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1. Introduction

The use of an instrumental variable (IV) is a popular solution to deal with endogeneity

in social sciences. However, this approach may yield misleading conclusions when the in-

strument is invalid. A valid instrument must be uncorrelated with the unobservables in the

model.1 This requirement is often difficult to justify, and may call into question empirical

findings. For this reason, Nevo and Rosen (2012) derived bounds on the parameters of inter-

est (e.g., the average treatment effect) in parametric models under weaker conditions. They

first assume that the sign of correlation between the imperfect IV (IIV)2 and the unobserved

latent variables is the same as that of the correlation between the endogenous variable and

the latent variables. Second, they add the assumption that the correlation between the IIV

and the latent variables is less than the correlation between the endogenous variable and

the latent variables to tighten the bounds on the parameters of interest.

In this paper, we derive nonparametric bounds on the average treatment effect with an

imperfect IV under the above assumptions when the outcome variable has bounded sup-

port. We introduce the concept of binarized MTS-MIV, which is implied by the monotone

treatment selection (MTS) and monotone IV (MIV) assumptions developed by Manski and

Pepper (2000, 2009). We show that the correlation between a binarized MTS-MIV and the

unobserved latent variables has the same sign as the correlation between the endogenous

variable and the latent variables. Hence, we link the Nevo and Rosen (2012) same direction

of correlation assumption to the Manski and Pepper (2000) monotone treatment selection

and monotone IV assumptions. We also introduce the concept of comonotone instrumental

variable, which satisfies Nevo and Rosen’s (2012) assumption. We believe these results are

new in the literature. Furthermore, we show how additional restrictions such as the less

endogenous instrument, the monotone treatment response, and the Roy selection can help

tighten the bounds. As in Nevo and Rosen (2012), the bounds take the form of intersection

bounds and can be implemented using the inferential methods developed by Chernozhukov,

Lee, and Rosen (2013) or Andrews and Shi (2013). We illustrate our methodology using

the National Longitudinal Survey of Young Men (NLSYM) data to estimate returns to

schooling.

There is an increasing interest in the identification of causal effects with imperfect instru-

mental variables. Recently, Masten and Poirier (2020) developed a methodology that allows

1A stronger version of this condition is that the instrument is statistically (or mean) independent of the

unobservables.
2An instrument that is potentially correlated with the unobservables.
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researchers to consider continuous relaxations of the IV models when they are refuted by

the data. Their approach is data driven as it exploits the extent of falsification of the model

to construct the identified set for the parameter of interest. Although their method helps

save some invalid IVs, their identifying assumptions may seem difficult to interpret. Our

approach, as well as that of Nevo and Rosen (2012) and Manski and Pepper (2000, 2009), is

not data driven and has clearer interpretations of the identifying assumptions. This paper

also relates to the work of Kédagni, Li, and Mourifié (2018), who consider weaker version of

the mean independence assumption for the IV model. They derived nonparametric bounds

on the average treatment effect under unconditional moment restrictions for the IV. Several

other papers have also studied identification of model parameters when the IV is invalid us-

ing a framework different from ours, see Hotz, Mullin, and Sanders (1997), Conley, Hansen,

and Rossi (2012), among others.

The remainder of the paper is organized as follows. Section 2 presents the model, the

assumptions and their link with the literature. In Section 3, we derive our main identification

results. We discuss inference and implementation in Section 4. Section 5 presents an

empirical illustration of our proposed methodology, while Section 6 concludes. Proofs and

additional results are relegated to the appendix.

2. Analytical Framework

Consider the following potential outcome model (POM)

Y =
T∑
d=1

Yd1 {D = d} , (2.1)

where Y is the outcome variable taking values in Y ⊂ R, D is a discrete endogenous

treatment variable taking values in D = {1, 2, . . . , T}, Yd is the potential outcome that

would have been observed if the treatment D had externally been set to d. Let Z ∈ Z ⊆ R+

be an imperfect IV in the sense that it may be correlated with the potential outcome Yd.

In what follows, we assume that the random variable Yd is integrable, i.e., E[Yd] <∞. The

objects of interest in this paper are the potential outcome means θd ≡ E[Yd], for all d ∈ D,

and some treatment effects ATE(d, d′) ≡ θd− θd′ , for d, d′ ∈ D. We allow for heterogeneous

treatment effects, so that ATE(d, d′) may vary across (d, d′). The methodology that we

develop in this paper can also be used to identify other commonly used parameters of

interest such as the average treatment effect on the treated ATT (d, d′) ≡ E[Yd−Yd′ |D = d],
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and the average treatment effect on the untreated ATU(d, d′) ≡ E[Yd − Yd′ |D = d′]. But,

for the sake of clarity of the exposition, we focus our attention on the ATE.

We observe a random sample of the vector (Y,D,Z). For simplicity, we drop exogenous

covariates from the analysis. For example, Y could be earnings, D years of schooling, and

Z parental education. In this example, Yd is the potential earnings for an individual with

d years of schooling. We now state our main identifying assumptions:

Assumption 1 (Bounded support (BoS)). Supp(Yd|D 6= d) = Supp(Yd|D = d) =
[
y
d
, yd

]
.

Assumption BoS states that the support of the counterfactual outcome is the same as

that of the factual. It is standard and similar to the usual bounded outcome assumption

considered in Manski (1990, 1994), and many other papers. Like in Kédagni, Li, and

Mourifié (2018), it does not require the support of the potential outcome Yd to be uniform

across all treatment levels d.

Assumption 2 (Same direction of correlation (SDC)). Cov (Yd, D)Cov (Yd, Z) ≥ 0.

Assumption SDC is equivalent to Assumption 3 in Nevo and Rosen (2012). It states that

the correlation between the imperfect instrument Z and the potential outcome Yd has weakly

the same sign as the correlation between the endogenous treatment D and the potential

outcome. For example, it is documented that parental education is not a valid instrument,

see Kédagni and Mourifié (2020), Mourifié, Henry, and Méango (2020), among many others.

However, one could assume that parental education has the same sign of correlation with

the potential earnings as does the individual’s education. Note that if either the treatment

D or the instrument Z is exogenous, this assumption holds. When Assumption BoS holds

(the researcher can check this), Assumption SDC has a testable implication. Indeed, when

BoS holds and the identified set for θd is empty, then SDC is rejected.

Assumption SDC is a weaker version of the concepts of monotone IV (MIV: E [Yd|Z = z]

is monotone in z) and monotone treatment selection (MTS: E [Yd|D = `] is monotone in

`) developed by Manski and Pepper (2000, 2009). To show this result, we introduce the

concept of binarized MTS-MIV that is intermediate between SDC and MTS-MIV. We use

the following notation.

Notation 1. Denote g+
d (j) = E[Yd|D ≥ j], g−d (j) = E[Yd|D < j], h+

d (z) = E[Yd|Z ≥ z],

h−d (z) = E[Yd|Z < z]. ρUV denotes the coefficient of correlation between two random

variables U and V .
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Definition 1. The variable Z is a binarized MTS-MIV for D if for each d ∈ D,(
g+
d (j)− g−d (j)

) (
h+
d (z)− h−d (z)

)
≥ 0 for all j, z. (2.2)

In words, we say that Z is a binarized MTS-MIV for D if all binarized treatments

1{D ≥ j} satisfy the MTS restriction, and all binarized instruments 1{Z ≥ z} satisfy the

MIV restriction.

Remark 1. If Z is a binarized MTS-MIV for D then the functions g+
d and g−d do not

overlap, nor do the functions h+
d and h−d for all d. Moreover, if g+

d ≥ g−d for some d then

h+
d ≥ h

−
d , and vice versa.

Lemma 1 shows that MTS-MIV is a sufficient condition for binarized MTS-MIV, while

Lemma 2 shows that binarized MTS-MIV is a sufficient condition for SDC.

Lemma 1. MTS-MIV in the same direction for D and Z implies that Z is a binarized

MTS-MIV for D.

Lemma 2. If Z is a binarized MTS-MIV for D, then Assumption SDC holds.

Remark 2. From Lemmas 1 and 2, we conclude that MTS-MIV in the same direction im-

plies Assumption SDC. Moreover, when both the treatment D and the imperfect instrument

Z are binary, MTS-MIV in the same direction, binarized MTS-MIV and SDC are equiva-

lent.

Definition 2. Let (Ω,F) be a measurable space. Two random variables X1 and X2 defined

on Ω are said to be comonotonic if(
X1(ω)−X1(ω′)

) (
X2(ω)−X2(ω′)

)
≥ 0 for all ω, ω′ ∈ Ω. (2.3)

Definition 3. The variable Z is said to be a comonotone instrumental variable (CoMIV)

for the treatment D if Z and D are comonotonic.

To better understand the CoMIV concept, we provide some sufficient conditions for it in

the following lemma.

Lemma 3. The following results hold.
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(1) If D is a deterministic increasing function of Z (or vice versa), then Z is a CoMIV

for D.

(2) Suppose D = h(Z, V ), where h is increasing in both of its arguments, and V repre-

sents unobserved heterogeneity. If Z and V are comonotonic, then Z is a CoMIV

for D.

For example, when D = 2Z + V and Z = eV , Z is a CoMIV for D.

The following lemma provides another sufficient condition for the SDC assumption. It

shows that the SDC assumption can be satisfied as a form of comonotonicity between the

treatment D and the imperfect instrument Z with respect to the potential outcome Yd.

Lemma 4. If Z is a CoMIV for D, then Assumption SDC holds.

At this point, we have shown that the Manski and Pepper (2000, 2009) MTS-MIV as-

sumption and the comonotonicity of Z and D are two sufficient conditions for Nevo and

Rosen’s (2012) SDC assumption. However, comonotonicity of Z and D does not imply

MTS-MIV. The following example shows a case where Z and D are comonotonic, but fail

to satisfy the MTS-MIV restrictions. In Appendix D, we show by Example 3 that MTS-MIV

(or binarized MTS-MIV) does not imply CoMIV either. Furthermore, Example 5 shows that

CoMIV does not imply binarized MTS-MIV. See the appendix for more examples.

Example 1. Consider the following data generating process (DGP)
Y = 2D + U

D = 0 · 1 {V ∈ [0, 1]}+ 1 · 1
{
V ∈ (1, 3

2 ]
}

+ 2 · 1
{
V ∈ (3

2 , 5]
}

Z = 2D

U = 4V 1 {V ∈ [1, 2]}+ V 1 {V /∈ [1, 2]}

(2.4)

where V ∼ U[0,5]. This example illustrates a case where MTS and MIV fail to hold, but

binarized MTS-MIV holds, and D and Z are comonotonic, suggesting that MTS-MIV and

CoMIV are two different sufficient conditions for the SDC assumption.

First, note that Z is a CoMIV for D by (1) of Lemma 3 since Z = 2D. However, it

can be shown that the conditional expectation function E [Yd|D = `] in the given DGP is

not monotone in ` for each d = 0, 1, 2, implying that MTS fails. Likewise, the conditional

expectation function E [Yd|Z = z] is not monotone in z for each d = 0, 1, 2, which implies

that MIV is violated. Figure 1 illustrates these facts for the case d = 1. On the other hand,
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Figure 1. Numerical illustration of a violation of MTS and MIV

Figure 2 shows that the same DGP satisfies the binarized MTS-MIV restriction (2.2), and

accordingly the SDC assumption by Lemma 1, as the function g+
d is always greater than the

function g−d , and the function h+
d is always greater than the function h−d for all d.

Assumption 3 (Less endogenous instrument (LEI)). | ρYdD |≥| ρYdZ |.

Assumption LEI is the same as Assumption 4 in Nevo and Rosen (2012). It states that the

imperfect instrument Z is less correlated with the potential outcome than is the endogenous

treatment D. In the context of our empirical example, it reasonable to assume that parental

education is less correlated with the individual’s potential wage than is the individual’s own

education.

Assumption 4 (Monotone treatment response (MTR)). Yd ≥ Yd′ for all d > d′.

Assumption MTR states that the potential outcome weakly increases with the level of

the treatment. It was introduced by Manski (1997), and considered in Manski and Pepper

(2000, 2009), among many others. For instance, in the returns to schooling example, it

implies that the wage that a worker earns weakly increases as a function of the worker’s

years of schooling. We show how this assumption can help tighten the bounds derived under

Assumptions BoS, SDC and LEI.

Assumption 5 (Roy Selection (RS)). {D = d} ⇐⇒ {Yd > Yd′ for all d′ 6= d}.

Assumption RS states that agents choose the level of treatment that maximizes their

potential outcome. This version of Roy selection implicitly assumes that agents have perfect
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Figure 2. Numerical illustration of binarized MTS-MIV

foresight. This assumption is inspired from the seminal work of Roy (1951) and has been

considered in many papers. Like the MTR assumption, Assumption RS also helps tighten

the bounds derived under Assumptions BoS, SDC and LEI. Note that Assumption RS is

not compatible with the MTS and MTR assumptions, while Assumption SDC is.
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Now that we have discussed the model and our identifying assumptions, we are going to

present our main identification results.

3. Identification results

3.1. Identification under the same direction of correlation assumption. Assump-

tion SDC is equivalent to E
[
YdD̃

]
E
[
YdZ̃

]
≥ 0, where D̃ ≡ D − E[D] and Z̃ ≡ Z − E[Z],

which in turn is equivalent to: either

E
[
YdD̃

]
≥ 0, (3.1)

E
[
YdZ̃

]
≥ 0, (3.2)

or

E
[
YdD̃

]
≤ 0, (3.3)

E
[
YdZ̃

]
≤ 0. (3.4)

We first derive bounds on the potential outcome mean θd using inequality (3.1). Similarly,

we can derive the bounds implied by inequalities (3.2), (3.3), and (3.4). Inequality (3.1)

implies that, for any λ ≥ 0, we have the following inequalities

E
[
YdλD̃

]
≥ 0 and E

[
−YdλD̃

]
≤ 0,

which respectively imply

E
[
YdαD̃

]
≥ 0 and E

[
−YdαD̃

]
≤ 0,

where α = λ
1+λ ∈ [0, 1). The latter inequalities are respectively equivalent to:3

E
[
Yd

(
1 + αD̃

)]
≥ E[Yd] ≡ θd and E

[
Yd

(
1− αD̃

)]
≤ E[Yd] ≡ θd,

which we rewrite using the identity 1 {D = d}+ 1 {D 6= d} = 1 as

E
[
Y
(

1 + αD̃
)
1 {D = d}+ Yd

(
1 + αD̃

)
1 {D 6= d}

]
≥ θd, (3.5)

E
[
Y
(

1− αD̃
)
1 {D = d}+ Yd

(
1− αD̃

)
1 {D 6= d}

]
≤ θd, (3.6)

3In the case where the ATT/ATU is our parameter of interest, we would bound θd|d′ ≡ E[Yd|D = d′] =
E[Yd1{D=d′}]
E[1{D=d′}] . In such a case, we will equivalently write these inequalities as:

E
[
Yd

(
1{D = d′}+ αD̃

)]
≥ E[Yd1{D = d′}] and E

[
Yd

(
1{D = d′} − αD̃

)]
≤ E[Yd1{D = d′}],

and use the same technique we develop in this paper.
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respectively, given that Y = Yd when D = d. Now, using Assumption BoS, we can bound

the counterfactuals Yd
(
1 + αD̃

)
1 {D 6= d} and Yd

(
1− αD̃

)
1 {D 6= d} as follows:

Yd

(
1 + αD̃

)
1 {D 6= d} ≤ max

{
y
d

(
1 + αD̃

)
, yd

(
1 + αD̃

)}
1 {D 6= d}

Yd

(
1− αD̃

)
1 {D 6= d} ≥ min

{
y
d

(
1− αD̃

)
, yd

(
1− αD̃

)}
1 {D 6= d} .

Therefore, using inequalities (3.5) and (3.6), it follows that

E
[
fd

(
Y,D, 1 + αD̃

) ]
≥ θd and E

[
f
d

(
Y,D, 1− αD̃

) ]
≤ θd

for any α ∈ [0, 1), where we define the function f
d

and fd as

f
d

(Y,D, δ) ≡ 1 {D = d} δY + 1 {D 6= d}min
{
δy
d
, δyd

}
fd (Y,D, δ) ≡ 1 {D = d} δY + 1 {D 6= d}max

{
δy
d
, δyd

}
.

We can then take the supremum and the infimum of the lower and upper bounds over α,

respectively, to obtain the following bounds for θd:

IdSDC1 ≡

[
sup

α∈[0,1)
E
[
f
d

(
Y,D, 1− αD̃

) ]
, inf
α∈[0,1)

E
[
fd

(
Y,D, 1 + αD̃

) ]]
.

Similarly, using inequalities (3.2), (3.3), and (3.4), we derive the following bounds for θd:

IdSDC2 ≡

[
sup

α∈[0,1)
E
[
f
d

(
Y,D, 1− αZ̃

) ]
, inf
α∈[0,1)

E
[
fd

(
Y,D, 1 + αZ̃

) ]]
,

IdSDC3 ≡

[
sup

α∈[0,1)
E
[
f
d

(
Y,D, 1 + αD̃

) ]
, inf
α∈[0,1)

E
[
fd

(
Y,D, 1− αD̃

) ]]
,

IdSDC4 ≡

[
sup

α∈[0,1)
E
[
f
d

(
Y,D, 1 + αZ̃

) ]
, inf
α∈[0,1)

E
[
fd

(
Y,D, 1− αZ̃

) ]]
,

respectively. All these results are summarized in the following proposition.

Proposition 1. Under Assumptions BoS and SDC, the identification region for the param-

eter θd is:

IdSDC ≡
(
IdSDC1 ∩ IdSDC2

)
∪
(
IdSDC3 ∩ IdSDC4

)
.

Proposition 1 provides two-sided bounds on the potential outcome means, and then on the

average treatment effects, which mainly relies on the bounded outcome assumption. While

Nevo and Rosen (2012) can provide two-sided bounds under some circumstances, they

usually get one-sided bounds. We relax the parametric linear assumption at the expense
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of the bounded support assumption. In light of the following statement from the fourth

paragraph of Section VI in Nevo and Rosen (2012) “. . . However, with a nonparametric

functional, it is doubtful that our assumptions on the correlations of endogenous regressors

and imperfect instruments with econometric errors would prove anywhere near as fruitful,”

we believe that the result of Proposition 1 makes a positive contribution to the literature.

Remark 3. The bounds derived in Proposition 1 may not be sharp. For example, Equa-

tions (3.1) and (3.2) imply: for all (λ, γ) ∈ R2
+, we have

E
[
Yd

(
λD̃ + γZ̃

)]
≥ 0, and E

[
Yd

(
−λD̃ − γZ̃

)]
≤ 0.

Likewise, Equations (3.3) and (3.4) imply: for all (λ, γ) ∈ R2
+, we have

E
[
Yd

(
λD̃ + γZ̃

)]
≤ 0, and E

[
Yd

(
−λD̃ − γZ̃

)]
≥ 0.

The bounds derived from these conditions could be tighter than the identification region in

Proposition 1, but our simulation and empirical results suggest that they are generally wider.

3.2. Adding the less endogenous instrument assumption. In this subsection, we

combine Assumptions SDC and LEI in order to get tighter bounds on the parameter θd.

Assumption LEI is equivalent to |E[YdD̃]
σD
| ≥ |E[YdZ̃]

σZ
|. Hence, Assumptions LEI and SDC

imply that either of the followings is always true:

E
[
YdD̃

]
σD

≥
E
[
YdZ̃

]
σZ

≥ 0 or
E
[
YdD̃

]
σD

≤
E
[
YdZ̃

]
σZ

≤ 0.

Differently, we can rewrite these inequalities as either

E
[
Yd

(
D̃σZ − Z̃σD

)]
≥ 0 and E

[
YdZ̃

]
≥ 0 (3.7)

or

E
[
Yd

(
D̃σZ − Z̃σD

)]
≤ 0 and E

[
YdZ̃

]
≤ 0. (3.8)

We first note that each of the second inequalities from (3.7) and (3.8) is the same as (3.2)

and (3.4), implying the bounds IdSDC2 and IdSDC4 for θd, respectively. Second, using a similar

reasoning as in the previous subsection, and replacing Z̃ by
(
D̃σZ − Z̃σD

)
, we obtain the

following bounds for θd from each of the first inequalities of (3.7) and (3.8), respectively:
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θd ∈

[
sup

α∈[0,1)
E
[
f
d

(
Y,D, 1− α

(
D̃σZ − Z̃σD

)) ]
,

inf
α∈[0,1)

E
[
fd

(
Y,D, 1 + α

(
D̃σZ − Z̃σD

)) ]]
≡ IdLEI1

θd ∈

[
sup

α∈[0,1)
E
[
f
d

(
Y,D, 1 + α

(
D̃σZ − Z̃σD

)) ]
,

inf
α∈[0,1)

E
[
fd

(
Y,D, 1− α

(
D̃σZ − Z̃σD

)) ]]
≡ IdLEI2

Thus, the following proposition holds.

Proposition 2. Under Assumptions BoS, SDC and LEI, the identification region for the

parameter θd is:

IdLEI ≡
(
IdLEI1 ∩ IdSDC2

)
∪
(
IdLEI2 ∩ IdSDC4

)
.

Remark 4. When the less endogenous instrument assumption LEI is redundant, the identi-

fied sets IdSDC and IdLEI will be identical. Otherwise, IdLEI will be tighter than IdSDC .

3.3. Adding the monotone treatment response assumption. In this subsection, we

derive bounds on the potential outcome mean θd under Assumptions BoS, SDC, LEI, and

MTR . Under Assumption MTR we have

Yd1 {D > d} = Yd

T∑
j=d+1

1 {D = j} =
T∑

j=d+1

Yd1 {D = j}

≤
T∑

j=d+1

Y 1 {D = j} = Y

T∑
j=d+1

1 {D = j} = Y 1 {D > d} ,

where the inequality holds as Yd1 {D = j} ≤ Yj1 {D = j} = Y 1 {D = j} for all j > d for

each d. This result shows that under the MTR assumption, the counterfactual random

variable Yd1 {D > d} is bounded from above by the observed variable Y 1 {D > d}. As

we can see, this assumption considerably shrinks the upper bound on Yd1 {D > d}, which

would be yd1 {D > d} otherwise under Assumption BoS. Similarly, we also have

Yd1 {D < d} ≥ Y 1 {D < d}
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for each d. Without the MTR assumption, the lower bound on Yd1 {D < d} would be

y
d
1 {D < d} under Assumption BoS. Combining these results together, the following in-

equalities hold under Assumptions BoS and MTR:

y
d
1 {D > d} ≤ Yd1 {D > d} ≤ Y 1 {D > d} ,

Y 1 {D < d} ≤ Yd1 {D < d} ≤ yd1 {D < d} .

Thus, for any δ ∈ R, we have the following bounds

min{δy
d
, δY }1 {D > d} ≤ δYd1 {D > d} ≤ max{δy

d
, δY }1 {D > d} ,

min{δyd, δY }1 {D < d} ≤ δYd1 {D < d} ≤ max{δyd, δY }1 {D < d} .
(3.9)

Now, we note that Ydδ1 {D > d}+Ydδ1 {D < d} = Ydδ1 {D 6= d}. Recall that inequality

(3.2) implied by the second inequality of (3.7) yields

E
[
Y
(

1 + αZ̃
)
1 {D = d}+ Yd

(
1 + αZ̃

)
1 {D 6= d}

]
≥ θd,

E
[
Y
(

1− αZ̃
)
1 {D = d}+ Yd

(
1− αZ̃

)
1 {D 6= d}

]
≤ θd,

for every α ∈ [0, 1). Combining this with (3.9), and replacing δ by 1 + αZ̃ or 1 − αZ̃

respectively, implies

Yd
(
1 + αZ̃

)
1 {D 6= d} ≤ max

{
y
d

(
1 + αZ̃

)
, Y
(

1 + αZ̃
)}

1 {D > d}

+ max
{
yd

(
1 + αZ̃

)
, Y
(

1 + αZ̃
)}

1 {D < d} ,

Yd

(
1− αZ̃

)
1 {D 6= d} ≥ min

{
y
d

(
1− αZ̃

)
, Y
(

1− αZ̃
)}

1 {D > d}

+ min
{
yd

(
1− αZ̃

)
, Y
(

1− αZ̃
)}

1 {D < d} .

Thus, we have

E
[
md

(
Y,D, 1 + αZ̃

) ]
≥ θd,

E
[
md

(
Y,D, 1− αZ̃

) ]
≤ θd

for any α ∈ [0, 1), where we define the functions md and md as

md (Y,D, δ) ≡ 1 {D = d} δY + 1 {D > d}min{δy
d
, δY }+ 1 {D < d}min{δyd, δY },

md (Y,D, δ) ≡ 1 {D = d} δY + 1 {D > d}max{δy
d
, δY }+ 1 {D < d}max{δyd, δY }.
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Likewise, inequality (3.4) implied by the second inequality of (3.8) yields the following

implications for θd:

E
[
md

(
Y,D, 1− αZ̃

) ]
≥ θd,

E
[
md

(
Y,D, 1 + αZ̃

) ]
≤ θd.

for any α ∈ [0, 1). Hence, we derive new bounds for θd implied by the second inequalities

of (3.7) and (3.8) from adding the MTR assumption:

θd ∈

[
sup

α∈[0,1)
E
[
md

(
Y,D, 1− αZ̃

) ]
, inf
α∈[0,1)

E
[
md

(
Y,D, 1 + αZ̃

) ]]
≡ IdMTR2,

θd ∈

[
sup

α∈[0,1)
E
[
md

(
Y,D, 1 + αZ̃

) ]
, inf
α∈[0,1)

E
[
md

(
Y,D, 1− αZ̃

) ]]
≡ IdMTR4.

Similarly, by replacing δ = 1−α
(
D̃σZ − Z̃σD

)
and δ = 1+α

(
D̃σZ − Z̃σD

)
, respectively,

in (3.9), we derive the following bounds

θd ∈

[
sup

α∈[0,1)
E
[
md

(
Y,D, 1− α

(
D̃σZ − Z̃σD

)) ]
,

inf
α∈[0,1)

E
[
md

(
Y,D, 1 + α

(
D̃σZ − Z̃σD

)) ]]
≡ IdMTR1

implied by the first inequality of (3.7) using a similar reasoning from the previous subsec-

tions. In the same way, the first inequality of (3.8) now implies

θd ∈

[
sup

α∈[0,1)
E
[
md

(
Y,D, 1 + α

(
D̃σZ − Z̃σD

)) ]
,

inf
α∈[0,1)

E
[
md

(
Y,D, 1− α

(
D̃σZ − Z̃σD

)) ]]
≡ IdMTR3

after adding MTR assumption. Therefore, we conclude that Assumptions BoS, SDC, LEI,

and MTR together imply

θd ∈
(
IdMTR1 ∩ IdMTR2

)
∪
(
IdMTR3 ∩ IdMTR4

)
≡ IdMTR.
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3.4. Adding the Roy selection assumption. In this subsection, we derive bounds on

θd under Assumptions BoS, SDC, LEI, and RS. Under Assumption RS, we have

Yd1{D = d′} = Yd1
{
Yd′ > max{Yd : d 6= d′}

}
≤ Yd′1

{
Yd′ > max{Yd : d 6= d′}

}
= Yd′1{D = d′} = Y 1

{
D = d′

}
,

where the inequality holds from the fact that Yd ≤ Yd′ for all d when D = d′. By taking

the summation over all d′ 6= d, the derived inequality implies∑
d′ 6=d

Yd1{D = d′} ≤
∑
d′ 6=d

Y 1
{
D = d′

}
, which is the same as Yd1{D 6= d} ≤ Y 1{D 6= d}.

By adding Yd1{D = d} to each side of this latter inequality, it implies that Yd ≤ Y for

all d. This last inequality shows that the observed outcome Y is an upper bound for the

potential outcome Yd under Assumption RS. This result together with Assumption BoS

imply y
d
≤ Yd ≤ Y ≤ yd for all d. Thus, we note that the second inequality of (3.7), which

is equivalent to (3.2), now implies

E
[
rd

(
Y,D, 1 + αZ̃

) ]
≥ θd,

E
[
rd

(
Y,D, 1− αZ̃

) ]
≤ θd,

for any α ∈ [0, 1), where we define the function rd and rd as

rd (Y,D, δ) ≡ 1 {D = d} δY + 1 {D 6= d}min
{
δy
d
, δY

}
,

rd (Y,D, δ) ≡ 1 {D = d} δY + 1 {D 6= d}max
{
δy
d
, δY

}
,

since we have

Yd
(
1 + αZ̃

)
≤ max

{
y
d

(
1 + αZ̃

)
, Y
(
1 + αZ̃

)}
,

Yd
(
1− αZ̃

)
≥ min

{
y
d

(
1− αZ̃

)
, Y
(
1− αZ̃

)}
.

In a way similar to the derivations in the previous sections, we can show that Assumptions

BoS, SDC, LEI, and RS yield the following bounds for θd:

IdRS ≡
(
IdRS1 ∩ IdRS2

)
∪
(
IdRS3 ∩ IdRS4

)
,
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where

IdRS1 ≡

[
sup

α∈[0,1)
E
[
rd

(
Y,D, 1− α

(
D̃σZ − Z̃σD

)) ]
, inf
α∈[0,1)

E
[
rd

(
Y,D, 1 + α

(
D̃σZ − Z̃σD

)) ]]
,

IdRS2 ≡

[
sup

α∈[0,1)
E
[
rd

(
Y,D, 1− αZ̃

) ]
, inf
α∈[0,1)

E
[
rd

(
Y,D, 1 + αZ̃

) ]]
,

IdRS3 ≡

[
sup

α∈[0,1)
E
[
rd

(
Y,D, 1 + α

(
D̃σZ − Z̃σD

)) ]
, inf
α∈[0,1)

E
[
rd

(
Y,D, 1− α

(
D̃σZ − Z̃σD

)) ]]
,

IdRS4 ≡

[
sup

α∈[0,1)
E
[
rd

(
Y,D, 1 + αZ̃

) ]
, inf
α∈[0,1)

E
[
rd

(
Y,D, 1− αZ̃

) ]]
.

4. Inference

We want to construct confidence bounds for the set IdSDC =
(
IdSDC1 ∩ IdSDC2

)
∪
(
IdSDC3 ∩ IdSDC4

)
,

where

IdSDC1 =

[
sup

α∈[0,1)
E
[
f
d

(
Y,D, 1− αD̃

) ]
, inf
α∈[0,1)

E
[
fd

(
Y,D, 1 + αD̃

) ]]

IdSDC2 =

[
sup

α∈[0,1)
E
[
f
d

(
Y,D, 1− αZ̃

) ]
, inf
α∈[0,1)

E
[
fd

(
Y,D, 1 + αZ̃

) ]]

IdSDC3 =

[
sup

α∈[0,1)
E
[
f
d

(
Y,D, 1 + αD̃

) ]
, inf
α∈[0,1)

E
[
fd

(
Y,D, 1− αD̃

) ]]

IdSDC4 =

[
sup

α∈[0,1)
E
[
f
d

(
Y,D, 1 + αZ̃

) ]
, inf
α∈[0,1)

E
[
fd

(
Y,D, 1− αZ̃

) ]]
.

This is an intersection-union test as described in Berger (1982). We are going to construct

confidence regions for the sets IdSDC1 ∩ IdSDC2 and IdSDC3 ∩ IdSDC4 using the intersection

bounds framework of Chernozhukov, Lee, and Rosen (2013) or Andrews and Shi (2013),

and then take the union of the two confidence regions. Berger and Hsu (1996) showed that

the union of the confidence regions has at least the same coverage rate as each confidence

region.

We now explain how to rewrite the intersection bounds IdSDC1 in such a way that it can be

easily implemented using the Chernozhukov et al. (2015) or Andrews, Kim, and Shi (2017)

Stata packages. Suppose that we draw a random variable U from the uniform distribution
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over [0, 1), independently of the data (Y,D,Z). We have

E
[
f
d

(
Y,D, 1− UD̃

)
|U = α

]
= E

[
f
d

(
Y,D, 1− αD̃

) ]
,

since U is independent of (Y,D,Z). Therefore,

IdSDC1 =

[
sup

α∈[0,1)
E
[
f
d

(
Y,D, 1− UD̃

)
|U = α

]
, inf
α∈[0,1)

E
[
fd

(
Y,D, 1 + UD̃

)
|U = α

]]
.

Hence, these bounds take the form of conditional moment inequalities, which can be im-

plemented using existing inferential methods like Chernozhukov et al. (2015) or Andrews,

Kim, and Shi (2017). A similar technique has been proposed in Kédagni, Li, and Mourifié

(2018) where they construct confidence sets for the potential outcome means under the IV

zero-covariance assumption.

5. Empirical illustration

In this application, we use a data set drawn from the NLSYM. This data includes 3,010

young men who were ages 24-34 in 1976. It is the same data used in Card (1995). In

our analysis, the outcome variable is log hourly wage in cents (lwage), and the treatment

variable is education (educ) grouped in 4 categories: less than high school (educ < 12 years),

high school (12 ≤ educ < 16), college degree (16 ≤ educ < 18), and graduate (educ ≥ 18).

Our imperfect IV is parental education. Since the work of Willis and Rosen (1979), parental

education has been used as an IV. However, an individual’s ability can be dependent on

her parents’ ability, which is correlated with parental education. For this reason, parents’

education will not be a valid instrument. This fact is documented in Kédagni and Mourifié

(2020), who provided evidence that even after controlling for a measure of ability, parental

education is not a good instrument. This result is contrary to the Lemke and Rischall

(2003) idea that controlling for some measure of child ability could make parental education

a valid IV. Nonetheless, it is reasonable to assume that parental education has the same sign

of correlation with the individual’s potential wage as the correlation between the person’s

potential wage and her own education. It is also likely that parental education be less

endogenous than is the person’s own education. Finally, as in Manski and Pepper (2000),

we use the monotone treatment response assumption to tighten the bounds on the average

returns to education.

In theory, the outcome variable lwage is unbounded. For practical reasons, we follow

Ginther (2000) to trim the log wage. The outcome variable that we use is defined as Y = τ -

quantile of lwage if lwage is less than or equal to its τ -quantile, Y = (1 − τ)-quantile of



18 NONPARAMETRIC BOUNDS ON TREATMENT EFFECTS WITH IMPERFECT INSTRUMENTS

lwage if lwage is greater than or equal to its (1 − τ)-quantile, and Y = lwage otherwise.

In our empirical illustration, we set τ = 0.05. We construct two-sided confidence bounds

on the potential average log wages using the clr2bound command of Chernozhukov et al.

(2015) in the Stata software. We estimate the conditional expectations using local linear

methods. See Appendix B for more details on the implementation.

We present the results with mother’s education as an IIV. The results for father’s educa-

tion are in Appendix C. Table 1 displays the 95% confidence bounds for the potential wage

means and average returns to schooling under the SDC assumption, while Table 2 shows the

confidence set under both the SDC and LEI assumptions. The results are similar in both

tables. This suggests that the constraints imposed by Assumption LEI are not binding.

The bounds seem wide and uninformative.

Table 1. Confidence sets for parameters under SDC

Parameters 95% conf. LB 95% conf. UB

θ0 (< high) 5.53 6.86
θ1 (high) 5.89 6.66
θ2 (college) 5.65 6.88
θ3 (graduate) 5.55 6.94
θ0 − θ1 -1.13 0.97
θ2 − θ1 -1.01 0.98
θ3 − θ1 -1.11 1.05

conf. LB: confidence lower bound; conf. UB: confidence upper bound.

Table 2. Confidence sets for parameters under SDC and LEI

Parameters 95% conf. LB 95% conf. UB

θ0 (< high) 5.53 6.86
θ1 (high) 5.89 6.66
θ2 (college) 5.65 6.86
θ3 (graduate) 5.55 6.94
θ0 − θ1 -1.13 0.97
θ2 − θ1 -1.01 0.97
θ3 − θ1 -1.11 1.05

conf. LB: confidence lower bound; conf. UB: confidence upper bound.

However, the confidence regions for the parameters considerably shrink and become infor-

mative when we add the MTR assumption (see Table 3). We assume that the lower bound

of θd is equal to the upper bound of θd−1 as Yd−1 cannot exceed Yd for each d = 1, 2, 3 under
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the MTR assumption. Individuals with less than high school education could earn up to

93% less than high school graduates. College graduates could earn up to 52% more than

high school graduates, while individuals with a graduate degree earn between 36% and 64%

higher wages than high school graduates (which approximately represents an annual return

between 6.0% and 10.7%).

Table 3. Confidence sets for parameters under SDC, LEI, and MTR

Parameters 95% conf. LB 95% conf. UB

θ0 (< high) 5.53 6.30
θ1 (high) 6.30 6.46
θ2 (college) 6.46 6.82
θ3 (graduate) 6.82 6.94
θ0 − θ1 -0.93 0.00
θ2 − θ1 0.00 0.52
θ3 − θ1 0.36 0.64

conf. LB: confidence lower bound; conf. UB: confidence upper bound.

6. Conclusion

In this paper, we derive nonparametric bounds on the average treatment effect when

an imperfect instrument is available. We extend Nevo and Rosen’s (2012) identification

results to nonparametric models. We first assume that the sign of correlation between the

imperfect instrument and the unobserved latent variables is the same as the correlation

between the endogenous variable and the latent variables. We show that the MTS-MIV

restrictions introduced by Manski and Pepper (2000, 2009), jointly imply this assumption.

We introduce the concept of comonotone IV, which also satisfies this assumption. Second,

we show how the assumption that the imperfect instrument is less endogenous than the

treatment variable can help tighten the bounds. We also use the monotone treatment

response assumption to get tighter bounds. The identified set takes the form of intersection

bounds, which can be implemented using Nevo and Rosen’s (2012)Chernozhukov, Lee, and

Rosen’s (2013) inferential method. Finally, we illustrate our methodology using the National

Longitudinal Survey of Young Men data to estimate returns to schooling.
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Appendix A. Proofs

A.1. Proof of Lemma 1.

Proof. We have

g+
d (j)− g−d (j) =

T∑
`=j

E[Yd|D = `]
P(D = `)

P(D ≥ j)
−

j−1∑
`=1

E[Yd|D = `]
P(D = `)

P(D < j)

Suppose without loss of generality that E[Yd|D = `] is increasing in `. Then

T∑
`=j

E[Yd|D = `]
P(D = `)

P(D ≥ j)
≥ E[Yd|D = j] and

j−1∑
`=1

E[Yd|D = `]
P(D = `)

P(D < j)
≤ E[Yd|D = j − 1].

Therefore

g+
d (j)− g−d (j) ≥ E[Yd|D = j]− E[Yd|D = j − 1] ≥ 0.

On the other hand, we have

h+
d (z) = E [Yd|Z ≥ z] =

∫ ∞
z

E [Yd|Z = v]
fZ(v)

P(Z ≥ z)
dv,

≥
∫ ∞
z

E [Yd|Z = z]
fZ(v)

P(Z ≥ z)
dv = E [Yd|Z = z] ,

where fZ is the density (or probability mass) of Z, and the inequality holds because

E [Yd|Z = v] is increasing in v. Similarly, we have

h−d (z) = E [Yd|Z ≥ z] =

∫ z

0
E [Yd|Z = v]

fZ(v)

P(Z < z)
dv,

≤
∫ z

0
E [Yd|Z = z]

fZ(v)

P(Z < z)
dv = E [Yd|Z = z] ,

Therefore

h+
d (z)− h−d (z) ≥ E [Yd|Z = z]− E [Yd|Z = z] = 0.

�

A.2. Proof of Lemma 2.

Proof. We first notice that

D =
T∑
j=1

j1{D = j} =
T∑
j=1

j (1{D ≥ j} − 1{D > j}) =
T∑
j=1

1{D ≥ j},
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and

Z =

∫ Z

0
dz =

∫ ∞
0

1 {Z ≥ z} dz (layer cake representation).

Then

Cov(Yd, D) =

T∑
j=1

Cov(Yd,1{D ≥ j}),

and

Cov(Yd, Z) =

∫ ∞
0

Cov(Yd,1{Z ≥ z})dz by the Fubini-Tonelli theorem.

We also show that

Cov(Yd,1{D ≥ j}) = P(D ≥ j)P(D < j) (E[Yd|D ≥ j]− E[Yd|D < j])

Cov(Yd,1{Z ≥ z}) = P(Z ≥ z)P(Z < z) (E[Yd|Z ≥ z]− E[Yd|Z < z]) .

From these results, it is straightforward to verify that if Z is binarized MTS-MIV for D,

then

Cov(Yd, D)Cov(Yd, Z) =
T∑
j=1

Cov(Yd,1{D ≥ j})
∫ ∞

0
Cov(Yd,1{Z ≥ z})dz,

=
T∑
j=1

∫ ∞
0

Cov(Yd,1{D ≥ j})Cov(Yd,1{Z ≥ z})dz,

=
T∑
j=1

∫ ∞
0

P (j, z)
(
g+
d (j)− g−d (j)

) (
h+
d (z)− h−d (z)

)
dz ≥ 0,

where P (j, z) = P(D ≥ j)P(D < j)P(Z ≥ z)P(Z < z).

Note that Z does not have to be continuous, and the result still holds when Z is discrete.

�

A.3. Proof of Lemma 3.

Proof. (1) Suppose D = ν(Z) and ν is increasing. Then(
D(ω)−D(ω′)

) (
Z(ω)− Z(ω′)

)
=
(
ν(Z(ω))− ν(Z(ω′))

) (
Z(ω)− Z(ω′)

)
.

Since ν is increasing, ν(Z(ω)) − ν(Z(ω′)) and Z(ω) − Z(ω′) have the same sign.

Therefore, (
D(ω)−D(ω′)

) (
Z(ω)− Z(ω′)

)
≥ 0.
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(2) Suppose D = h(Z, V ), where h is increasing in both of its arguments. Suppose that

Z and V are comonotonic. Then(
D(ω)−D(ω′)

) (
Z(ω)− Z(ω′)

)
=
[
h(Z(ω), V (ω))− h(Z(ω′), V (ω′))

] (
Z(ω)− Z(ω′)

)
,

=
[(
h(Z(ω), V (ω))− h(Z(ω), V (ω′))

)
+
(
h(Z(ω), V (ω′))− h(Z(ω′), V (ω′))

)] (
Z(ω)− Z(ω′)

)
.

h(Z(ω), V (ω)) − h(Z(ω), V (ω′)) has the same sign as V (ω) − V (ω′) since h is in-

creasing in its second argument, while h(Z(ω), V (ω′)) − h(Z(ω′), V (ω′)) has the

same sign as Z(ω) − Z(ω′) since h is increasing in its first argument. Since Z and

V are comonotonic, it follows that V (ω) − V (ω′) and Z(ω) − Z(ω′) have the same

sign. Therefore,(
h(Z(ω), V (ω))− h(Z(ω), V (ω′))

) (
Z(ω)− Z(ω′)

)
≥ 0,

and (
h(Z(ω), V (ω′))− h(Z(ω′), V (ω′))

) (
Z(ω)− Z(ω′)

)
≥ 0.

Hence, (
D(ω)−D(ω′)

) (
Z(ω)− Z(ω′)

)
≥ 0.

�

A.4. Proof of Lemma 4.

Proof. Suppose Z and D are comonotonic. Then by definiton, we have for all ω, ω′ ∈ Ω,(
D(ω)−D(ω′)

) (
Z(ω)− Z(ω′)

)
≥ 0,

which implies[(
Yd(ω)− Yd(ω′)

) (
D(ω)−D(ω′)

)] [(
Yd(ω)− Yd(ω′)

) (
Z(ω)− Z(ω′)

)]
≥ 0

as (Yd(ω)− Yd(ω′))2 ≥ 0. This latter inequality is equivalent to: either(
Yd(ω)− Yd(ω′)

) (
D(ω)−D(ω′)

)
≥ 0, (A.1)(

Yd(ω)− Yd(ω′)
) (
Z(ω)− Z(ω′)

)
≥ 0, (A.2)

or (
Yd(ω)− Yd(ω′)

) (
D(ω)−D(ω′)

)
≤ 0, (A.3)(

Yd(ω)− Yd(ω′)
) (
Z(ω)− Z(ω′)

)
≤ 0. (A.4)

Using the results (i)-(ii) in Section 2.2 and (S1) in Section 4.3 from Wang and Zitikis (2020),

we conclude that inequality (A.1) implies that Cov(Yd, D) ≥ 0. Similarly, inequalities (A.2),
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(A.3) and (A.4), respectively, imply Cov(Yd, Z) ≥ 0, Cov(Yd, D) ≤ 0, and Cov(Yd, Z) ≤ 0.

Therefore, we have Cov(Yd, D)Cov(Yd, Z) ≥ 0 in all cases. This concludes the proof. �

Appendix B. Implementation of the bounds

In this section, we show the different steps for implementing the method developed in

the paper. We want to construct confidence bounds on the parameter θd ∈ IdSDC1, where

IdSDC1 =

[
sup

α∈[0,1)
E
[
f
d

(
Y,D, 1− UD̃

)
|U = α

]
, inf
α∈[0,1)

E
[
fd

(
Y,D, 1 + UD̃

)
|U = α

]]
.

As explained in the main text, the implementation can be done using the Stata package

developed by Chernozhukov et al. (2015). Assuming that we have an i.i.d. data with fi-

nite moments, the conditions for the implementation of the Chernozhukov, Lee, and Rosen

(2013) method are likely to hold in our framework. We provide below the code for the

implementation.

s e t more o f f

gen Y = lwage

c e n t i l e (Y) , c e n t i l e (5 95)

r e p l a c e Y = r ( c 1 ) i f Y < r ( c 1 )

r e p l a c e Y = r ( c 2 ) i f Y > r ( c 2 )

r e p l a c e educ = 0 i f educ < 12

r e p l a c e educ = 1 i f educ >= 12 & educ < 16

r e p l a c e educ = 2 i f educ >= 16 & educ < 18

r e p l a c e educ = 3 i f educ >= 18

r e p l a c e motheduc = 0 i f motheduc < 12

r e p l a c e motheduc = 1 i f motheduc >= 12 & motheduc < 16

r e p l a c e motheduc = 2 i f motheduc >= 16 & motheduc < 18

r e p l a c e motheduc = 3 i f motheduc >= 18 & motheduc != .

gen D = ( educ==0)

gen Z = motheduc

sum Y i f D == 1

s c a l a r Y1up = r (max)

s c a l a r Y1lo = r ( min )

sum Y i f D == 0

s c a l a r Y0up = r (max)

s c a l a r Y0lo = r ( min )

sum Z
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gen RZ = n−1

r e p l a c e RZ = . i f RZ[ n ]>3

s e t seed 12345

gen Lambda = runi form (0 , 1 )

sum Z

s c a l a r EZ = r (mean)

sum educ

s c a l a r ED = r (mean)

gen ldepen1 = Y∗D∗(1−Lambda∗(Z−EZ) )

+ min ( Y1lo∗(1−D)∗(1−Lambda∗(Z−EZ) ) ,Y1up∗(1−D)∗(1−Lambda∗(Z−EZ) ) )

gen ldepen2 = Y∗D∗(1−Lambda∗( educ−ED) )

+ min ( Y1lo∗(1−D)∗(1−Lambda∗( educ−ED) ) ,Y1up∗(1−D)∗(1−Lambda∗( educ−ED) ) )

gen udepen1 = Y∗D∗(1+Lambda∗(Z−EZ) )

+ max( Y1lo∗(1−D) ∗(1+Lambda∗(Z−EZ) ) ,Y1up∗(1−D) ∗(1+Lambda∗(Z−EZ) ) )

gen udepen2 = Y∗D∗(1+Lambda∗( educ−ED) )

+ max( Y1lo∗(1−D) ∗(1+Lambda∗( educ−ED) ) ,Y1up∗(1−D) ∗(1+Lambda∗( educ−ED) ) )

gen RLambda = 0+0.01∗ n

r e p l a c e RLambda = . i f RLambda>1

clr2bound ( ( ldepen1 Lambda RLambda) ( ldepen2 Lambda RLambda) )

( ( udepen1 Lambda RLambda) ( udepen2 Lambda RLambda) )

, met (” l o c a l ”) l e v e l ( 0 . 5 0 .9 0 .95 0 . 9 9 ) norseed rnd (20000)

gen ldepen12 = Y∗D∗(1+Lambda∗(Z−EZ) )

+ min ( Y1lo∗(1−D) ∗(1+Lambda∗(Z−EZ) ) ,Y1up∗(1−D) ∗(1+Lambda∗(Z−EZ) ) )

gen ldepen22 = Y∗D∗(1+Lambda∗( educ−ED) )

+ min ( Y1lo∗(1−D) ∗(1+Lambda∗( educ−ED) ) ,Y1up∗(1−D) ∗(1+Lambda∗( educ−ED) ) )

gen udepen12 = Y∗D∗(1−Lambda∗(Z−EZ) )

+ max( Y1lo∗(1−D)∗(1−Lambda∗(Z−EZ) ) ,Y1up∗(1−D)∗(1−Lambda∗(Z−EZ) ) )

gen udepen22 = Y∗D∗(1−Lambda∗( educ−ED) )

+ max( Y1lo∗(1−D)∗(1−Lambda∗( educ−ED) ) ,Y1up∗(1−D)∗(1−Lambda∗( educ−ED) ) )

clr2bound ( ( ldepen12 Lambda RLambda) ( ldepen22 Lambda RLambda) )

( ( udepen12 Lambda RLambda) ( udepen22 Lambda RLambda) )

, met (” l o c a l ”) l e v e l ( 0 . 5 0 .9 0 .95 0 . 9 9 ) norseed rnd (20000)

Appendix C. Additional empirical results

C.1. Additional results using mother’s education as an IIV. Tables 4 and 5 show

additional results using mother’s education as an imperfect IV.
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Table 4. Confidence sets for parameters under SDC, LEI, and RS

Parameters 95% conf. LB 95% conf. UB

θ0 (< high) 5.53 6.30
θ1 (high) 5.89 6.30
θ2 (college) 5.65 6.30
θ3 (graduate) 5.55 6.30
θ0 − θ1 -0.77 0.41
θ2 − θ1 -0.65 0.41
θ3 − θ1 -0.75 0.41

conf. LB: confidence lower bound; conf. UB: confidence upper bound.

Table 5. Confidence sets for parameters under SDC and MTR

Parameters 95% conf. LB 95% conf. UB

θ0 (< high) 5.53 6.30
θ1 (high) 6.30 6.47
θ2 (college) 6.47 6.84
θ3 (graduate) 6.84 6.94
θ0 − θ1 -0.94 0.00
θ2 − θ1 0.00 0.54
θ3 − θ1 0.38 0.64

conf. LB: confidence lower bound; conf. UB: confidence upper bound.

Note that the bounds in Table 5 are obtained under Assumptions BoS, SDC, and MTR

without Assumption LEI:

θd ∈
(
ĨdMTR1 ∩ IdMTR2

)
∪
(
ĨdMTR3 ∩ IdMTR4

)
,

where

ĨdMTR1 ≡

[
sup

α∈[0,1)
E
[
md

(
Y,D, 1− αD̃

) ]
, inf
α∈[0,1)

E
[
md

(
Y,D, 1 + αD̃

) ]]
,

ĨdMTR3 ≡

[
sup

α∈[0,1)
E
[
md

(
Y,D, 1 + αD̃

) ]
, inf
α∈[0,1)

E
[
md

(
Y,D, 1− αD̃

) ]]
.

C.2. Results using father’s education as an IIV. Tables 6 and 7 present the results

using father’s education as an imperfect IV. The results in Table 6 are similar to those

we obtain using mother’s education as an IIV. Table 7 displays the results with race as a

control variable.
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Table 6. Confidence sets under SDC and MTR using father’s education as IIV

Parameters 95% conf. LB 95% conf. UB

θ0 (< high) 5.51 6.36
θ1 (high) 6.36 6.48
θ2 (college) 6.48 6.82
θ3 (graduate) 6.82 6.96
θ0 − θ1 -0.97 0.00
θ2 − θ1 0.00 0.45
θ3 − θ1 0.34 0.59

conf. LB: confidence lower bound; conf. UB: confidence upper bound.

Table 7. Confidence sets under SDC and MTR using father’s education as

IIV with race as control

Parameters 95% conf. LB 95% conf. UB 95% conf. LB 95% conf. UB
black =1 black =1 black =0 black =0

θ0 (< high) 5.52 6.42 5.48 6.15
θ1 (high) 6.42 6.47 6.15 6.56
θ2 (college) 6.47 6.81 6.56 6.95
θ3 (graduate) 6.81 6.96 6.95 7.04
θ0 − θ1 -0.96 0.00 -1.08 0.00
θ2 − θ1 0.00 0.39 0.00 0.81
θ3 − θ1 0.34 0.54 0.40 0.89

conf. LB: confidence lower bound; conf. UB: confidence upper bound.
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Appendix D. Supplementary Examples

Example 2. MTS-MIV, binarized MTS-MIV, and comonotonicity hold.


Y = U1 {D = 0}+ 2U1 {D = 1}+ 1

2U1 {D = 2}

D = 0 · 1
{
U ∈ [0, 1

2 ]
}

+ 1 · 1
{
U ∈ (1

2 ,
3
2 ]
}

+ 2 · 1
{
U ∈ (3

2 , 2]
}

Z = 2D

(D.1)

where U ∼ U[0,2].

This example illustrates a case where the three aforementioned conditions hold; MTS-

MIV, binarized MTS-MIV, and comonotonicity between D and Z. Hence, we note that

MTS-MIV and CoMIV are two different sufficient conditions for the SDC assumption, but

not exclusive to each other.

Figure 3. Numerical illustration of MTS-MIV

First, note that Z is a CoMIV for D by (1) of Lemma 3 since Z = 2D. Moreover, it

can be shown that the conditional expectation functions E [Yd|D = `] and E [Yd|Z = z] are

monotone in ` and z, respectively, for all d = 0, 1, 2 (see Figure 3). Furthermore, Figure 4

shows that the DGP satisfies the binarized MTS-MIV restriction (2.2), and accordingly the

SDC assumption by Lemma 1, as the function g+
d is always greater than the function g−d ,

and the function h+
d is always greater than the function h−d for all d.
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Figure 4. Numerical illustration of binarized MTS-MIV

Example 3. MTS-MIV and binarized MTS-MIV hold, but CoMIV fails.
Y = 2D + U

D = 0 · 1 {U ∈ [0, 2]}+ 1 · 1 {U ∈ (2, 3]}+ 2 · 1 {U ∈ (3, 5]}
Z = 0 · 1 {U ∈ [0, 1] ∪ (2, 3]}+ 1 · 1 {U ∈ (1, 2] ∪ (3, 4]}+ 2 · 1 {U ∈ (4, 5]}

(D.2)



NONPARAMETRIC BOUNDS ON TREATMENT EFFECTS WITH IMPERFECT INSTRUMENTS 29

where U ∼ U[0,5].

This example illustrates a case where MTS-MIV and binarized MTS-MIV hold, but

CoMIV fails. Thus, we note that MTS-MIV does not imply CoMIV. Recall that Exam-

ple 1 shows the case where MTS-MIV fails, but CoMIV holds. Hence, we conclude that

neither of MTS-MIV nor CoMIV imply each other.

Figure 5. Numerical Illustration of MTS-MIV

It can be shown that the given DGP satisfies MTS-MIV and a numerical illustration is

shown in Figure 5. Moreover, by Lemma 1, the same DGP also satisfies binarized MTS-

MIV, which is shown in Figure 6; the conditional expectation functions E [Yd|D = `] and

E [Yd|Z = z] are monotone in ` and z, respectively, for all d = 0, 1, 2. However, D and Z

are not comonotonic. Indeed, we have (D,Z) = (1, 0) if U = 2.5, but (D,Z) = (0, 1) if

U = 1.5. This implies that

[D(2.5)−D(1.5)] [Z(2.5)− Z(1.5)] = −1 < 0.

Example 4. MTS and CoMIV fail, but binarized MTS-MIV holds.

Y = Φ
(
−
(
αD + U − 3

2

)2
+ U

)
D = 1{δZ > 1}+ ε

Z =
∑K+1

k=1 (k − 1)1{ k−1
K+1 < Φ(V ) ≤ k

K+1}

ε =
∑K

k=1(k − 1)1{k−1
K < Φ(U) ≤ k

K }

(D.3)
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Figure 6. Numerical illustration of binarized MTS-MIV

where α = 0.5, K = 3 , δ ∼ U[−1,1] and

(
U
V

)
∼ N (µ,Σ), with µ =

(
0
0

)
, and Σ =(

1 0.5
0.5 1

)
.

This example illustrates a case where MTS and CoMIV fail but binarized MTS-MIV

holds, which provides the following implications. First, together with Lemma 1, binarized
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MTS-MIV is a strictly weaker assumption than MTS-MIV (i.e., the converse of Lemma 1

does not hold). Second, binarized MTS-MIV is not a sufficient condition for CoMIV.

Figure 7. Numerical illustration of a violation of MTS

As shown in Figure 7, the conditional expectation function E [Yd|D = `] of the given

DGP is not monotone in ` for d = 3. Moreover, D and Z are not comonotonic because

we have (D,Z) = (1, 0) if (U, V, δ) = (0,−0.9,−0.7), but (D,Z) = (0, 1) if (U, V, δ) =

(−0.8,−0.1,−0.5). Indeed, we have:

[D(0,−0.9,−0.7)−D(−0.8,−0.1,−0.5)] [Z(0,−0.9,−0.7)− Z(−0.8,−0.1,−0.5)] = −1 < 0.

On the other hand, Figure 8 shows that the same DGP satisfies binarized MTS-MIV,

where the functions g+
d and g−d do not overlap, nor do the functions h+

d and h−d for all d.

Example 5. CoMIV holds, but neither of MTS-MIV and binarized MTS-MIV holds.
Y = (2D + U − 5)2

D = 0 · 1 {V ∈ [0, 1]}+ 1 · 1
{
V ∈ (1, 3

2 ]
}

+ 2 · 1
{
V ∈ (3

2 , 5]
}

Z = 2D

U = 8V 1 {V ∈ [1, 2]}+ V 1 {V /∈ [1, 2]}

(D.4)

where V ∼ U[0,5].

This example illustrates a case where CoMIV holds, but neither of MTS-MIV and bina-

rized MTS-MIV holds. Hence, we note that CoMIV is not a sufficient condition for binarized

MTS-MIV. Together with Examples 1 and 4, it should be noted that neither of CoMIV and
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Figure 8. Numerical illustration of binarized MTS-MIV
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binarized MTS-MIV implies each other, even though both are sufficient conditions for SDC

assumption by Lemmas 2 and 4, respectively.

Figure 9. Numerical illustration of a Violation of MTS-MIV

Under the given DGP, Z is a CoMIV for Z by (1) of Lemma 3 since Z = 2D. However, it

can be shown that the conditional expectation functions E [Yd|D = `] and E [Yd|Z = z] are not

monotone in ` and z, respectively, for all d = 0, 1, 2 (see Figure 9 for d = 1). Furthermore,

Figure 10. Numerical illustration of a Violation of Binarized MTS-MIV

Figure 10 shows that the DGP does not satisfy the binarized MTS-MIV restriction (2.2)

either, as the function g+
1 crosses the function g−1 , and the function h+

1 crosses the function

h−1 .
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