Regressions

• "Difference-in-differences" regression specification

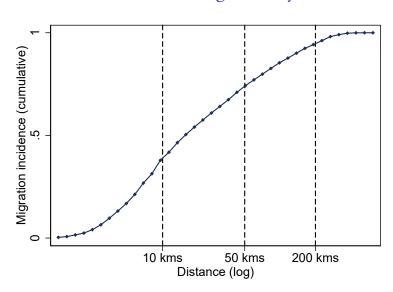

$$\ln Pop_{it} = \eta_i + \sum_{ au=-T}^{ au=T} eta_{ au} \left(\mathbb{I}_{ au} imes ext{Wheat}_i
ight) + \left(X_i imes \delta_t
ight) + d_t + u_{it}$$

- Parishes *i*, calendar year *t* and treatment year τ
- \mathbb{I}_{τ} : Indicator for treatment year τ (1841 excluded)
- Wheat_i: Indicator for parishes with above average wheat suitability
- X_{it} : Controls for
 - Distance to nearest of 76 industrial centers × year
 - Distance to London × year
 - Distance to nearest coalfield \times year
 - Urban indicator (based on 1801 population density) \times year
 - Wales indicator × year
- Standard errors clustered by poor law union
 - Robustness tests using Heteroscedasticity and Autocorrelation
 Consistent (HAC) standard errors following Conley (1999) and standard
 errors clustered by 100 bins wheat suitability and poor law union

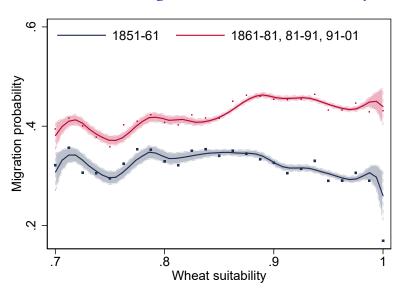

High Wheat Suitability

Wheat Suitability Terciles

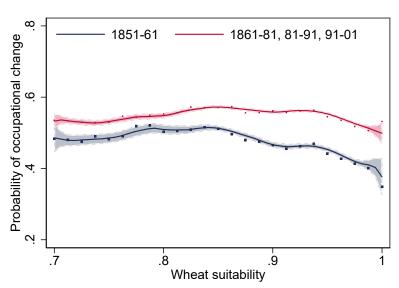
Placebo: High Grass Suitability

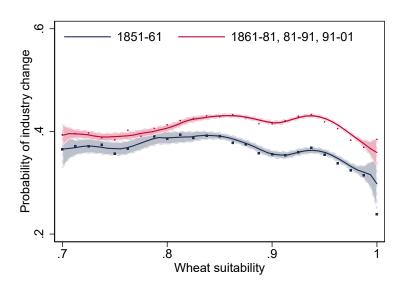


Rateable Values



Migration Individual-Level Data


Migration by Distance


Out Migration & Wheat Suitability

Occupation Change & Wheat Suitability

Industry Change & Wheat Suitability

Outline

- · Historical Background
- Data
- · Reduced-form Evidence
- Theoretical Model
- Quantitative Evidence

Model Outline

- World economy consists of many locations indexed by i, n, $m \in N$
 - Subset of locations are in England & Wales: N^E
 - Subset of locations are foreign countries: N^R
- Two types of agents: workers and landlords
 - Landlords immobile and earn income and consume where born
 - Workers mobile within countries but immobile across countries (can be extended to allow for mobility across countries)
- Each worker can migrate from location i to n within a country by incurring a bilateral migration cost
- Economic activity takes place in a number of sectors $k, j, \ell \in K$, including agriculture, manufacturing and services
- Locations can differ in amenities, sectoral productivities and bilateral trade and migration costs
- We use the model to examine the impact of an international trade shock that is concentrated in a sector (grain invasion) across locations that differ in sectoral specialization

Preferences

• Preferences of worker ψ born in location i who chooses to work in sector k in location n

$$u_{ni}^{k}(\psi) = \frac{b_{n}^{k}(\psi) w_{n}}{\kappa_{ni} \left(\prod_{j \in K} \left(P_{n}^{j}\right)^{\alpha^{j}}\right) Q_{n}^{\alpha^{H}}}, \qquad \sum_{j \in K} \alpha^{j} + \alpha^{H} = 1$$

- with idiosyncratic amenity $b_n^k(\psi)$, wage w_n , bilateral migration cost κ_{ni} , consumption goods price indexes P_n^j , and price of floor space Q_n
- Match-specific amenities drawn independently across individuals, locations and sectors from the following Fréchet distribution:

$$F_n^k(b) = e^{-\left(b/B_{ni}^k\right)^{-\epsilon}}, \qquad \epsilon > 1$$

- B_{ni}^k determines average amenities for location n and sector k
- Landlords same preferences but immobile

Production

- · Goods are produced using labor and land under perfect competition
- Goods can be traded between locations subject to ice berg variable trade costs $\tau_{ni}^k \geq 1$
- Cost to a consumer in location n of purchasing good ϑ in sector k from location i

$$p_{ni}^{k}\left(artheta
ight)=rac{ au_{ni}^{k}w_{i}^{eta^{k}}Q_{i}^{1-eta^{k}}}{a_{i}^{k}\left(artheta
ight)}, \qquad 0$$

- where sectors differ in factor intensity (β^k)
- Idiosyncratic productivities $a_i^k\left(\vartheta\right)$ are drawn independently for each good ϑ , sector k and location i:

$$G_i^k(a) = e^{-\left(a/A_i^k\right)^{-\theta}}, \qquad \theta > 1,$$

Choice of Sector and Location

• The probability that a worker born in location *i* chooses sector *k* and location *n* exhibits a gravity equation:

$$\lambda_{ni}^{k} = \frac{\left(B_{ni}^{k} w_{n}\right)^{\epsilon} \left(\kappa_{ni} \left(\prod_{j \in K} \left(P_{n}^{j}\right)^{\alpha^{j}}\right) Q_{n}^{\alpha^{H}}\right)^{-\epsilon}}{\sum\limits_{\ell \in K} \sum\limits_{m \in N^{E}} \left(B_{mi}^{\ell} w_{m}\right)^{\epsilon} \left(\kappa_{mi} \left(\prod_{j \in K} \left(P_{m}^{j}\right)^{\alpha^{j}}\right) Q_{m}^{\alpha^{H}}\right)^{-\epsilon}}$$

Total employment in each location n

$$L_n = \sum_{k \in K} \sum_{i \in N^E} \lambda_{ni}^k \bar{L}_i$$

Expected utility for workers born in location i

$$\bar{u}_{i} = \mathbb{E}_{i}\left[u\right] = \delta \left[\sum_{\ell \in K} \sum_{m \in N^{E}} \left(B_{mi}^{\ell} w_{m}\right)^{\epsilon} \left(\kappa_{mi} \left(\prod_{j \in K} \left(P_{m}^{j}\right)^{\alpha^{j}}\right) Q_{m}^{\alpha^{H}}\right)^{-\epsilon}\right]^{\frac{1}{\epsilon}}$$

Market Clearing

· Land market clearing

$$\begin{aligned} Q_n H_n &= \left(1 - \alpha^H\right) Q_n H_n \\ &+ \left(1 - \alpha^H\right) \left[\sum_{k \in K} \left(1 + d_n\right) w_n L_n^k\right] + \sum_{k \in K} \frac{1 - \beta^k}{\beta^k} w_n L_n^k \end{aligned}$$

Goods market clearing

$$Y_i^k = \sum_{n \in N^E} \pi_{ni}^k \alpha^k X_n + \sum_{n \in N^R} \pi_{ni}^k \alpha^k X_n$$

Outline

- · Historical Background
- Data
- · Reduced-form Evidence
- · Theoretical Model
- Quantitative Evidence

Wages: Step 1

• Using data on employment (L_{nt}^k) and rateable values (Q_{nt}), recover wages (w_{nt}) from land market clearing

$$w_{nt} = rac{\mathbb{Q}_{nt}}{\left[rac{1-lpha^H}{lpha^H}\left(1+d_{nt}
ight)\sum\limits_{k\in K}L_{nt}^k + \sum\limits_{k\in K}rac{1-eta^k}{lpha^Heta^k}L_{nt}^k
ight]}$$

 where payments for commercial and residential floor space are constant multiples of labor payments

Price of Floor Space : Step 2

• Following Saiz (2010), assume constant floor space supply elasticity (μ)

$$H_{nt} = hQ_{nt}^{\mu}K_n$$

• Recover price (Q_{nt}) and supply (H_{nt}) of floor space from observed rateable values (\mathbb{Q}_{nt}) and geographical land area (K_n)

$$Q_{nt} = \left(\frac{Q_{nt}}{hK_n}\right)^{\frac{1}{1+\mu}}$$

$$H_{nt} = hK_n \left(\frac{Q_{nt}}{hK_n}\right)^{\frac{\mu}{1+\mu}}$$

Productivity: Step 3

• Recover productivity (A_i^k) from goods market clearing

$$\begin{split} \frac{w_i L_i^k}{\beta^k} &= \sum_{n \in N^E} \pi_{ni}^* \zeta_n^k \alpha^k \left[(1+d_n) \left(1 + \frac{1-\alpha^H}{\alpha^H} \right) L_n + \sum_{k \in K} \frac{1-\beta^k}{\alpha^H \beta^k} L_n^k \right] w_n \\ &+ \sum_{n \in N^R} \xi_{ni}^k M_n^k \end{split}$$

$$\pi_{ni}^* = \frac{\left(\tau_{ni}^k w_i^{\beta^k} Q_i^{1-\beta^k} / A_i^k\right)^{-\theta}}{\sum\limits_{m \in N^E} \left(\tau_{nm}^k w_m^{\beta^k} Q_m^{1-\beta^k} / A_m^k\right)^{-\theta}}$$

- ζ_n^k share of domestic expenditure in total expenditure within sector k for location n within England and Wales;
- M_n^k is country n's total imports from England and Wales in sector k
- ξ_{ni}^k is the share of domestic location i in foreign country n's total imports from England and Wales in sector k

Amenities: Step 4

• Recover amenities (B_{ni}^k) in sector k and location n for workers born in each location i using migration choice probabilities

$$\begin{split} L_{n}^{k} &= \sum_{i \in N^{E}} \frac{\left(B_{ni}^{k} w_{n}\right)^{\epsilon} \left(\kappa_{ni} \left(\prod_{j \in K} \left(P_{n}^{j}\right)^{\alpha^{j}}\right) Q_{n}^{\alpha^{H}}\right)^{-\epsilon}}{\sum_{\ell \in K} \sum_{m \in N^{E}} \left(B_{mi}^{\ell} w_{m}\right)^{\epsilon} \left(\kappa_{mi} \left(\prod_{j \in K} \left(P_{m}^{j}\right)^{\alpha^{j}}\right) Q_{m}^{\alpha^{H}}\right)^{-\epsilon}} \bar{L}_{i} \\ \pi_{ni}^{k*} &= \frac{\left(\tau_{ni}^{k} w_{i}^{\beta^{k}} Q_{i}^{1-\beta^{k}} / A_{i}^{k}\right)^{-\theta}}{\sum_{m \in N^{E}} \left(\tau_{nm}^{k} w_{m}^{\beta^{k}} Q_{m}^{1-\beta^{k}} / A_{m}^{k}\right)^{-\theta}} \\ P_{n}^{k} &= \gamma^{k} \left(\zeta_{n}^{k} \tau_{nn}^{k*}\right)^{\frac{1}{\theta}} \tau_{nn}^{k} w_{n}^{\beta^{k}} Q_{n}^{1-\beta^{k}} / A_{m}^{k} \end{split}$$

Counterfactuals

• Use the model to quantify distributional consequences of trade and role of labor mobility in shaping those distributional consequences

$$\begin{split} \frac{w_{i}L_{i}^{k}}{\beta^{k}} &= \sum_{n \in N^{E}} \pi_{ni}^{*} \zeta_{n}^{k} \alpha^{k} \left[(1+d_{n}) \left(1 + \frac{1-\alpha^{H}}{\alpha^{H}} \right) L_{n} + \sum_{k \in K} \frac{1-\beta^{k}}{\alpha^{H} \beta^{k}} L_{n}^{k} \right] w_{n} \\ &+ \sum_{n \in N^{R}} \xi_{ni}^{k} M_{n}^{k} \\ Q_{n}H_{n} &= \left[\left(\frac{1-\alpha^{H}}{\alpha^{H}} \right) \left(\sum_{k \in K} (1+d_{n}) L_{n}^{k} \right) + \sum_{k \in K} \frac{1-\beta^{k}}{\alpha^{H} \beta^{k}} L_{n}^{k} \right] w_{n}. \\ L_{ni}^{k} &= \frac{\left(B_{n}^{k} w_{n} \right)^{\epsilon} \left(\kappa_{ni} \left(\prod_{j \in K} \left(P_{n}^{j} \right)^{\alpha^{j}} \right) Q_{n}^{\alpha^{H}} \right)^{-\epsilon}}{\sum_{\ell \in K} \sum_{m \in N^{E}} \left(B_{m}^{\ell} w_{m} \right)^{\epsilon} \left(\kappa_{mi} \left(\prod_{j \in K} \left(P_{m}^{j} \right)^{\alpha^{j}} \right) Q_{m}^{\alpha^{H}} \right)^{-\epsilon}} \bar{L}_{i}, \\ P_{n}^{k} &= \gamma^{k} \left(\zeta_{n}^{k} \pi_{nn}^{k*} \right)^{\frac{1}{\theta}} \tau_{nn}^{k} w_{n}^{\beta^{k}} Q_{n}^{1-\beta^{k}} / A_{m}^{k} \end{split}$$

Conclusions

- Distributional consequences of trade is one of the central questions in international economics
- Examine one of the most influential historical trade shocks following the 1846 repeal of the Corn Laws in 19th-century Britain
- Traditionally, research on the Corn Laws has emphasized the distributional effects across factors or industries
 - Heckscher-Ohlin and Specific-Factors models
- We provide new evidence on the distributional consequences of the repeal of the Corn Laws across local labor markets
 - New, spatially-disaggregated data on population, employment and land values for around 11,000 parishes in England & Wales from 1801-1911
 - Exogenous trade exposure measure based on agroclimatic conditions
 - Quantitative spatial model to evaluate the impact of this trade shock on industrialization, urbanization and income distribution
 - Quantify role of labor mobility for the distributional effects of trade

Thank You