COLLATERAL, HAIRCUTS AND RATES: A THEORY OF REPO

WHAT IS REPO?

- Repo is a form of lending collateralized by a portfolio of securities.
- Repo market is systemically important (Gorton and Metrick, 2012), with a daily turnover of \in 3 trillion globally (ICMA, 2019).
- A repo deal has not only a price condition (interest rate, r), but also a degree of collateralization (haircut, h).

TWO QUESTIONS

Q1: How does collateral quality affect repo parameters?

Finding 1: Value-at-Risk (VaR) and Expected Shortfall (ES) arise endogenously as sufficient statistics of the quality of collateral, i.e. its return distribution.

Finding 2: ES $\uparrow \Rightarrow h\uparrow$, r \uparrow **Finding 3:** VaR $\uparrow \Rightarrow h\uparrow$, r \downarrow

Q2: How do borrower's properties affect repo parameters?

Finding 4: While riskier borrowers face higher haircuts, they do not necessarily pay higher rates. Finding 5: Borrowers that possess more profitable investment opportunities borrow with a smaller haircut at a cost of paying a higher rate.

IN BRIEF, THIS PAPER...

- 1. Endogenizes the effect of collateral quality on haircuts and rates (Adrian and Shin (2013), Dang et al. (2013)).
- 2. Suggests a solution to the VaR vs ES debate (Artzner (1999), Acerbi and Tasche (2002), BIS (2016)).
- 3. Suggests a framework to resolve some puzzling empirical patterns (Benmelech and Bergman (2009), Auh and Landoni (2016)).

DMITRY CHEBOTAREV

MODEL

A two-period model with two risk-neutral agents, borrower (b) and lender (l).

Borrower: penniless, has a private investment opportunity, possesses one unit of pledgeable financial asset worth \$1.

Lender: competitive, deep-pocketed, can invest in a riskless asset with return $(1 + r_f)$ or lend the borrower some amount (M).

Investment opportunity: binomial, scalable (CRS). $(1+\rho) \times x$

Pledgeable financial asset: return *R* distributed with a cdf $F(R) \in C^1$, independent of the borrower's investment opportunity.

Assumption 1: difference in beliefs. Agent *i* believes $P = P_i$, $i \in \{b, l\}$, so that $NPV_b \triangleq (1+\rho) \times (1-P_b) - (1+r_f) > 0,$ $NPV_{l} \triangleq (1+\rho) \times (1-P_{l}) - (1+r_{f}) < 0.$

Assumption 2: borrower prefers to keep the financial asset rather than selling it (i.e., due to immediate selling costs).

Borrower's expected utility:

$$W(r, M) = \underbrace{M \times (\rho - r)}_{\text{inv. opp. successful}} \times (1 - P_B) \\ + \underbrace{\mathbb{E}[max(R - (1 + r)M, 0)]}_{\text{inv. opp. fails}} \times P_B.$$

Lender's expected utility:

$$U(r, M) = \underbrace{(1+r)M}_{\text{inv. opp. successful}} \times (1-P_L) \\ + \underbrace{\mathbb{E}[min(R, (1+r)M)]}_{\text{inv. opp. fails}} \times P_L$$

 $-(1+r_f)M$. opport. costs

where α – const., $\alpha \in [0, 1]$.

VaR and ES are tightly related, but represent different aspects of market risk. One needs to first orthogonalize them.

0.2 -

Figure 2: Quantile-preserving spread (QPS) and Over- where $dES(\alpha)$ and $dVaR(\alpha)$ are defined in terms the-quantile spread (OTQS).

COMPARATIVE STATICS -2 (BORROWER)

The main parameters of the borrower are - the probability of failure P_l , - the return on the borrower's project ρ .

dl

INSEAD

EQUILIBRIUM

Definition (haircut): $(1+h) \triangleq \frac{1}{M}$.

Definition (equilibrium): The repo market equilibrium is a contract (r_{eq}, h_{eq}) such that the borrower's utility W is maximized subject to the lender's break-even condition U(r, M) = 0.

$$1 + r_{eq} = (1 + r_f) \times \left(1 - \overbrace{P_L \times \alpha}^{\text{PD}} \times \left[\frac{ES(\alpha) - VaR(\alpha)}{1 - VaR(\alpha)}\right]\right)^{-1}$$

 $1 + h_{eq} = [1 - VaR(\alpha)]^{-1} \times (1 + r_{eq})$

INSEAD

Figure 1: Equilibrium in the repo market is given by the tangency point of the lender's break-even condition and the borrower's utility curve.

COMPARATIVE STATICS -1 (COLLATERAL)

of an α -QPS and α -OTQS respectively.

$\frac{n_{eq}}{l\rho} < 0,$	$\frac{dr_{eq}}{d\rho} > 0,$	$\frac{dh_{eq}}{dP_L} > 0,$	where ϵ_K^F $K_{eq} = \frac{(1+1)^2}{(1+1)^2}$
/	1		< ·

> 0, $\overline{dES(\alpha)}\big|_{VaR(\alpha)=const}$ > 0, $\overline{dES(\alpha)}\big|_{VaR(\alpha)=const}$ > 0. $\overline{dVaR(\alpha)}\big|_{ES(\alpha)=const}$ $\overline{dVaR}(\alpha)\big|_{ES(\alpha)=const}$

1 	$\begin{cases} > 0 \\ < 0 \end{cases}$	if if	$\frac{\kappa \times (1 - ES(\alpha))}{ES(\alpha) - VaR(\alpha)} < \epsilon_K^F \\ \frac{\kappa \times (1 - ES(\alpha))}{ES(\alpha) - VaR(\alpha)} > \epsilon_K^F ,$		
is the elasticity of the CDF $F(\cdot)$ at $\frac{+r_{eq}}{+h_{eq}}$, and $\kappa > 0$ - const.					

 $\frac{dr_{eq}}{dP_L}$