Collateral, Haircuts and Rates: a Theory of Repo

[Dmitry Chebotarev] INSEAD

What is Repo?

- Repo is a form of lending collateralized by a portfolio of securities.
- Repo market is systemically important (Gorton and Metrick, 2012), with a daily turnover of $€ 3$ trillion globally (ICMA, 2019).
- A repo deal has not only a price condition (interest rate, r), but also a degree of collateralization (haircut, h).

Two Questions

Q1: How does collateral quality affect repo parameters?

Finding 1: Value-at-Risk (VaR) and Expected Shortfall (ES) arise endogenously as sufficient statistics of the quality of collateral, i.e. its return distribution.
Finding 2: $\mathrm{ES} \uparrow \Rightarrow \mathrm{h} \uparrow, \mathrm{r} \uparrow$
Finding 3: $\mathrm{VaR} \uparrow \Rightarrow \mathrm{h} \uparrow, \mathrm{r} \downarrow$
Q2: How do borrower's properties affect repo parameters?

Finding 4: While riskier borrowers face higher haircuts, they do not necessarily pay higher rates. Finding 5: Borrowers that possess more profitable investment opportunities borrow with a smaller haircut at a cost of paying a higher rate.

IN BRIEF, THIS PAPER...

1. Endogenizes the effect of collateral quality on haircuts and rates (Adrian and Shin (2013), Dang et al. (2013)).
2. Suggests a solution to the VaR vs ES debate (Artzner (1999), Acerbi and Tasche (2002), BIS (2016)).
3. Suggests a framework to resolve some puzzling empirical patterns (Benmelech and Bergman (2009), Auh and Landoni (2016)).

Model

A two-period model with two risk-neutral agents, borrower (b) and lender (l).

Borrower: penniless, has a private investment opportunity, possesses one unit of pledgeable financial asset worth $\$ 1$.

Lender: competitive, deep-pocketed, can invest in a riskless asset with return $\left(1+r_{f}\right)$ or lend the borrower some amount (M).

Investment opportunity: binomial, scalable (CRS).

Pledgeable financial asset: return R distributed with a cdf $F(R) \in C^{1}$, independent of the borrower's investment opportunity.

Assumption 1: difference in beliefs. Agent believes $P=P_{i}, i \in\{b, l\}$, so that
$N P V_{b} \triangleq(1+\rho) \times\left(1-P_{b}\right)-\left(1+r_{f}\right)>0$,
$N P V_{l} \triangleq(1+\rho) \times\left(1-P_{l}\right)-\left(1+r_{f}\right)<0$.
Assumption 2: borrower prefers to keep the financial asset rather than selling it (i.e., due to immediate selling costs).

Borrower's expected utility:

$$
\begin{aligned}
W(r, M)= & \overbrace{M \times(\rho-r)}^{\text {inv. opp. successful }} \times\left(1-P_{B}\right) \\
& +\underbrace{\mathbb{E}[\max (R-(1+r) M, 0)]}_{\text {inv. opp. fails }} \times P_{B} .
\end{aligned}
$$

Lender's expected utility:

$$
\begin{aligned}
U(r, M) & =\overbrace{(1+r) M}^{\text {inv. opp. successful }} \times\left(1-P_{L}\right) \\
& +\underbrace{\mathbb{E}[\min (R,(1+r) M)]}_{\text {inv. opp. fails }} \times P_{L}
\end{aligned}
$$

$$
-\underbrace{\left(1+r_{f}\right) M}_{\text {opport. costs }} .
$$

EQUILIBRIUM

Definition (haircut): $(1+h) \triangleq \frac{1}{M}$.
Definition (equilibrium): The repo market equilibrium is a contract $\left(r_{e q}, h_{\text {eq }}\right)$ such that the borrower's utility W is maximized subject to the lender's break-even condition $U(r, M)=0$.

$$
\begin{aligned}
1+r_{e q}= & \left(1+r_{f}\right) \times(1-\overbrace{P_{L} \times \alpha}^{\mathrm{PD}} \\
& \times \underbrace{\left[\frac{E S(\alpha)-V a R(\alpha)}{1-V a R(\alpha)}\right]}_{\text {LGD }})^{-1},
\end{aligned}
$$

$$
1+h_{e q}=[1-\operatorname{VaR}(\alpha)]^{-1} \times\left(1+r_{e q}\right)
$$

where α - const., $\alpha \in[0,1]$.

Figure 1: Equilibrium in the repo market is given by the tangency point of the lender's break-even condition and the borrower's utility curve

COMPARATIVE STATICS -1 (COLLATERAL)

VaR and ES are tightly related, but represent different aspects of market risk. One needs to first orthogonalize them.

Figure 2: Quantile-preserving spread (QPS) and Over-the-quantile spread (OTQS).

where $d E S(\alpha)$ and $d V a R(\alpha)$ are defined in terms of an α-QPS and α-OTQS respectively.

COMPARATIVE STATICS -2 (BORROWER)

The main parameters of the borrower are

- the probability of failure P_{l},
the return on the borrower's project ρ.

$$
\frac{d h_{e q}}{d \rho}<0, \quad \frac{d r_{e q}}{d \rho}>0, \quad \frac{d h_{e q}}{d P_{L}}>0
$$

$\frac{d r_{e q}}{d P_{L}} \quad\left\{\begin{array}{lll}>0 & \text { if } & \frac{\kappa \times(1-E S(\alpha))}{E S(\alpha)-V a R(\alpha)}<\epsilon_{K}^{F} \\ <0 & \text { if } & \frac{\kappa \times(1-E S(\alpha))}{E S(\alpha)-V a R(\alpha)}>\epsilon_{K}^{F}\end{array}\right.$
where ϵ_{K}^{F} is the elasticity of the $\operatorname{CDF} F(\cdot)$ at $K_{e q}=\frac{\left(1+r_{e q}\right)}{\left(1+h_{e q}\right)}$, and $\kappa>0$ - const.

