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“As a general rule, the Federal Reserve tends to adjust interest rates incrementally, in

a series of small or moderate steps in the same direction. ... Relatively gradual policy

adjustment produces better results in an uncertain economic environment.”

– Ben S. Bernanke, May 20, 2004.

“Absence of intrinsic inertia appears in accord with the views of many central bankers,

who often note that future policy actions will largely be contingent on incoming data

and future changes in the economic outlook.” – Glenn D. Rudebusch, 2006.

1 Introduction

This paper examines differences in monetary policy across countries with respect to the
extent to which their interest rates are slow to adjust. This is related to the quality of the
data on aggregate output and the inflation rate that the country produces. We demonstrate
that countries with more data uncertainty are slower to adjust their interest rate, and this
is largely explained by the central banks’ learning process. The novelty of this paper is
that the central bank is considered as an active learner: the central bank observes data with
noise and makes inferences about the true data before making policy decisions.

A key question in monetary policy is how responsive central banks are to current in-
formation about the level of GDP and inflation rate when they are determining their policy
interest rate. The standard theories say that a central bank that is choosing its interest rate
in a forward-looking manner should not place any weight on past interest rate when it is
deciding what its current interest rate should be. However, we observe in all countries that
there is at least some sluggishness to the interest rate. Moreover, the sluggishness varies
considerably across countries. The sluggishness is measured using Taylor rule equation,
which prescribes short-term interest rate based on inflation and the output gap. For each
country, policy interest rate is regressed on inflation rate, output gap, and lagged interest
rate, and the estimated coefficient on lagged interest rate indicates the sluggishness.

This paper explains both the sluggishness and the heterogeneity, and that has to do with
the fact that data as its disseminated is imperfect. The data uncertainty is measured by the
standard deviation of differences between real-time data and their revisions after a year.
We find that countries with more data uncertainty tend to have more sluggishness in the
interest rate. For example, Nigeria has greater data uncertainty and more sluggish interest
rate than Canada. This is not only for Canada and Nigeria, but a general data pattern among

2



40 countries in the sample.1

To explain this pattern, we build a simple New Keynesian model and allow central bank
to learn about the true data from noisy observations using Kalman filter. The model consists
of three components: Phillips curve, IS curve, and a monetary policy rule. Central bank’s
objective is to minimize a loss function, which is sum of variances in inflation rate, output
gap, and interest-rate shocks. Based on all available information, central bank forms belief
about the true data and chooses its responds to expected inflation rate and output gap and
also decides how responsive it will be by choosing the weight on lagged interest rate.

The noisy data are defined as the true data plus noise, where the noise components
follow MA(1) process. Noise tends to be persistent over time in the data, and we use
MA(1) to pick up the persistence. In each period, central bank observes the noisy data and
decides how much weight should be placed on the new noisy information versus its past
belief and past information. The weighted sum becomes the central bank’s inference about
the true data, and this is the standard Kalman filter learning with MA(1) noise. The assigned
weight on new noisy information is called ”Kalman gain,” and this decreases as the data
become noisier. Based on the inferences, central bank chooses the optimal responses to
inflation rate and output gap and decides the optimal weight on lagged interest rate within
the monetary policy rule.

We find an interesting result from this model. As data become noisier, central bank’s
optimal weight on the lagged interest rate becomes smaller. This is because of the follow-
ing reasons. First, the learning process effectively filters out the noise in the data. Second,
the noise tends to be persistent, and the learning process helps getting the additional infor-
mation from the predictable portion of the noise process.

This is not contradicting the empirical cross-country finding. The data pattern is not
representative of the degree of gradual adjustment but rather is an artifact of what we as the
econometrician observe from ex-post data. The model is simulated hundred thousand times

1In accordance with conventional belief, the cross-country Taylor rule estimates suggest that higher data
uncertainty is associated with more inertial behavior of interest rates. This is often referred to as intrinsic
interest-rate smoothing in the literature: the higher the data uncertainty, the greater the reduced-form estimate
on lagged interest rate. I use the terms, the sluggishness to the interest rate, the inertial behavior of interest
rates, and interest-rate smoothing, interchangeably since both terms are originated from reduced-form Taylor
rule estimations in the literature. Another term, gradual adjustment, is defined differently from those two, and
it is the incremental adjust of interest rates by central banks. There has not been clear distinctions among the
terms in the literature. I argue that interest-rate smoothing is mostly a consequence of the learning process,
rather than central banks’ gradual adjustment of interest rates. Central banks’ real-time beliefs about true
data are indistinguishable from the gradual adjustment in ex-post data, both of which are largely picked up
by the Taylor rule’s reduced-form estimate on the lagged interest rate.
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and a series of ex-post data for each level of data uncertainty are generated. We run the same
reduced-form Taylor rule regression for each level of data uncertainty and demonstrate that
the coefficient on lagged interest rate increases in data uncertainty. The key explanation is
that the learning component is missing in the reduced-form Taylor rule estimation on the
ex-post data. The coefficient on lagged interest rate is overestimated because the central
bank’s belief is not included in the regressions. This is a typical omitted variable bias,
and this bias increases in data uncertainty. This paper explains the sluggishness in policy
interest rate with central banks’ learning process when they face measurement error in the
real-time data.

Contribution of the paper

This study distinguishes between the sluggishness and central banks’ gradual adjustment
and demonstrates that the two may not move together. Whereas the conventional view
in the literature considers the sluggishness evidence of central banks’ gradual adjustment
(Bernanke, 2004), I show the gradual adjustment to be directly induced by central banks’
desire to avoid interest-rate surprises, that is, the variance of changes in interest rates in the
loss function.

The paper endogenizes the sluggishness as resulting in part from central banks’ learn-
ing process. Reduced-form Taylor rule estimators in the literature often include lagged
interest rate as an independent variable, which substantially increases explanatory power.
Including lagged interest rate is commonly justified by the assumption that central banks
partially adjust the interest rate, which implies the gradual adjustment as the key explana-
tion for the sluggishness. I show the sluggishness to exist and increase in the level of data
uncertainty even if central banks’ gradual adjustment of interest rates is muted by exclud-
ing the variance of changes in interest rates from the loss function. The sluggishness can
be fully endogenized in the model by the learning process to which much of it accrues and
the gradual adjustment of interest rates.

Literature review

This paper is closely related to the literature that studies the effect of data uncertainty on
monetary policy. For example, Rudebusch (2001) and Orphanides (2003b) find that noisy
economic data may lead to cautious and timid responses of policymakers. However, in
empirical studies, as noted by Rudebusch (2001, 2006), such inducement toward timidity
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appears fairly modest. These studies focus on the effect of existence versus non-existence
of data uncertainty, and all of them consider only the US economy. Because that the
United States has a relatively low level of data uncertainty, the scope of previous studies
is quite limited.2 In contrast, I consider the cross-country variation in magnitudes of data
uncertainty and study policymakers’ optimal responses.

There are three strands of literature rationalizing interest-rate smoothing: reducing
interest-rate volatility, exploiting the expectation channel for monetary policy, and respond-
ing optimally to data and model uncertainty. The first strand of the literature emphasizes
the costs and benefits of interest-rate smoothing arising from its effects on financial stabil-
ity (Cukierman, 1991; Rudebusch and Svensson, 1999; Stein and Sunderam, 2015). The
second strand of the literature analyzes the benefits of interest-rate smoothing coming from
its ability to steer private-sector expectations by inducing history dependency in the pol-
icy rate (Levin, Wieland and Williams, 2003; Rotemberg and Woodford, 1999; Woodford,
1999, 2003). The last strand of the literature explores the benefit of interest-rate smoothing
arising from its ability to better manage uncertainties about data, model parameters, or the
structure of the economy faced by the central bank (Brainard, 1967; Milani, 2007; Sack,
1998, 2000; Rudebusch, 2001; Söderström, 2002; Orphanides, 2003a).3

None of these papers shows a clear distinction between interest-rate smoothing and
central banks’ gradual interest-rate adjustment nor decreasing in the degree of gradual
adjustment in the face of data uncertainty. In contrast, I decompose interest-rate smoothing
into gradual interest-rate adjustment, which is caused by central banks’ motive to avoid
interest-rate surprises, and component in the learning process correlated with past interest
rates.

Policy implications

We can think about how central banks can improve their monetary policy under data uncer-
tainty. There are two approaches we can think of: improving learning ability and improving
data quality. This research provides a framework that helps analyzing these competing op-
tions. We consider two benchmark cases in addition to the learning policy. First, central
bank always observes perfect information. Second, central bank observes noisy data and
naively take the face value without making any inference. We compare the welfare loss
under the learning policy and the naive policy at different levels of data uncertainty and

2Cross-country variation in data uncertainty is described in Figure 2 (a).
3See Coibion and Gorodnichenko (2012) for an overview of recent literature.
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demonstrate that learning policy is always better than the naive policy. The gain from learn-
ing is increasing and convex in data uncertainty. Given the cost information of each option,
we can conduct a cost-benefit analysis and decide which option is more cost-effective.

The remainder of the paper proceeds as follows. Section 2 provides cross-country com-
parison of monetary policies under data uncertainty. Section 3 introduces the Rudebusch
and Svensson (1999) model with learning. Section 4 presents the model estimation along
with reduced-form estimation on simulated data. Section 4.5 discusses policy implications
of the study. The last section concludes.

2 Cross-Country Observation

The conventional belief — a positive relationship between data uncertainty and interest-
rate smoothing — is shown as a cross-country scatter plot in figure 2 (b).4 Data uncertainty
(σnπ +σny) is measured by the linear combination of volatilities in the differences between
real-time data and their revisions, and interest-rate smoothing (ρ̃) is measured by the esti-
mated coefficients on lagged interest rate in Taylor rule. Note that countries with high data
uncertainty tend to have high weight on the lagged interest rate. The measurements and
estimation methods are described as the following.

2.1 Interest-rate smoothing

2.1.1 Partial-adjustment Taylor rule

I assume that within each operating period the central bank has a target for the nominal
short-term interest rate, i∗t , that is based on the state of the economy. In the baseline case, I
assume that the target depends on both expected inflation and output.

i∗t = ī+ gπ(E[πt+n|Ωt]− π∗) + gy(E[xt|Ωt]− x∗t ) (1)

where ī is the long-run equilibrium nominal rate, πt+n is the rate of inflation between
periods t and t+ n, xt is real output, π∗ is target inflation, x∗ is potential output, and Ωt is

4The forty sample countries include: Albania, Australia, Bahamas, Bangladesh, Belize, Canada, Chile,
Colombia, Costa Rica, Côte d’Ivoire, Denmark, Euro area, Gambia, Ghana, Guatemala, Guyana, Israel,
Jamaica, Jordan, Kenya, Korea, Malaysia, Mali, Mauritius, Mexico, Nepal, Nigeria, Papua New Guinea,
Philippines, Qatar, São Tomé and Prı́ncipe, Saudi Arabia, Singapore, South Africa, Sweden, Switzerland,
Thailand, United Kingdom, United States, and Vietnam.
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Figure 1: CPI and GDP Data Revisions in the US
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Note: Historical data on CPI inflation and GDP growth rate from IMF’s World Economic Outlook (WEO)
are used. Panel (a) and (b) show real-time data and revised data after a year in percentage, and panel (c)
shows the simple differences between the real-time data and revised data after a year (revisionst (%p) =
revised datat (%) − real-time datat (%)). The means of revisions in CPI inflation and real GDP growth
are close to zero.
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Figure 2: Data uncertainty and cross-country comparison of interest-rate smoothing (ρ̃)
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the central bank’s information set at time t.
I assume that the monetary policy-related interest rate partially adjusts to target, as

follows:
it = (1− ρ)i∗t + ρit−1 + ηt (2)

where the parameter ρ ∈ [0, 1] captures the degree of interest-rate smoothing, and the
exogenous random shock to the interest rate, ηt, is i.i.d. Defining k ≡ ī − gππ

∗ and
yt ≡ xt − x∗t , equation (1) becomes

i∗t = k + gπE[πt+n|Ωt] + gyE[yt|Ωt] (3)

Combining equation (2) and (3), we get

it = (1− ρ)[k + gπE[πt+n|Ωt] + gyE[yt|Ωt]] + ρit−1 + ηt (4)

Rewriting the policy rule in terms of realized variables at the current period and setting
n = 1, we have

it = (1− ρ)[k + gπEtπt+1 + gyyt] + ρit−1 + εt (5)

where the error term εt is a linear combination of the forecast errors of inflation and output
and the exogenous disturbance ηt. Parameters in equation (5) is estimated in each country,
and the details are described below.

2.1.2 Estimation of the rule parameters

Parameters in the Taylor rule (equation (5)) are estimated for each country with least
squares using quarterly data on monetary policy related interest rates, inflation rates, and
output gap from 1990 to 2008. The data are drawn from the IMF’s International Financial
Statistics (IFS) and Thomson Reuters’ Datastream. The output gap is defined by the per-
centage difference between real GDP and estimated potential GDP, and the potential GDP
is measured by the quadratic trend of real GDP.

Rewriting equation (5) with country subscript c,

it,c = (1− ρ̃c)[kc + g̃π,cEtπt+1,c + g̃y,cyt,c] + ρ̃cit−1,c + εt,c (6)

where it,c is the monetary policy-related (nominal) interest rate, πt+1,c is the rate of inflation
between periods t and t + 1, and yt,c is output gap. Monetary policy responses to inflation
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rate and output gap are captured by the rule parameters g̃π,c and g̃y,c, respectively, and
kc captures country-specific equilibrium real interest rate and target inflation together. The
expected inflation rate, Etπt+1, is measured by the four quarter average inflation rate in per-
cent following Rudebusch (2001) (i.e., Etπt+1 = 1

4

∑3
j=0 πt−j).

5 Note that the expression,
[k + gπEtπt+1 + gyyt], represents the Taylor rule suggested optimal monetary policy. The
parameter of interest, ρ̃c ∈ [0, 1], captures the degree of interest-rate smoothing in country
c. Estimated ρ̃ for the sample countries are reported in figure 2 (b), and adjusted-R2 for the
regressions are reported as box plots in figure 2 (c).

2.2 Data uncertainty

Data uncertainty is measured by the volatility of the discrepancies between the noisy data
and the true data, where the initially released real-time data and revised data after a year
are taken as proxies for the noisy and the true data, respectively. It is formally defined as
(σnπ +σny) where σnπ and σny are standard errors of the discrepancies in inflation rate and
GDP gap, respectively. I estimate σnπ and σny using historical data from the IMF’s World
Economic Outlook (WEO), and the sample period is from 1990 to 2008.6 The detailed
description of estimating σnπ and σny is the following.

2.2.1 Measuring data uncertainty

The real-time noisy indicators on inflation rate, πnt , and output gap, ynt , are defined as:

πnt = πt + nπt (7)

ynt = yt + nyt (8)

where πt and yt are true inflation rate and output gap, and nπt and nyt are the contemporane-
ous measurement errors that plague the policymaker in real time, with standard errors σnπ

5Alternative measures for Etπt+1, for example, linear trend forecasting, can be considered.
6The WEO data are released twice a year, in the spring and the fall. The database consists of macroe-

conomic data and forecasts submitted by country teams and vetted by the IMF’s Research Department for
both internal and multilateral consistency. The spring WEO is released in May up through 2001 and in April
thereafter; the fall version is typically released in October, and occasionally in September. Historical WEO
data are publicly available for the period from 1990 to 2017. I collect real GDP growth and CPI inflation data
from this database, and each report includes revised estimates for the past years, real-time estimates for the
current year, and forecasts based on the current information. An example of the historical WEO dataset is
presented in table 1 in the appendix.
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and σny, respectively, and uncorrelated with πt and yt.
Note that the noise in the data appears to be quite persistent over time, as shown in

figure 1. In order to capture this persistence, the noises in inflation rate and GDP gap, nπt
and nyt , are modeled as first-order moving average (MA(1)) processes:

nπt = επt + θπεπt−1 (9)

nyt = εyt + θyεyt−1 (10)

where επt and εyt are normally distributed with mean zero and variance σ2
επ and σ2

εy, respec-
tively.7

I measure each country’s data uncertainty using linear combinations of σnπ and σny,
keeping the ratio between the two. One important econometric issue is that the parameters
in Taylor rule (equation (5)) are estimated using quarterly data, while the sources of data for
estimating data uncertainty (historical WEO issues) are released only twice a year, second
and fourth quarter. Moreover, the WEO issues are not exactly semiannual because each
issue reports real GDP growth and CPI inflation for the current entire year, not for the
current half year.

In order to resolve these issues, I introduce the following econometric technique. Let
πt,0 be the first released estimate of CPI inflation for the year of t and πt,1, πt,2 and πt,3 be
the following semi-annual revisions of it. πt,0 releases in a second quarter, and πt,1 releases
in the fourth quarter in the same year. πt,2 and πt,3 release in the second and the fourth
quarter of the following year. Assume that it takes four quarters to finalize the data since
their first releases, then πt,0 ∼ πt,3 can be expressed as the following:8

Real-time data: πt,0 = 1
4

[
πnt,q1 + πnt,q2 + Eq2[πt,q3 + πt,q4]

]
First revision: πt,1 = 1

4

[
πnt,q1 + πnt,q2 + πnt,q3 + πnt,q4

]
Second revision: πt,2 = 1

4

[
πt,q1 + πt,q2 + πnt,q3 + πnt,q4

]
Third revision: πt,3 = 1

4
[πt,q1 + πt,q2 + πt,q3 + πt,q4]

(11)

7The assumption of the persistent noise in the real-time data accords with previous studies. See Or-
phanides (2001) for a detailed argument. Rudebusch (2001) uses AR(1) for modeling the noise in GDP gap
and MA(3) for inflation rate. Onatski and Williams (2003) use AR(1) for both. I use MA(1) for both, and
this assumption is useful under the structure of data releases as described in the next page.

8On average 79% of inflation and GDP data revisions happen within four quarters from the initial release
in the United States and 73% in all sample countries.
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where πt,q1 ∼ πt,q4 are true CPI inflation in each quarter, and πnt,q1 ∼ πnt,q4 are noisy
indicators of them. All variables above are annualized. πt,0 consists of two noisy indicators
for the first and second quarters and two forecasts for the third and fourth quarters, and πt,1
consists of noisy indicators for all four quarters. πt,2 consists of two true inflation rates for
the first and the second quarters, because it has been four quarters since πt,0 was initially
released, and two noisy indicators for the third and the fourth quarters. πt,3 consists of true
inflation rates for all four quarters.9 From equation (7) and (11), note that

πt,1 − πt,2 = 1
4

[
nπt,q1 + nπt,q2

]
πt,2 − πt,3 = 1

4

[
nπt,q3 + nπt,q4

] (12)

Since nπt is assumed to follow MA(1), {θπ, σ2
επ} in equation (9) can be estimated with

observations (nπt,q1 + nπt,q2) and (nπt,q3 + nπt,q4) by matching the moments:

V ar(πt,1 − πt,2) =
(
1
4

)2
[1 + (1 + θπ)2 + (θπ)2]σ2

επ (13a)

E(πt,1 − πt,2)(πt,2 − πt,3) =
(
1
4

)2
Enπq3n

π
q2

=
(
1
4

)2
E(επt + θπεπt−1)(ε

π
t−1 + θπεπt−2)

=
(
1
4

)2
θπσ2

επ

(13b)

and I use the same technique for estimating {θy, σ2
εy} in equation (10) using WEO’s semi-

annual releases on real GDP growth.
Once {θπ, σ2

επ} and {θy, σ2
εy} are estimated, σnπ and σny can be calculated from:

σ2
nπ = σ2

επ(1 + (θπ)2)

σ2
ny = σ2

εy(1 + (θy)2)
(14)

and figure 2 (a) describes the cross-country variation in σnπ and σny.

9One may argue that the second quarter inflation rate (πnt,q2) in the real-time data (πt,0) should also be
a forecast rather than a noisy observation since the WEO data are released at the beginning of the second
and fourth quarters. This issue can be resolved by adding one more revision (πt,4) to the list (equation (11))
and modifying the assumption as the following: it takes about a quarter for the IMF research department to
receive and organize new data before releasing them on WEO database.
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2.3 Robust pattern

Figure 2 (b) reports estimated ρ̃ for the sample countries with regard to the level of data
uncertainty in each country, where ρ̃ is the coefficient on lagged interest rate in the Taylor
rule equation (6). Note that ρ̃ is positively related with the level of data uncertainty. The
inclusion of the lagged interest rate in the Taylor rule estimation can be rationalized by the
substantial increase in adjusted-R2 in figure 2 (c).

This cross-country pattern is robust to controlling currency pegs, country income levels,
exchange rates, and federal funds rates, as reported in figure 3, 4 and 5.

Figure 3 shows that the cross-country pattern is robust in the subset of sample countries
without hard currency peg. Panel (a) reports the scatter plot of the subset of the countries
without a hard currency peg. Panel (b) reports the scatter plot of the subset of the countries
without any currency peg (hard peg and soft peg). Panel (c) reports the scatter plot of the
subset of the countries only with hard currency peg, and the scatter plot implies that the
relationship does not hold among those countries with a hard currency peg. This is not
surprising because domestic data uncertainty would not affect a central bank’s monetary
policy if its currency is perfectly pegged to another currency.

Figure 4 shows that the cross-country pattern is robust when country income levels are
considered. Panel (a), (b) and (c) report the scatter plot within each subset of the sam-
ple countries with high, middle, and low income, respectively. The cross-country pattern
among low-income countries is also consistent with the others if countries with a hard
currency peg are eliminated.

The cross-country pattern is robust when real effective exchange rates and federal funds
rates are controlled. Real effective exchange rate and federal funds rate are added in addi-
tion to the baseline equation (equation (6)). I estimate the following specifications of the
partial-adjustment Taylor rule for each country c using the least squares:

it,c = (1− ρ̃c)[kc + g̃π,cπt+1,c + g̃y,cyt,c + g̃RER,cRERt] + ρ̃cit−1,c + εt,c (15)

it,c = (1− ρ̃c)[kc + g̃π,cπt+1,c + g̃y,cyt,c + g̃FFR,cFFRt] + ρ̃cit−1,c + εt,c (16)

where it,c is annualized monetary policy-related interest rate, πt+n,c|t is n-period ahead
annualized CPI inflation rate forecast, yt,c|t is output gap measured by the percentage dif-
ference between real GDP and estimated potential GDP, RERt,c is real effective exchange
rate (CPI base), and FFRt is the annualized federal funds rate. The horizon of the infla-
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Figure 3: Cross-country comparison of interest-rate smoothing (ρ̃) regarding currency pegs
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(a) No hard peg
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(b) No peg at all
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(c) Only hard peg

Note: These figures present subsets of the scatterplot in Figure 2 (b) with regard to exchange rate regimes.
The classifications of exchange rate regimes are based on Shambaugh (2004) and Klein and Shambaugh
(2008).
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Figure 4: Cross-country comparison of interest-rate smoothing (ρ̃) by income level
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(a) High income
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(b) High income (no peg)
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(c) Middle income
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(d) Middle income (no peg)
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(e) Low income
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(f) Low income (no peg)

Note: These figures present subsets of the scatterplot in Figure 2 (b) by country income level. The classi-
fications of country income levels are based on the World Development Indicators database of the World
Bank. Income is measured using gross national income (GNI) per capita, in U.S. dollars, converted from
local currency using the World Bank Atlas method. The classifications of exchange rate regimes are based
on Shambaugh (2004) and Klein and Shambaugh (2008).
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Figure 5: Cross-country comparison of interest-rate smoothing (ρ̃) controlling real effective
exchange rate and federal funds rate
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(a) Controlling real effective exchange rate
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(b) Controlling federal funds rate

Note: Panel (a) and (b) report estimated ρ̃ for 40 sample countries, based on the equation (15) and (16),
respectively. Real effective exchange rate (RERt) data are CPI-based and drawn from IMF’s IFS dataset,
and the annualized federal funds rates (FFRt) are drawn from FRED dataset by the Federal Reserve Bank
of St. Louis. Panel (b) does not include the United States.

tion forecast is chosen to be one year. The scatter plots are reported in figure 5, and the
cross-country pattern is robust in both panels.

3 Theoretical Framework

The robust cross-country pattern–the higher data uncertainty, the higher weight on lagged
interest rate in the estimated Taylor rule–is further explored within a simple New Keyne-
sian framework. I introduce a model that describes the economy in which a central bank
minimizes its loss by choosing the monetary policy rule parameters. Three types of mon-
etary policies are considered: monetary policy under perfect information, naive monetary
policy, and monetary policy with learning.
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3.1 Model setup

The model is taken from Rudebusch and Svensson (1999) with some modifications. The
optimal policy rules are derived in a simple model of output and inflation:

πt = α0 + απ1πt−1 + απ2πt−2 + απ3πt−3 + απ4πt−4 + αyyt−1 + εt (17)

yt = β0 + βy1yt−1 + βy2yt−2 + βr(ιt−1 − πt−1) + ηt (18)

where πt is inflation rate, yt is output gap, it is interest rate, ιt = 1
4
Σ3
j=0it−j , and πt =

1
4
Σ3
j=0πt−j .

10 The central bank is assumed to minimize the variation in inflation around its
target π∗, in the output gap, and in changes in the interest rate. Expected loss equals the
weighted sum of unconditional variances,

E[Lt] = V ar[πt − π∗] + λyV ar[yt] + λiV ar[∆it] (19)

where ∆it = it − it−1, and the parameters λy ≥ 0 and λi ≥ 0 are the relative weights
on output stabilization and interest-rate smoothing, respectively, with respect to inflation
stabilization. The central bank has the forward-looking policy rule in the form of:

it = (1− ρ)(k + gππt+1|t + gyyt|t) + ρit−1, (20)

where πt+1|t and yt|t are the central bank’s forecast and inference on the future inflation,
πt+1, and the true output gap, yt, and chooses the optimal values for gπ, gy, and ρ. The
Taylor rule sets the interest rate in quarter t on the basis of real-time noisy indicators on
inflation, πnt , and output gap, ynt , which are defined as:

πnt = πt + nπt (21)

ynt = yt + nyt (22)

nπt and nyt are the contemporaneous measurement errors that plague the policymaker in
real time, with standard errors σnπ and σny, respectively, and uncorrelated with πt and yt.
The measurement errors, nπt and nyt , are modeled as first-order moving average (MA(1))
processes:

nπt = επt + θπεπt−1 (23)

10The model is in quarterly frequency.
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nyt = εyt + θyεyt−1 (24)

where επt and εyt are normally distributed with mean zero and variance σ2
επ and σ2

εy, respec-
tively.

Depending on the central bank’s information and policy type, I introduce three mone-
tary policy cases: perfect information and naive monetary policy as benchmark cases and
monetary policy with learning for the main analysis. For each monetary policy case, the
expectation on future inflation rate (πt+1|t) and the expectation on current GDP gap (yt|t)
differ, and these lead to different reactions of the central bank.

3.2 Perfect information

Under the assumption that the central bank always has perfect information (i.e., πt|t = πt

and yt|t = yt in equation (20)), optimal policy is described by:

it = (1− ρP )(k + gPπ Et[πt+1] + gPy yt) + ρP it−1 (25)

where Et[πt+1] is the rational expectation on πt+1 using all current and past perfect infor-
mation at time t. The central bank optimally chooses its response parameters, gPπ , gPy and
ρP , to minimize the loss function (equation (19)). These response parameters are invariant
to the magnitude of noise in the data because the central bank always observes and responds
to the true data.

3.3 Naive monetary policy

The policymaker may take the noisy indicators at face value without making any inference
about the true inflation rate and GDP gap (i.e., πt|t = πnt and yt|t = ynt in equation (20)).
The optimal policy is described by:

it = (1− ρN)(k + gNπ Et[πt+1] + gNy y
n
t ) + ρN it−1 (26)

where Et[πt+1] is the rational expectation on πt+1 using all available information at time t,
which can be derived from the Phillips curve (equation (17)) using current and past noisy
data.11 The central bank optimally chooses rule parameters, gNπ , gNy and ρN , such that

11At the time of decision, the central bank’s information set includes recent four quarters of noisy
indicators

{
πnt , π

n
t−1, π

n
t−2, π

n
t−3; ynt , y

n
t−1, y

n
t−2, y

n
t−3
}

and historical true data {πt−4, πt−5, . . . , πt−∞;
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minimize the loss function (equation (19)). Since the true data are not observable, the
central bank chooses different rule parameters as data become noisier.

3.4 Monetary policy with learning

Naive monetary control is efficient in the absence of noise but is inefficient when noise is
present in the data since the policymaker can reduce her loss using forecastable components
in the noise process. By implementing the Kalman filter, the central bank makes optimal
inferences on the inflation rate and GDP gap given available information.

Kalman filtering with noisy information

The model described in section (3.1) has a state-space representation,

Xt+1 = AXt +Bit + νt+1 (27)

The 10× 1 vector Xt of state variables, the 10× 10 matrix A, the 10× 1 column vector B,
and the 10× 1 column disturbance vector νt are given by

Xt =



1

πt

πt−1

πt−2

πt−3

yt

yt−1

it−1

it−2

it−3



, A =



1 0 0 0 0 0 0 0 0 0

α0 απ1 απ2 απ3 απ4 αy 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

β0 −βr/4 −βr/4 −βr/4 −βr/4 βy1 βy2 βr/4 βr/4 βr/4

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0



, B =



0

0

0

0

0

βr/4

0

1

0

0



, νt =



0

εt

0

0

0

ηt

0

0

0

0



The central bank’s observation equation is given as

Zt = CXt +wt (28)

where

Zt =

[
πnt

ynt

]
, C =

[
e2

e6

]
,wt =

[
nπt

nyt

]
,

yt−4, yt−5, . . . , yt−∞} assuming that the noisy indicators are revised and become true values after four quar-
ters.

19



and ej denotes a 1 × 10 row vector with element j equal to unity and all other elements
equal to zero. Zt is the observation vector which consists of noisy indicators, C is the
observation model which maps the true state space into the observed space, and wt is the
vector of observation noises.12

Optimal Kalman gain K (10× 2 matrix) and predicted error covariance Pt|t−1 (10× 10

matrix) are specified as

K = Pt|t−1C
T (CPt|t−1C

T + Vw)−1

Pt|t−1 = A(Pt|t−1 −KCPt|t−1)AT + Vν
(29)

where Vν (10×10 matrix) and Vw (2×2 matrix) are variance-covariance matrices of νt and
wt, respectively.

The central bank’s optimal inference Xt|t and forecast Xt+1|t are in recursive form as

Xt|t = Xt|t−1 +K(Zt − Zt|t−1)

= (I −KC)AXt−1|t−1 + (I −KC)Bit−1 +KZt
(30)

Xt+1|t = AXt|t +Bit (31)

where Xt|t−1 denotes predicted (a priori) state estimate and Zt − Zt|t−1 denotes innovation
(measurement pre-fit residual).13 In each period, by observing noisy data, the central bank
learn about the noise process and decide how much weight (K) will be placed on upcoming
noisy observation while the rest of the weight (I−K) will be placed on the prior inference.

Optimal monetary policy with learning

The central bank’s policy rule in equation (20) can be written as

it = (1− ρ)(k +GXt|t) + ρit−1 (32)

where

G =
[
gπ gy

] [e2A
e6

]
(33)

12Standard Kalman filter assumes zero-mean Gaussian white noise for wt. In this paper, I introduce an
auxiliary random process so thatwt follows MA(1) within the Kalman filter. Please refer to appendix (A) for
more details.

13Note that Zt|t−1 = CXt|t−1 and Xt|t−1 = AXt−1|t−1 +Bit−1.
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and ej denotes a 1 × 10 row vector with element j equal to unity and all other elements
equal to zero.14

The central bank optimally chooses response coefficients, gπ, gy and ρ, minimizing the
loss function (equation (19)) based on the central bank’s inferences (Xt|t).

4 Results

Using the model described above, I estimate the optimal monetary policy rule parameters,
gπ, gy and ρ, under the three information and policy cases. Then, I run reduced-form
Taylor rule regressions on simulated data, which are generated by the same model, using
the specification in section (2.1). I show that the optimal level of gradual adjustment (ρ)
derived from the model and the reduced-form estimate on the lagged interest rate (ρ̃) move
toward the opposite directions when the central bank faces more data uncertainty. I describe
the results and explain the underlying intuition in this section.

The model in the previous section is calibrated using the following parameters. The
parameters in Phillips and IS curves (equations (23) and (24)) are estimated in the data,
and the parameters in the loss function are assumed to be λy = 1 and λi = 0.5, as apprear
in Rudebusch and Svensson (1999).15 Later in this section, I consider the loss function
with λi = 0 in a purpose of muting the central bank’s cautious motive. The parameters in
MA(1) noise processes (equations (23) and (24)) are estimated for 40 sample countries in
the historical data, and, for example, they are θπ = 0.51 and θy = 0.58 in the United States.

4.1 Optimal monetary policy under data uncertainty

Depending on information and policy type, the central bank optimally responses to noise
in the data. The optimal rule parameters, gπ, gy and ρ, are estimated using the grid search
and reported in figure 6. The optimal responses and the associated loss under perfect
information, naive policy, and learning policy are described as solid lines, long-dashed
lines, and short-dashed lines, respectively.

Under the perfect information case, the central bank observes data without error and
responds to the true inflation rate and GDP gap. The optimal responses and loss are inde-

14Note that πt+1|t = e2Xt+1|t = e2(AXt|t +Bit) = e2AXt|t and yt|t = e6Xt|t.
15It is called a ”strict” inflation targeting if only inflation enters the loss function (λy = λi = 0). A

”flexible” inflation targeting allows other goal variables in the loss function. See Rudebusch and Svensson
(1999) for detailes.
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Figure 6: Optimal rule parameters and loss function subject to data uncertainty in US
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Note: Figure 6 reports the responses of optimal monetary policy rule parameters, gπ , gy and ρ, under
perfect information, naive monetary policy, and monetary policy with learning, to noise in the data. The
parameters are estimated with grid search.
The estimated parameters in Phillips and IS curves (equation (17) and (18)) are described as:

πt = 0.08
(0.09)

+ 0.67
(0.08)

πt−1 − 0.08
(0.10)

πt−2 + 0.29
(0.10)

πt−3 + 0.12
(0.08)

πt−4 + 0.15
(0.03)

yt−1 + εt, σεπ = 1.007

yt = 0.19
(0.10)

+ 1.17
(0.08)

yt−1 − 0.27
(0.08)

yt−2 − 0.09
(0.03)

(ιt−1 − πt−1) + ηt, σεy = 0.822

and the estimated parameters in MA(1) noise processes (equations (23) and (24)) are θπ = 0.51 and
θy = 0.58.
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pendent of data uncertainty. On the other hand, the central bank’s responses, gπ and gy,
under naive and learning policies generally decrease in data uncertainty. Panel (d) reports
that loss strictly increases in data uncertainty under both policy cases.

The optimal degree of gradual adjustment (ρ), which is the parameter of interest, in-
creases in data uncertainty under the naive policy and decreases in data uncertainty under
the learning policy, as described in panel (c). The optimal degree of gradual adjustment
(ρ) is determined by the tradeoff in the loss function, which consists of three components:
V ar[πt − π∗], V ar[yt], and V ar[∆it]. Each component varies over ρ, and the central
bank orchestrates the contribution of each component by choosing the optimal ρ that mini-
mize the loss function. Note that V ar[πt − π∗] and V ar[yt] increase in ρ, while V ar[∆it]
decreases in ρ.16 If λi = 0, which implies that the loss is independent of interest-rate
volatility, then the optimal ρ is zero regardless of data uncertainty in all three cases, be-
cause both V ar[πt − π∗] and V ar[yt] uniformly increase in ρ. If λi > 0, then the optimal
ρ is greater than or equal to zero, and it increases in data uncertainty under the naive policy
and decreases in data uncertainty under the learning policy.

The main reason why ρ moves differently under different policy case can be explained
with the relative contribution of V ar[∆it] to the loss: the relative contribution of V ar[∆it]
in the loss function increases in data uncertainty under the naive policy and decreases in
data uncertainty under the learning policy, as described in figure 7. Using the Taylor rule
in equation (32), V ar[∆it] can be written as

V ar[∆it] = V ar
[
[(1− ρ)(k +GXt|t) + ρit−1]− [(1− ρ)(k +GXt−1|t−1) + ρit−2]

]
= V ar

[
(1− ρ)(G∆Xt|t) + ρ∆it−1

]
(34)

where ∆Xt|t = Xt|t −Xt−1|t−1 and ∆it−1 = it−1 − it−2. Since V ar[∆it] = V ar[∆it−1] in
steady state,

V ar[∆it] =
1− ρ
1 + ρ

V ar(G∆Xt|t) +
2ρ

1 + ρ
Cov(G∆Xt|t,∆it−1) (35)

where 1−ρ
1+ρ

is a decreasing function and 2ρ
1+ρ

is an increasing function in ρ. Fixing ev-
erything else constant, V ar[∆it] decreases in ρ because V ar(G∆Xt|t) is positive and

16If ρ approaches to one, then the interest rate process becomes close to a unit root process, whose variance
diverges to infinity. Noting that πt and yt are functions of current and lagged interest rates in equation (17)
and (18), V ar[πt − π∗] and V ar[yt] increase in ρ. On the other hand, V ar[∆it] decreases in ρ since high ρ
reduces volatility in interest rates.
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Figure 7: Decomposition of the loss function

Note: These diagrams describe the shifts of V ar(∆it) subject to data uncertainty under naive policy and
learning policy, respectively, adjusting the scales. Higher data uncertainty increases the slope of V ar(∆it)
curve under the naive policy and decreases the slope of V ar(∆it) under the learning policy. The shape of
[V ar(πt − π∗) + V ar(yt)] curves relatively does not change much under both policies.

Cov(G∆Xt|t,∆it−1) is negative in the absence of noise.17 When the data become nois-
ier, V ar(G∆Xt|t) and Cov(G∆Xt|t,∆it−1) change differently under different policy.

Naive monetary policy

The optimal choice of ρ increases in data uncertainty because V ar[∆it] curve in the figure
7 becomes steeper due to the following reason. When there is data uncertainty, the central
bank’s responses, gπ and gy, become less useful since they are the responses not only to the
true inflation and GDP gap but also to the noise. If the central bank keeps ρ fixed, it causes
high fluctuations in interest rates resulting in greater V ar[∆it] in the loss function and a
steeper V ar[∆it] curve in the figure 7 (a). Therefore, the central bank raises ρ to stabilize
the interest rates.

An algebraic explanation is the following. Note that Xt|t = Zt under the naive policy,
then equation (35) becomes

V ar[∆it] =
1− ρ
1 + ρ

V ar(G∆Zt) +
2ρ

1 + ρ
Cov(G∆Zt,∆it−1) (36)

17For 0 ≤ ρ ≤ 1, 1−ρ
1+ρ is convex and monotone decreasing in ρ from 1 to 0, and 2ρ

1+ρ is concave and
monotone increasing in ρ from 0 to 1.
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V ar[∆it] curve in the figure 7 (a) becomes steeper as data uncertainty increases because:
(i) 1−ρ

1+ρ
decreases in ρ and V ar(G∆Zt) increases very much in noise; (ii) the second term,

2ρ
1+ρ

increases in ρ and Cov(G∆Zt,∆it−1) decreases in noise (from negative to further
negative), when evaluated at empirically relevant parameter values. The marginal benefit
of increasing ρ becomes large.

Monetary policy with learning

The optimal responses to the inflation rate and GDP gap are moderate under learning policy,
compared to those under the naive policy, because the central bank’s inferences on the true
data are more informative than noisy data. The loss is also smaller under the learning
policy. One interesting finding is that the optimal interest-rate smoothing parameter, ρ,
decreases in data uncertainty.

The central bank’s optimal choice of ρ decreases in data uncertainty because the learn-
ing process (i) can serve to effectively filter the noise, and (ii) tease out from the persistence
of the noise additional information about the true data. The learning process helps the cen-
tral bank to make decisions based on the much less noisy information. The second point
needs to be more discussed. The noise in the data is assumed to follow MA(1) process, and
the estimated θπ and θy are both positive in almost all countries in the sample, implying a
positive autocorrelation in the noise. A simple thought experiment helps in understanding
how the central bank learns the additional information from the persistent noise.

Let’s say there was a positive noise shock in the past period, then that means the optimal
policy in that period resulted in a higher interest rate than it would be under perfect infor-
mation. Due to a positive autocorrelation in the noise process, the chance of getting another
positive noise shock in the current period is more likely. If the central bank increases or
keeps ρ constant, then the interest rate in the current period will likely be higher than the
central bank wants because the interest rate in the past period is already high. Therefore,
the central bank reduces ρ.

The same logic applies to the other way. If there was a negative noise shock in the past
period, then that means the optimal policy in that period resulted in a lower interest rate
than it would be under perfect information. Due to a positive autocorrelation in the noise
process, the chance of getting another negative noise shock in the current period is more
likely. If the central bank increases or keeps ρ constant, then the interest rate in the current
period will likely be lower than the central bank wants because the interest rate in the past
period is already low. Therefore, the central bank reduces ρ. In both cases, the central bank
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can reduce interest rate volatility by lowering ρ.
This thought experiment can be supported by figure 8 (a). If noise is persistent, or

the noise process has a positive autocorrelation (θ > 0), then optimal ρ decreases in data
uncertainty. On the other hand, if noise is not persistent, or the noise process has a negative
autocorrelation (θ < 0), then optimal ρ increases in data uncertainty.18

As mentioned above, the optimal degree of gradual adjustment (ρ) is determined by
the tradeoff in the loss function. The central bank’s optimal choice of ρ decreases in data
uncertainty because V ar[∆it] curve in the figure 7 (b) becomes flatter as data uncertainty
increases. An algebraic explanation is the following.

Note that Xt|t under the learning policy is given in equation (30), then equation (35) is

V ar[∆it] =
1− ρ
1 + ρ

V ar(G∆Xt|t) +
2ρ

1 + ρ
Cov(G∆Xt|t,∆it−1) (37)

where
∆Xt|t = (I −KC)A∆Xt−1|t−1 + (I −KC)B∆it−1 +K∆Zt (38)

V ar[∆it] curve in the figure 7 (b) becomes flatter as noise increases because (i) 1−ρ
1+ρ

de-
creases in ρ and V ar(G∆Xt|t) increases little in noise; (ii) the second term, 2ρ

1+ρ
increases in

ρ and Cov(G∆Xt|t,∆it−1) increases very much in noise (from negative to positive), when
evaluated at empirically relevant parameter values. The marginal benefit of increasing ρ
becomes small.

Under the learning policy, V ar(G∆Xt|t) increases little in noise because the learning
process effectively filters the noise. The variance is not zero since, even if the learning pro-
cess is effective, it cannot completely eliminate the noise in the data. Cov(G∆Xt|t,∆it−1)

increases very much in noise because the learning process helps the central bank to gain
some information from the persistence in the noise. If noise is not persistent, or the noise
process has a negative autocorrelation (θ < 0), then this covariance decreases in noise,
same as in the naive policy case.

18When the noise is white noise (θ = 0), the optimal ρ decreases when data uncertainty is small because
the central bank is not sure if the shock is from the noise or from Phillips and IS curves. Note that Phillips
and IS curves have shock terms, εt and ηt, and their standard errors are 1.007 and 0.822, respectively, in
the United States. If data uncertainty is big enough, then the central bank believes that most of the shock is
coming from data uncertainty, rather than Phillips and IS curves, and the optimal ρ does not change.
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Figure 8: Optimal gradual adjustment (ρ) and ex-post interest-rate smoothing (ρ̃) with
varying signs of θ under learning policy
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Note: Panel (a) reports the estimated optimal gradual adjustment (ρ) under learning policy when θ is
positive, zero, and negative. Panel (b) reports the reduced-form estimate of interest-rate smoothing (ρ̃) for
each θ.

4.2 Ex-post estimates using simulated data

I run reduced-form Taylor rule regressions on simulated data from the model and show
that, when the central bank faces more data uncertainty, the reduced-form estimate on the
lagged interest rate (ρ̃) may move differently from the optimal level of gradual adjustment
(ρ) derived from the model.

Using the optimal responses described in the previous section, I simulate the model and
generate 100,000 observations (and the first 20,000 observations are dropped) given each
level of data uncertainty from 0 to 20. Using the simulated data, I replicate the empirical
finding that higher data uncertainty leads to more interest-rate smoothing (i.e., the greater
ρ̃) by estimating the reduced-form specification in section (2.1), that is

it = (1− ρ̃)[k + g̃πEtπt+1 + g̃yyt] + ρ̃it−1 + εt (39)

where the expected inflation rate, Etπt+1, is measured by the four quarter average inflation
rate in percent. The reduced-form estimates, g̃π, g̃y and ρ̃, are based on ex post observation,
and they are reported in figure (9).

Note that the central bank’s optimal inference Xt|t is correlated with it−1. Combining
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equation (30) and (32), the policy rule under the learning policy can be expressed as

it = (1− ρ)(k +G[(I −KC)AXt−1|t−1 + (I −KC)Bit−1 +KZt]) + ρit−1 (40)

and the reduced-form estimate on it−1 consists of not only ρ but also coefficients on the
correlating components in the central bank’s belief (let’s call it δ, then ρ̃ = ρ + δ). Figure
(9) reports responses of the reduced-form estimates, g̃π, g̃y and ρ̃, with regard to data
uncertainty.

Under the learning policy, the optimal level of gradual adjustment (ρ), calibrated in
the model, decreases in data uncertainty, as described in figure 6 (c). On the other hand,
the reduced-form estimate on the lagged interest rate (ρ̃) increases in data uncertainty.
This explains the intrinsic interest-rate smoothing in the literature: the higher the data
uncertainty, the greater the reduced-form estimate on the lagged interest rate. Interest-
rate smoothing is mostly a consequence of the learning process, rather than central banks’
cautious motive. Central banks’ real-time belief about true data is indistinguishable from
the cautious motive in ex-post data, both of which are largely picked up by the Taylor rule’s
reduced-form estimate on the lagged interest rate.

4.3 No-cautious-motive constraint

If the central bank has λi = 0, this implies no cautious motive (ρ = 0), and the monetary
policy rule with learning in equation (32) becomes:

it = k +GXt|t (41)

Under the additional restriction, the optimal rule parameters, gπ and gy, can be estimated
from the model, and the reduced-form estimates, g̃π, g̃y and ρ̃ in equation (39), can be
obtained from the simulated data. The estimation results are reported in figure 10. Panel
(a) reports the optimal responses of the rule parameters under the constraint, and panel (b)
reports the ex-post estimates of the rule parameters. Panel (c) reports the optimal level of
caution (ρ) and interest-rate smoothing parameter (ρ̃). Panel (d) reports the loss under each
monetary policy given the additional constraint.

Since there is no cautious motive (λi = 0), ρ becomes zero, and interest-rate smoothing
(ρ̃) is completely induced by the learning process (ρ̃ = δ). The reduced-form estimate on
the lagged interest rate (ρ̃) increases in data uncertainty even though the central bank does
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Figure 9: Reduced-form estimates on ex-post rule parameters using simulated data
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Note: Figure 9 reports reduced-form estimates of the Taylor rule (equation (39)) based on simulated data
from the model. Estimated g̃π , g̃y and ρ̃ are reported under perfect information, naive monetary policy,
and monetary policy with learning.
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not conduct gradual adjustment (i.e., ρ = 0). A positive estimate on lagged interest rate
does not necessarily mean that the central bank gradually adjusts the interest rates.

I show interest-rate smoothing (ρ̃) to exist and increase in the level of data uncertainty
even if central banks’ cautious motive is muted by excluding the variance of changes in
interest rates from the loss function. Interest-rate smoothing (ρ̃) can be fully endogenized in
the model by the learning process (δ) when there is no cautious motive. If the central bank
has some caution, then interest-rate smoothing (ρ̃) can be decomposed into the learning
process (δ) and gradual adjustment (ρ).

4.4 Cross-country anlysis

Country-specific data uncertainty parameters {σnπ, σny, θπ, θy} are estimated from the his-
torical WEO data. Each country has different level and relative composition of σnπ and
σny, and the levels of noise persistence, θπ and θy, also differ across countries. Given data
uncertainty in each country, the model is calibrated to estimate the optimal level of gradual
adjustment parameter (ρ) and its ex-post reduced-form estimate (ρ̃) under the naive and
learning policy, and these are reported in figure 11.

Panel (a) and (b) show that, under the naive policy, both ρ and ρ̃ increase in data
uncertainty. On the other hand, panel (c) and (d) show that, under the learning policy, ρ and
ρ̃ move differently — ρ decreases in data uncertainty and ρ̃ increases in data uncertainty.
Given that the learning model described in this paper is relatively simple compared to the
efforts and investment in central banks, panel (d) is most likely the cross-country pattern
that we observe in figure 2 (b).19

4.5 Policy implications

We can think about how central banks can improve their monetary policy under data uncer-
tainty. There are two approaches we can think of: improving learning ability and improv-
ing data quality. This research provides a framework that helps analyzing these competing
options. We consider two benchmark cases in addition to the learning policy. First, cen-
tral bank always observes perfect information. Second, central bank observes noisy data
and naively take the face value without making any inference. We compare the welfare

19The limitation of this practice is that I use the same model to estimate ρ and ρ̃ for all sample countries.
Estimating the Phillips and IS curves for each country requires further discussions, and it is left for future
study.
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Figure 10: Optimal responses and ex-post estimates under learning muting cautious motive
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Note: Figure 10 reports the optimal responses and ex-post estimates of the Taylor rule when central bank’s
cautious motive is muted (λi = 0). The loss function does not include the variance of the changes in
interest rates, and this leads ρ become zero. Panel (a) reports optimal monetary policy rule parameters, gπ
and gy , under monetary policy with learning. The parameters are estimated with grid search. Panel (b)
reports reduced-form estimates of the Taylor rule (equation (39)) based on simulated data from the model.
Estimated g̃π and g̃y are reported under monetary policy with learning. Panel (c) reports ρ and ρ̃ under
monetary policy with learning.
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Figure 11: Cross-country estimates and optimal parameters under naive and learning policy
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Note: Country-specific data uncertainty parameters {σnπ, σny, θπ, θy} are estimated from the historical
WEO data, and the same model is calibrated for each country. Country-specific level of persistence in the
noise and ratio in data uncertainty are allowed.
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loss under the learning policy and the naive policy at different levels of data uncertainty
and demonstrate that learning policy is always better than the naive policy.20 The gain
from learning is increasing and convex in data uncertainty. Given the cost information
of each option, we can conduct a cost-benefit analysis and decide which option is more
cost-effective.

5 Conclusion

The conventional belief about the relationship between the level of data uncertainty and
interest-rate smoothing has been re-examined. The cross-country comparison of coeffi-
cients on the lagged interest rate supports the conventional belief, and I could replicate this
with an appropriate calibration of the Rudebusch and Svensson (1999) model. However,
the interest-rate smoothing is present in the reduced-form estimation of the Taylor rule, not
because central banks gradually adjust the interest rates nor central banks are more cautious
in the face of data uncertainty, but because the reduced-form estimates are obtained with
ex-post data, in which the central banks’ beliefs are not distinguishable, and because the
central banks’ inference about the true data is correlated with past interest rates.

This paper distinguishes between interest-rate smoothing and central banks’ gradual
interest-rate adjustment and demonstrates that the two may not move together. Whereas the
conventional view in the literature considers interest-rate smoothing as evidence of central
banks’ cautious and gradual adjustment, I show that central banks’ gradual interest-rate
adjustment is directly induced by central banks’ preference to avoid interest-rate surprises,
that is, the variance of the changes in interest rates in the loss function.

This paper endogenizes interest-rate smoothing as a result of the central banks’ learning
process. I show that interest-rate smoothing exists and increases with data uncertainty, even
if central banks’ cautious motive is completely muted, by taking out the variance of the
changes in interest rates from the loss function. Much of interest-rate smoothing comes
from the learning process, and it can be fully endogenized by the cautious motive and the
learning process in the model.

20See loss functions in figure 6 (d) and figure 10 (d).
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Appendices

A Kalman filter with MA(1) noises

Standard Kalman filter assumes zero mean Gaussian white noise for wt. In this paper, I
introduce an auxiliary random process so thatwt follows MA(1) within the Kalman filter.21

The MA(1) noise defined in equations (23) and (24) is equivalent to the following:[
wt

φt

]
=

[
02,2 θ

02,2 02,2

][
wt−1

φt−1

]
+

[
ξt

ξt

]
(42)

where

φt =

[
φπt

φyt

]
,θ =

[
θπ 0

0 θy

]
, ξt =

[
επt

εyt

]
.

φt is the auxiliary vector to transfer past white noise to current period, θ is the matrix of
MA(1) parameters, and ξt is the vector of white noises. The upper block (wt = θφt−1+ξt)
and the lower block (φt = ξt) together produce wt = ξt + θξt−1.

Given the noise formulation (42), an equivalent to state-space (27) and (28) with MA(1)
observation noise can be proposed:Xt+1

wt+1

φt+1

 =

 A 010,2 010,2

02,10 02,2 θ

02,10 02,2 02,2


Xt

wt

φt

+

 B

02,1

02,1

 it +

νt+1

ξt+1

ξt+1

 (43)

Zt =
[
C I2,2 02,2

]Xt

wt

φt

 (44)

Therefore, we can rewrite the equation (27) and (28) as

X ′t+1 = A′X ′t +B′it + ν ′t+1 (45)

Z ′t = C ′X ′t (46)

21Please refer to Geist and Pietquin (2011) for more detailed explanations on autoregressive and moving-
average noise in Kalman filter.
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where

X ′t =

Xt

wt

φt

 , A′ =
 A 010,2 010,2

02,10 02,2 θ

02,10 02,2 02,2

B′ =
 B

02,1

02,1

 ,ν ′t =

νtξt
ξt

 , C ′ =
 C

I2,2

02,2


T

Optimal Kalman gain K ′ (14 × 2 matrix) and predicted estimate covariance P ′t|t−1
(14× 14 matrix) are specified as

K ′ = P ′t|t−1C
′T (C ′P ′t|t−1C

′T )−1

P ′t|t−1 = A′(P ′t|t−1 −K ′C ′P ′t|t−1)A′T + V ′ν
(47)

where V ′ν (14× 14 matrix) is variance-covariance matrices of ν ′t.
The central bank’s optimal inference X ′t|t and forecast X ′t+1|t are in recursive form as

X ′t|t = A′X ′t−1|t−1 +B′it−1 +K ′(Z ′t − Z ′t|t−1)

= (I −K ′C ′)A′X ′t−1|t−1 + (I −K ′C ′)B′it−1 +K ′Z ′t
(48)

X ′t+1|t = A′X ′t|t +B′it (49)

and the estimated values of X ′t|t and X ′t+1|t are entered as Xt|t and Xt+1|t in equation (30)
and (31) after eliminating the auxiliary variables.
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B Additional Tables and Figures

Table 1: Example of historical WEO data (United States)

WEO Releases (Real GDP Growth)
S1990 F1990 S1991 F1991 S1992 F1992

1988 4.06 4.08 . . . .
1989 2.99 2.96 3.26 3.31 . .
1990 2.27 1.98 2.08 2.20 2.19 2.26
1991 3.09 2.44 1.19 0.86 -0.33 0.15
1992 3.30 3.42 2.93 2.79 1.42 1.10
1993 3.33 3.45 3.42 3.36 3.57 3.14
1994 3.32 3.42 3.46 3.41 3.75 3.55
1995 3.34 3.40 3.39 3.29 3.77 3.73
1996 . . 3.39 3.29 3.62 3.74
1997 . . . . 3.57 3.67

WEO Releases (CPI Inflation)
S1990 F1990 S1991 F1991 S1992 F1992

1988 4.09 4.07 . . . .
1989 4.80 4.77 4.82 4.82 . .
1990 4.56 5.08 5.28 5.40 5.41 5.40
1991 4.19 4.51 4.90 4.53 4.23 4.28
1992 4.20 4.20 4.00 4.05 3.11 3.11
1993 4.20 4.20 3.90 3.80 3.07 3.13
1994 4.20 4.20 3.70 3.60 3.00 3.00
1995 4.20 4.20 3.60 3.40 2.90 2.90
1996 . . 3.50 3.30 2.75 2.80
1997 . . . . 2.60 2.80

Note: This example includes the WEO issues from Spring 1990 to
Fall 1992. Values are in percentage change from previous years.
Sample data span from Spring 1990 to Fall 2008 for each country.
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Figure 12: Data uncertainty in CPI and GDP countries (raw standard deviation)
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Note: Raw standard deviations are reported for data revisions in CPI inflation
and GDP growth. On the contrary, figure 2 (a) reports standard errors implied
by MA(1) noise process. Both provide the comparatively similar amount of
data revisions with minor differences in magnitude.

Figure 13: Cross-country comparison of interest-rate smoothing (product measure)
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Figure 14: Loss decomposition (absolute contributions)

0
10

20
30

40
50

60

0 .2 .4 .6 .8 1
Gradual adjustment (ρ)

Loss Var(πt̅-π*)+Var(yt)
Var(∆it)

(a) No Noise: Contributions in level (σnπ+σny=0)
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(b) Naive: Contributions in level (σnπ+σny=10)
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(c) Learning: Contributions in level (σnπ+σny=10)

Note: Figure 14 reports the loss decomposition under different monetary policy and level of data uncer-
tainty. It shows the contribution of V ar[πt−π∗]+V ar[yt] and V ar[∆it] in levels and their associated loss
with regard to the degree of gradual adjustment (ρ). Note that V ar[πt − π∗] and V ar[yt] increase in ρ and
V ar[∆it] decreases in ρ. V ar[πt − π∗] and V ar[yt] diverge to infinity if ρ is close to 1. Panel (a) reports
those when there is no data uncertainty, and they are same under both monetary polices. Panel (b) reports
those in face of data uncertainty ((σnπ + σny) = 10) under naive policy, and panel (c) reports those in face
of data uncertainty ((σnπ + σny) = 10) under learning policy. V ar[∆it] curve becomes much steeper in
the face of data uncertainty under naive policy. V ar[∆it] curve becomes relatively flatter in the face of
data uncertainty under learning policy. Figure 15 reports the relative contributions of each loss components
for a better obseration of the change in V ar[∆it] from panel (a) to (c). Figure 7 provides diagrams that
summurize these changes.
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Figure 15: Loss decomposition (relative contributions)
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Figure 15 reports the relative contributions of each loss components for a
better observation of the change in V ar[∆it] under naive and learning poli-
cies. The relative contribution curve of V ar[∆it] becomes much steeper in
the face of data uncertainty under the naive policy and flatter in the face of
data uncertainty under the learning policy.
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