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1 Introduction

Since the seminal work by Amemiya (1973) and Heckman (1976), the selection problem

has been a fundamental topic in microeconometrics. Dealing with censored observations

(i.e., zeroes) in the estimation of consumer demand, has an even longer tradition, as il-

lustrated by Tobin (1958)’s seminal work and the so called Tobit model. The estimation

of consumer demand models has motivated the development of important methods to

account for sample selection. Most of the early literature studies the demand of a single

product, but there are applications to demand systems using Amemiya’s multivariate To-

bit model (Amemiya, 1974; Yen, 2005; Yen and Lin, 2006). These demand systems with

censored demand (or zeroes) share three important features: (i) unobservables enter addi-

tively in the demand and selection equations; (ii) the system includes only a few products

(broad product categories, such as alcohol); and (iii) endogenous selection comes from

consumer demand decisions and not from firms’ supply decisions. Recently, the selection

problem has received substantial attention in the estimation of demand of differentiated

products, where the number of products can be hundreds or more. See the work by

Gandhi, Lu, and Shi (2017), Ciliberto, Murry, and Tamer (2018), Li et al. (2018), and Dubé,

Hortaçsu, and Joo (2020). This recent literature tries to relax the restrictions (i), (ii), or/and

(iii) mentioned above.

This paper deals with the estimation of demand of differentiated products using mar-

ket level data when there is censoring/selection because of firms not offering some prod-

ucts in some markets. Demand estimation often relies on data from multiple geographic

markets and/or time periods. Some products are not offered in some markets. This prob-

lem appears in many applications such as airline markets (Berry, Carnall, and Spiller,

2006; Berry and Jia, 2010; Aguirregabiria and Ho, 2012), consumer choice of supermarket

(Smith, 2004), or choice of radio station (Sweeting, 2013), among others. When mak-

ing their market entry decisions, firms may have information about the demand of their

products, and more specifically about components of demand that are unobserved to the

researcher. Firms are more likely to enter markets where expected demand is higher. Not

accounting for this selection can generate substantial biases in the estimation of demand

parameters. When panel data are available, a simple approach to control for this selection

problem consists of including fixed effects — product, market, and time fixed effects —

and assume that the remaining part of the error term in the demand equation is unknown
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to firms when they make their market/product entry decisions.1 Though this approach

is convenient because of its simplicity, it is based on restrictions on firms’ information

that may not be plausible in some empirical applications. However, this simple approach

illustrates that the nature of this selection problem, and its solution, depends on firms’

information about demand at the moment of market entry.

This selection problem is not standard. A firm supplies a product in a market if its ex-

pected profit is greater than zero. In an oligopoly market, this expected profit depends on

demand unobservables in a non-additive and complicated form, as it results from a two-

stage equilibrium game: a first stage entry game, and a second stage price competition

game between active firms. The high dimension and non-additivity of the demand un-

observables that enter firms’ expected profit, and the potential multiplicity of equilibria

in this game, make this selection problem challenging. In particular, standard two-step

estimation methods to account for selection are inconsistent.

This paper presents several contributions. We study the identification of demand pa-

rameters in a structural model of demand, price competition, and market entry that al-

lows for a flexible specification of firms’ information on (unobserved) demand, and for a

nonparametric distribution of demand unobservables. First, we present new identifica-

tion results in this model. We show that the probability of product entry conditional on

firms’ information about (unobserved) demand is nonparametrically identified. This re-

sult exploits the additivity between observable and unobservable product characteristics

in consumer utility. Given these entry probabilities, we show the identification of demand

parameters. Second, we propose a simple two-step estimator in the spirit of traditional

methods to control for endogenous selection. In the first step, we estimate a nonparamet-

ric continuous mixture model for the choice probabilities of product entry. In a second

step, we estimate demand parameters using a GMM that accounts for both endogenous

product availability and price endogeneity. We illustrate our method using simulated

data and real data from the airline industry.

Our work is related to several recent papers that propose methods to deal with the

selection problem in the estimation of demand of differentiated products. This selection

problem is often referred as the problem of zeroes in market shares. Our paper also builds on

1For instance, this is the approach in Aguirregabiria and Ho (2012) and Eizenberg (2014). A similar but
weaker restriction consists in assuming that the residual error term — after controlling for fixed effects —
follows a first order autoregressive process, and the innovation shock of this process is not known to firms
when they make their entry decisions. This is the approach in Sweeting (2013).
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and brings together the literatures on identification and estimation of games, nonpara-

metric finite mixtures, and sample selection corrections.

The motivation and purpose of our paper is closely related to the work of Ciliberto,

Murry, and Tamer (2018) and to Li et al. (2018). These papers develop methods for the

estimation of structural models that bring together the Berry, Levinsohn, and Pakes (1995,

BLP hereafter) framework and a game of market/product entry. These papers are inter-

ested in the identification and estimation of all the structural parameters in the model,

including demand, marginal costs, entry costs, and the probability distribution of the cor-

responding unobservables. The estimation of the full model requires the application of

nested fixed point algorithms with the consequent repeated solution for the equilibria

in the two-step game. For this purpose, these authors impose strong parametric restric-

tions on all the structural functions and on the distribution of the unobservables. In con-

trast, our approach focuses on the identification and estimation of demand parameters

only, and derives identification results where all the primitives except consumer utility

function – i.e., marginal and entry costs and the distribution of all the unobservables –

are nonparametrically specified. Furthermore, our estimation method is computationally

simple as it does not require solving for an equilibrium. Our approach is in the spirit of

– and extends – the literature on semiparametric estimation of sample selection models

(Newey, Powell, and Walker, 1990; Ahn and Powell, 1993; Newey, 2009; Aradillas-Lopez

et al, 2007).2

The method proposed in Dubé, Hortaçsu, and Joo (2020) has similar motivation as

our approach. However, their model is quite different to ours. In particular, it is reduced

form model of market entry and competition, and the restrictions in their model are not

compatible with a two-stage game of oligopoly competition in a differentiated product

industry. Their model seems more consistent with some forms of monopolistic competi-

tion.

Ellickson and Misra (2012) propose a semiparametric extension of Dubin and McFad-

den (1984) to augment reduced form profit functions in entry games with data on rev-

2An interesting feature of the methods in Ciliberto, Murry, and Tamer (2018) and Li et al. (2018) is
that the estimated model can be used for counterfactual experiments that account for the endogeneity of
product entry. For instance, this is particularly useful when simulating the effects of a merger, as illustrated
by Li et al. (2018). In contrast, our semi-parametric framework is mainly designed for the robust and
computationally simple estimation of demand. Of course, given the estimated demand parameters and
residual unobservables, it is possible to obtain estimates of marginal costs and entry costs under weaker
parametric restrictions than the ones imposed for the joint estimation of the full structural model.
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enues. Their approach assumes additive separability of the unobservable component in

the revenue function, such that this framework cannot accommodate the type of demand

unobservables in the Berry, Levinshon, and Pakes (1995) demand model. Moreover, their

identification relies on equilibrium uniqueness in the entry game. In contrast, our method

bridges the BLP demand models with the nonparametric identification of games with

multiple equilibria as in Aguirregabiria and Mira (2019) and Xiao (2018).

The rest of the paper is organized as follows. Section 2 presents our model and as-

sumptions. Section 3 describes the selection problem in this model, and why it is not stan-

dard . Section 4 presents our identification results. We describe our estimation method in

section 5. Section 6 presents Monte Carlo experiments, and section 7 an empirical appli-

cation using US airline markets. We summarize and conclude in section 8.

2 Model

2.1 A simple example

Suppose an economy with two types of geographic markets: rich and poor markets. We

index markets by m and, for simplicity, suppose that all the markets have similar popu-

lation size, H. A telecommunication company must decide whether to offer broadband

internet in each market. Consumer average willingness to pay for broadband internet

in market m is δm. The firm incurs a fixed cost F to offer broad band internet in a mar-

ket. The telecommunication company has perfect information on the market-specific util-

ities δm and maximizes profits such that it provides broadband internet to those mar-

kets for which profit is positive. That is, market m gets broadband internet if [p(δm)− c]

q(δm)− F ≥ 0, where p(δm) and q(δm) represent the monopolist’s profit maximizing price

and quantity – that depend on consumer willingness to pay – and c is the per unit cost.

Variable profit [p(δm)− c] q(δm) is an increasing function of δm. Suppose that the value

of δm in rich markets is large enough such that the company offers the product in these

markets. In contrast, poor markets do not get broadband because δm in these markets is

not large enough.

The government understands that it may not be feasible for the telecommunication

company to offer the service to poor areas without some public financial support. The

government decides to give the company a per-market lump-sum subsidy, Sm, defined as
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Sm = F − [p(δm)− c] q(δm), such that the profit maximizing company is willing to offer

broadband in every market. To construct this amount of subsidy in a poor market, the

government needs to know F, c, and the value of δm in that market. The government’s

engineers can get precise estimates of F and c but they do not have direct information on

δm.

To estimate δm in poor markets, the government only has information on demand

in rich markets. If demand follows a logit model, we have that ln(qm/H) = δm − pm,

such that δm can be estimated as ln(qm/H) + pm. Suppose that the government estimates

the value of δ in a poor market by using the sample mean of δ′s in the observed rich

markets. The firm’s profit maximization implies that the markets that were receiving

broadband have larger willingness to pay than the markets that do not. Therefore, this

sample mean over-estimates the value δm in poor markets. This estimation bias implies a

level of subsidy that is too small to encourage the firm to offer broadband in poor mar-

kets. The government can use a more sophisticated OLS approach by taking into account

that δm = x′mβ+ ξm, where xm is a vector of observable socioeconomic characteristics in

market m, and ξm is unobservable. Ignoring the selection problem, the government can

estimate β by applying OLS in the linear regression ln(qm/H) + pm = x′mβ + ξm using

the subsample of rich markets. This approach also implies a biased estimate of the true

values of β and δm. Econometric methods that control for sample selection can generate

consistent estimates of β and x′mβ.

In this simple example, the selection problem is standard because there is only one

product and the firm is a monopolist. The rest of this section presents a model of demand,

price competition, and product entry in an oligopoly differentiated product industry.

2.2 Demand

The demand system follows Berry, Levinsohn, and Pakes (1995), or BLP hereafter. Through-

out the paper, we maintain the assumption of single-product firms. There are J firms

indexed by j ∈ J = {1, 2, ..., J}, and M geographic markets indexed by m ∈ M =

{1, 2, ..., M}. Consumers living in market m can buy only the products available in that

market. Firms make entry decisions in each market and compete at the local market level

after entry.
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The indirect utility of household h in market m from buying product j is:

Uhjm ≡ δ(pjm, xjm) + v(pjm, xjm, υh) + εhjm, (1)

where pjm and xjm are the price and other characteristics, respectively, of product j in

market m; δjm ≡ δ(pjm, xjm) is the average (indirect) utility of product j in market m;

and v(pjm, xjm, υh) + εhjm represents household-specific utility deviation for product j,

with zero mean when averaged over households in market m. The term v(pjm, xjm, υh)

depends on the vector of random coefficients υh that is unobserved to the researcher and

distributed according to Fυ(·|σ), with σ the parameters characterizing this distribution.

The term εhjm is unobserved to the researcher and is assumed to be distributed Type I

extreme value and i.i.d. over (h, j, m). As is standard, we specify the average utility of

product j as:

δjm ≡ α pjm + x′jm β+ ξ jm, (2)

with α and β being parameters. Variable ξ jm captures the characteristics of product j

in market m which are valuable to the households but unobserved to the researcher. The

outside option is represented by j = 0 and its indirect utility is normalized to Uh0m = εh0m.

Let ajm ∈ {0, 1} be the indicator for product/firm j being available in market m, and

vector am ≡ (ajm : j ∈ J ) denote the products available in market m. We assume that the

outside option j = 0 is always available in every local market. Every household chooses

a product to maximize their utility. Let sjm be the market share of product j in market m,

i.e., the proportion of households choosing product j:

sjm = dj(δm, am, pm, xm) ≡
∫ ajm exp

(
δjm + v(pjm, xjm, υ)

)
1+∑J

i=1aim exp (δim + v(pim, xim, υ))
dFυ(υ). (3)

This system of J equations represents the demand system in market m. We can represent

this system in a vector form as: sm = d(δm, am, pm, xm).

For our analysis, it is convenient to define the sub-system of demand equations that

includes market shares, average utilities, and product characteristics of only those prod-

ucts available in the market. We represent this system as:

s(a)m = d(a)(δ(a)m , p(a)m , x(a)m ), (4)

where s(a)m ≡ (sjm : j ∈ J and ajm = 1) and similarly for the sub-vectors d(a), δ
(a)
m , p(a)m ,

and x(a)m . Lemma 1 establishes that the invertibility property by Berry (1994) applies to

demand system (4) for any possible value of a.
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LEMMA 1. Suppose that the outside option j = 0 is always available. Then, for any value of the

vector a ∈ {0, 1}J , the system s(a)m = d(a)(δ(a)m , p(a)m , x(a)m ; σ) is invertible with respect to δ
(a)
m

such that for every product in this subsystem (i.e., for every product with ajm = 1) the inverse

function δ
(a)
jm = d(a)−1

j (s(a)m , p(a)m , x(a)m ; σ) exists. �

Proof of Lemma 1. If the outside option j = 0 is available, then – for any value of the

vector a – the system of equations (4) satisfies the conditions for invertibility in Berry

(1994). �

For the observed availability vector in market m, the average utility of product j, δjm ≡
d(am)−1

j (s(am)
m , p(am)

m , x(am)
m ; σ), can be expressed as:

δjm = α pjm + x′jm β+ ξ jm if and only if ajm = 1 (5)

This condition is particularly important to deal with the selection problem we study. The

regression equation corresponding to the demand of product j only depends on the avail-

ability of product j and not on the availability of the other products. More specifically, the

selection problem in the estimation of the demand of product j can be described only in

terms of the conditional expectation

E
[
ξ jm | ajm = 1

]
. (6)

This is an important implication of working directly with the inverse demand system, as

clarified by equation (5).

To appreciate the value of this property, consider instead the case of an Almost Ideal

Demand System (AIDS) (Deaton and Muellbauer, 1980). In that model, for every value

of the vector am, we have a different regression equation for the demand of product j

as a function of the log-prices of all available products. In the AIDS model, the selection

problem in the estimation of the demand of product j is not only related to the availability

of product j — say E
[
ξ jm | ajm = 1

]
— but also to the availability of the other products

— i.e., E
[
ξ jm | am = a

]
. That is, in the AIDS model we have a different selection term for

each value of the vector a. This structure makes the selection problem multi-dimensional

and significantly complicates identification and estimation when the number of products

J is large. The following Example illustrates Lemma 1 in the case of the nested logit

model.
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Example 1 (Nested logit model). The J products are partitioned into R mutually exclu-

sive groups indexed by r. We use rj to represent the group of product j. The indirect

utility function is Uhmj ≡ δjm +
1

σ−1 vhmr(j) + εhmj, where the variables vhmrj and εhmj are

i.i.d. Type I extreme value and mutually independent, and σ > 0 is a parameter. This

model implies sjm = d(am)
j (δm) = d(am)

rj d(am)
j|rj

with

d(am)
j|rj

=
ajm eδjm

∑i∈rj
aim eδim

and d(am)
rj =

[
∑i∈rj

aim eδim
] 1

σ−1

1+∑R
r=1 [∑i∈raim eδim ]

1
σ−1 .

(7)

If ajm = 1 and s0m > 0, the inverse function d(am)−1
j (·) exists — regardless of the value

of aim for any product i different from j. It is straightforward to show that this inverse

function has the following form:

δjm = ln
(

sjm

s0m

)
− σ ln

(
∑i∈rj

sim

s0m

)
, (8)

and it implies the regression equation

ln
(

sjm

s0m

)
= σ ln

(
∑i∈rj

sim

s0m

)
+ α pjm + x′jm β+ ξ jm. (9)

Given s0m > 0, this regression equation holds whenever ajm = 1. �

2.3 Price Competition

Firms’ market entry decisions, prices, and quantities are determined as an equilibrium of

a two-stage game. In the first stage of this game, firms maximize their expected profit by

choosing whether to be active or not in the market. In the second stage, prices and quan-

tities of the active firms are determined as a Bertrand equilibrium of price competition.

This two-stage game is played independently across markets.

The profit of being inactive is normalized to zero for all firms. Let Πjm be the profit of

firm j if active in market m. This equals revenues minus costs:

Πjm = pjm qjm − cj(qjm; xjm, ωjm)− f j(xjm, ηjm), (10)

where qjm is the quantity sold (i.e., market share sjm times market size Hm), cj(qjm; xjm, ωjm)

is the variable cost function, and f j(xjm, ηjm) is the fixed cost of entry. Vector xjm in-

cludes variables affecting demand or/and costs and observable to the researcher. We
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use xm ≡ (xjm : j ∈ J ) to represent the vector of all the exogenous variables that are

observable to the researcher, either in demand or in costs.3 Variables ωjm and ηjm are

unobservable to the researcher.

Taking as given the vector of entry decisions, am, the best response function in the

Bertrand competition game implies the following system of pricing equations:

pjm = mcjm − d(am)
jm

∂d(am)
jm

∂pjm

−1

, for every j ∈ J , (11)

where mcjm is the marginal cost ∂cjm/∂qjm. A solution to this system of equations is a

Bertrand equilibrium. Given (am, xm, ξm, ωm), the model may have multiple Bertrand

equilibria. We do not impose restrictions on equilibrium selection and allow for each

market to select a different equilibrium.

Let Vj(am, xm, ξm, ωm) be the indirect variable profit function for firm j that results

from plugging into the expression pjm qjm − cj(qjm; xjm, ωjm) the value for (pjm, qjm) from

the (selected) Bertrand equilibrium given (am, xm, ξm, ωm). Lemma 2 establishes a prop-

erty of this profit function that we apply to obtain our identification results.

Assumption 1. Suppose that xjm = (zjm, x̃jm) where zjm is a scalar, and the model satisfies the

following conditions. (i) Consumer utility does not have random coefficients in product charac-

teristics zjm and pjm: i.e., Uhjm = βzzjm + α pjm + ξ jm + v(x̃jm, υh) + εhjm. (ii) Marginal cost

mcjm is constant and it depends linearly on zjm and ωjm: i.e., mcjm = γzzjm +ωjm + m̃cj(x̃jm).

(iii) The equilibrium selection mechanism may depend on x̃m but it does not depend on (zjm, ξ jm,

ωjm). �

LEMMA 2. Under Assumption 1, the equilibrium variable profit function Vj has the following

structure:
Vjm = Vj(am, x̃m, zm + ξ∗m) where ξ∗m ≡ (ξ∗jm : j ∈ J )

with ξ∗jm =
ξ jm + α ωjm

βz + α γz
. � (12)

Proof of Lemma 2. We omit here the market subindex m. Under condition (i), the demand

3Note that this notation is compatible with exclusion restrictions. That is, some variables in the vector
xjm may affect demand but not costs or viceversa, or may affect only one of the two types of costs. Our iden-
tification results do not require the presence of these exclusion restrictions. As in other BLP-type models,
our model implies identifying exclusion restrictions even when the only exogenous observable variables
are the product characteristics in demand, xjm.
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system is:

sj =
∫ aj exp

{
βzzj + αpj + ξ j + v(x̃j, υ)

}
1+∑J

i=1ai exp {βzzi + αpi + ξi + v(x̃i, υ)}
dFυ(υ). (13)

Define the price cost margin, τj ≡ pj −mcj. Replacing pj by mcj + τj in equation (13), and

taking into account condition (ii), we can rewrite the demand system as:

sj =
∫ aj exp

{
(βz + αγz)

(
zj + ξ∗j

)
+ ατj + ṽ(x̃j, υ)

}
1+∑J

i=1ai exp
{
(βz + αγz)

(
zi + ξ∗i

)
+ ατi + ṽ(x̃i, υ)

}dFυ(υ). (14)

where variable ξ∗j is defined above, and ṽ(x̃j, υ) ≡ α m̃cj(x̃j) + v(x̃j, υ). Now, consider

the equilibrium equations in (11). Given these pricing equations and the representation

of the system in (14), an equilibrium can be represented as a vector of price cost margins

τ ≡ (τ1, τ2, ..., τJ) that satisfies the following system of equations:

τj = −d(a)j (τ, a, x̃, z+ ξ∗)

∂d(a)j (τ, a, x̃, z+ ξ∗)

∂τj

−1

for every j ∈ J , (15)

It is clear that any solution in τ to this system of equations depends on the vectors z, ξ,

and ω only through the vector z+ ξ∗. Finally, condition (iii) implies that, given z+ ξ∗,

the equilibrium variable profit does not depend also on z, ξ, or ω through the equilibrium

selection mechanism. �

Lemma 2 has two main implications for identification. First, though the model in-

cludes two different unobservables per product (one for demand and one for marginal

cost), the structure of the model – under conditions (i) and (ii) – implies that only a linear

combination of them, ξ∗j , affects a firm’s profit. Second, the rate of substitution between

observable zj and unobservable ξ∗j in the equilibrium profit function is equal to one.

2.4 Market entry game and information structure

Firms’ entry decisions are determined as the result of a game of market entry. The market-

specific profit of being inactive is normalized to zero for all firms. Firms may have un-

certainty about their profits if active in the market. Firms’ information about demand

and costs plays a key role in their entry decisions and, therefore, on the selection prob-

lem in the estimation of demand. Assumptions 2 and 3 summarize our conditions on the

information structure and on the entry cost function, respectively.
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Assumption 2. The information set of firm j at the moment of its entry decision in market m

consists of the triple (xm, κm, ηjm). (1) xm ≡ (xjm : j ∈ J ) is the vector of product characteristics

affecting demand and costs that are observable to the researcher. (2) κm ≡ (κjm : j ∈ J ) is a vector

of noisy signals for the demand-cost variables ξ∗j such that, for every product j:

ξ∗j = κjm + ejm (16)

where ejm represents the error or noise in signal κjm and it is independent of (xm, κm). Both

xm and κm are common knowledge for all the firms. (3) Variable ηjm in the fixed cost function

f j(xjm, ηjm) is private information of firm j and independently distributed over firms with CDF

Fη. �

Assumption 3. The fixed cost function does not depend on zjm and is additive in ηjm:

f j(xjm, ηjm) = f j(x̃jm) + ηjm. � (17)

Let πj(a, xm, κm) be firm j’s expected variable profit given its information about de-

mand and costs, (xm, κm), and conditional on the hypothetical entry profile a. Under

Assumptions 1 to 3, we have that:

πj(a, xm, κm) =
∫

Vj(a, x̃m, zm + ξ∗m) p (ξ∗m|xm, κm) dξ∗m − f j(x̃jm)

=
∫

Vj(a, x̃m, zm + κm + em) p (em) dem − f j(x̃jm)

(18)

This expression shows that the expected variable profit has structure πj(a, x̃m, zm + κm).

We establish this property in Lemma 3.

LEMMA 3. Under Assumptions 1 to 3, given an entry profile a = (aj : j ∈ J ), a firm’s

expected profit (up to the private information ηjm) depends on (xm, κm) according to the structure,

πj(a, x̃m, wm) with wm = zm + κm. �

The presence of firms’ private information implies that the entry game is one of in-

complete information. Given (xm, κm), a Bayesian Nash Equilibrium (BNE) in this game

can be represented as an J-tuple of entry probabilities, one for each firm, (Pjm : j ∈ J )
that satisfies the following system of equilibrium restrictions:

Pjm = Fη

(
πP

jm

)
(19)
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where πP
jm is firm j’s expected profit – up to ηjm – taking into account the uncertainty about

other firms’ entry decisions, and given that the other firms make entry choices according

to their entry probabilities (Pim : i 6= j). That is,

πP
jm = ∑

a−j∈{0,1}J−1

(
∏
i 6=j
[Pim]

ai [1− Pim]
1−ai

)
πj(a−j, x̃m, zm + κm) (20)

LEMMA 4. Under Assumptions 1 to 3, the equilibrium choice probabilities, and the expected

profit function depend on (xm, κm) according to the following structure:

Pjm = Pj(x̃m, wm) and πP
jm = πP

j (x̃m, wm), (21)

with wm = zm + κm. �

This general framework includes as particular cases the different specifications of in-

formation structure about the unobservables (ξm, ωm, ηm) appeared in the literature, such

as: all the unobservables are common knowledge (Berry, Levinsohn, and Pakes, 1995;

Ciliberto, Murry, and Tamer, 2018), firm-specific unobservables are each firm’s private

information (Seim, 2006; Bajari et al., 2010); and intermediate cases where some unob-

servables are common knowledge and others are private information (Aradillas-Lopez,

2010; Grieco, 2014; Aguirregabiria and Mira, 2019).

3 Sample Selection Problem

For simplicity and concreteness, we describe our sample selection problem using the

nested logit demand model from Example 1. Our econometric model can be described

in terms of three equations: (i) an equation for the latent market share, s∗jm, and the latent

price, p∗jm, under the hypothetical condition that product j is offered in market m,

ln

(
s∗jm
s0m

)
= σ ln

(
s∗jm + S−jm

s0m

)
+ α p∗jm + x′jm β+ ξ jm, (22)

with S−jm ≡ ∑i 6=j,i∈rj
sim; (ii) a selection condition establishing that market share and price

are observable and equal to their latent counterparts only if the product is offered in the

market:

s∗jm = sjm and p∗jm = pjm ⇐⇒ ajm = 1; (23)
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and (iii) firms’ best response equations in the entry model:

ajm = 1
{

πP
j (x̃m, zm + κm)− ηjm ≥ 0

}
. (24)

Given equations (22) to (24), we have the following regression equation for any observa-

tion with ajm = 1:

ln
(

sjm

s0m

)
= σ ln

(
sjm + S−jm

s0m

)
+ α pjm + x′jm β+ λj(xm) + ξ̃ jm, (25)

where λj(xm) is the selection term:

λj(xm) ≡ E
[
ξ jm | xm, ajm = 1

]
=

∫
ξ jm 1

{
πP

j (x̃m, zm + κm)− ηjm ≥ 0
} fξ,η,κ

(
ξ jm,ηjm, κm

)
Pj (xm)

d
(
ξ jm,ηjm, κm

)
,

(26)

and Pj (xm) is the Conditional Choice Probability (CCP):

Pj (xm) ≡ E
[
ajm | xm

]
=
∫

1
{

πP
j (x̃m, zm + κm)− ηjm ≥ 0

}
fη,κ

(
ηjm, κm

)
d
(
ηjm, κm

)
,

(27)

where fη,κ and fξ,η,κ are the joint density functions of
(
ηjm, κm

)
and

(
ξ jm,ηjm, κm

)
, respec-

tively.

Without further restrictions, the selection term λj(xm) is a nonparametric function of

all its arguments in xm. This implies that the demand model — the parameters σ, α, and

β — is not identified: we cannot disentangle the direct effect of xjm on demand from its

indirect effect through the selection term. We now present two examples that illustrate the

relationship between firms’ information sets and the identification of the demand model.

Example 2: No signals κm. Suppose that: (1∗) κm = 0 such that, at the moment of entry,

firms do not have any information about the demand/cost variables ξ∗m; and (2∗) a unique

equilibrium is played across all market entry games with the same observables xm. Under

Assumptions 1 to 3 and conditions (1∗) and (2∗), the selection term λj(xm) only depends

on the CCP Pj (xm): that is, λj(xm) = ρj(Pj (xm)) for some function ρj(·).
The proof is straightforward. Under conditions (1∗)–(2∗), the expected profit func-

tion πP
jm and the equilibrium choice probabilities only depend on xm but not on κm. The

equilibrium entry probability Pj (xm) is equal to the "empirical" probability Pj (xm) ≡

13



E
(
ajm|xm

)
. This empirical probability satisfies the equilibrium condition Pj(xm) = Fη(πP

j (xm)),

such that πP
j (zm) = F−1

η (Pj(xm)), and the entry condition can be represented as ajm =

1{F−1
η (Pj(xm))− ηjm ≥ 0}. Furthermore, the independence between ηjm and xm implies

that:

λj(xm) =
∫

ξ jm 1
{

ηjm ≤ F−1
η (Pj (xm))

} fξ,η
(
ξ jm,ηjm

)
Pj (xm)

dξ jm dηjm

= ρj(Pj (xm))

(28)

Therefore, the demand equation can be represented as:

ln
(

sjm

s0m

)
= σ ln

(
sjm + S−jm

s0m

)
+ α pjm + x′jm β+ ρj(Pj (xm)) + ξ̃ jm, (29)

This result has important implications for identification and estimation. Regression

equation (29) is a standard semiparametric partially linear model with two endogenous

regressors, ln[(sjm+S−jm)/s0m] and pjm, and with the nonparametric component ρj(Pj (xm))

only depending on the CCP of firm j. As such, identification and estimation can follow

the standard two-step procedure as in, for example, Powell (2001).

In a first step, one can nonparametrically estimate P(xm) = (P1 (xm) , ..., PJ (xm)) from

data on (am, xm). Then, in a second step, by relying on observations from markets m and

m′ with Pj (xm) = Pj (xm′), but with ln[(sjm+ S−jm)/s0m] 6= ln[(sjm′ + S−jm′)/s0m′ ], pjm 6=
pjm′ , and xjm 6= xjm′ , one can identify (σ, α, β) by correcting for both sample selection and

endogeneity following Powell (2001).

(i) Sample Selection. Compute the difference ln(sjm/s0m)− ln(sjm′/s0m′) from (29) to get

rid of the nonparametric selection function ρj(Pj (xm)).

(ii) Endogenity. Apply standard IV arguments using instruments derived from xm to

the linear regression ln(sjm/s0m)− ln(sjm′/s0m′) on ln[(sjm+ S−jm)/s0m]− ln[(sjm′ +

S−jm′)/s0m′ ], pjm − pjm′ , and xjm − xjm′ . Valid instruments in this IV regression can

be the observed characteristics of products other than j (the so-called BLP instru-

ments). �

Under the conditions in Example 2, the market entry condition has only one unob-

servable variable – ηjm – that enters additively in the inequality that defines the selec-

tion/entry decision. The model becomes a standard sample selection model. However,

though practically convenient, the conditions in Example 2 are not realistic and likely to

be rejected in most empirical applications.4 In particular, restriction (1∗) — firms do not
4The model of Example 2 is over-identified, allowing for the testability of its over-identifying restrictions.
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have any information about demand/cost variables ξ∗jm when making entry decisions –

seems very unrealistic. Firms typically have more information about their own business

than the researcher, for example about their demand. This restriction is key for the poten-

tial misspecification of the selection control function in the estimation of demand.

Example 3. Distribution of κm has finite support. Consider the model under Assump-

tions 1 to 3, but with the additional additional restriction that κm has finite support. Let

Pj(xm, κm) be the equilibrium probabilities in the entry game in market m. By definition,

we have that Pj(xm, κm) ≡ E[ajm|xm, κm], and:

on eqn 31and the line below, on eqn 32, and eqn 34.

Pj(xm, κm) = Fη

(
πP

j (xm, κm)
)

, (30)

This expression, together with the invertibility of the CDF Fη, implies a one-to-one rela-

tionship between the equilibrium CCPs and equilibrium expected profit: πP
j (xm, κm) =

F−1
η (Pj(xm, κm)).

This has important implications on the structure of the selection function λj(xm). First,

note that by definition:

Pj (xm) = ∑
κm∈K

Pj(xm, κm) fκ (κm) (31)

where K represents the finite support set of κm. Define λ̃j(xm, κm) ≡ E[ξ jm|xm, κm, ajm =

1]. Similarly, by definition, we have that,

λj(xm) = ∑
κm∈K

λ̃j(xm, κm) fκ (κm) (32)

Also, applying the relationship πP
j (xm, κm) = F−1

η (Pj(xm, κm)), we have that:

λ̃j(xm, κm) =
∫

ξ jm 1
{

F−1
η (Pj(xm, κm))− ηjm ≥ 0

} fξ,η|κ
(
ξ jm,ηjm|κm

)
Pj(xm, κm)

d
(
ξ jm,ηjm

)
,

≡ ψj
(

Pj (xm, κm) , κm
)

(33)

Combining the demand equation with equations (32) and (33), we obtain the regression

equation:

ln
(

sjm

s0m

)
= σ ln

(
sjm + S−jm

s0m

)
+ α pjm+ x′jm β+

[
∑

κm∈K
ψj
(

Pj (xm, κm) , κm
)

fκ (κm)

]
+ ξ̃ jm,

(34)
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An important implication is that the selection term can be represented as a function of

an identifiable vector of dimension potentially lower than xm. �

In the next section, we present identification results on the nonparametric identifica-

tion of the equilibrium CCPs Pj (xm, κm) and the distribution of κm, and given this result,

we establish the identification of demand parameters.

4 Identification

4.1 Data and Sequential Identification

Suppose that each of the J firms is a potential entrant in every local market. The re-

searcher observes these firms in a random sample of M markets. For every market m, the

researcher observes the vector of exogenous variables xm, and the vectors of firms’ entry

decisions (am), prices (pm), and market shares (sm).

Let θ ∈ Θ be the vector that includes all the parameters of the model, where Θ is the

parameter space. This vector has infinite dimension because some of the structural pa-

rameters are real-valued functions. The vector θ has the following components: demand

parameters θδ ≡ (α, β, σ); probability distribution of demand/cost signals, Fκ; equilib-

rium choice probabilities, Pj,x,κ ≡ (Pj(x, κ) : for every j, x, κ); the probability distribution

of private information Fη, and the distribution of unobserved demand conditional on sig-

nals, fξ|η,κ. In summary, θ ≡ (θδ, Pj,x,κ, fκ, fξ|η,κ, Fη). In this paper, we are interested in

the identification of demand parameters θδ when the distributions fκ and fξ|η,κ and the

equilibrium choice probabilities Pj,x,κ are nonparametrically specified.

We consider a two-step sequential procedure for the identification of θδ, along the lines

of the procedure in Example 2 above. First, given the empirical entry probabilities Pj (x),

we establish the identification of the equilibrium probabilities Pj,x,κ and the distribution

fκ. Then, given the structure of the selection function in (34), we show that θδ is identified

using instrumental variables in the context of a partially linear model as in Powell (2001).

4.2 First Step: Game of Market Entry

In this subsection, we present two different results on the identification of Pj,x,κ and fκ.

The first result restricts the distribution of κm to have finite support, but this distribution

is fully nonparametric. The second result is based on the additivity between zm and κm
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in the expected profit function, as established in Lemma 3. This result applies to either a

continuos or discrete distribution of κm but it limits the number of unknown parameters

for the researcher in this distribution.

4.2.1 Identification based on finite support of κm

Assumption 4. The probability distribution of the vector of signals κm has finite support. �

The identification of the equilibrium probabilities Pj,x,κ and the distribution fκ is based

on the joint conditional probability of entry of the J firms in any market:

P(am|xm) =
L

∑
κ=1

fκ(κ|xm)

[
J

∏
j=1

[
Pj,xm,κ

]ajm
[
1− Pj,xm,κ

]1−ajm

]
. (35)

where L is the number of κ’s with fκ(κ) > 0. This system of equations describes a non-

parametric finite mixture model. The identification of this class of models has been stud-

ied by Hall and Zhou (2003), Hall et al. (2005), Allman et al. (2009), and Kasahara and

Shimotsu (2014). Identification is based on the assumption of independence between

firms’ entry decisions once we condition on xm and κm. Note that this system of equa-

tions does not involve any restriction across equations for different values of xm. We can

then study the point-wise identification of this system, for each value of x. For notational

simplicity, in the remaining part of this subsection we omit any further reference to xm

and to the market subscript m.

The number of components L in the finite mixture (35) is typically unknown to the

researcher. Following ideas similar to Bonhomme et al. (2016), Xiao (2018), and Aguir-

regabiria and Mira (2019), we start our first step identification argument by providing

sufficient conditions for the unique determination of L from observable items. In particu-

lar, we adapt to our context Proposition 2 in Aguirregabiria and Mira (2019) and Lemma

1 in Xiao (2018).

Suppose that J ≥ 3 and let (Y1, Y2, Y3) be three random variables that represent a

partition of the vector of firms’ actions (a1, a2, ..., aJ) such that Y1 is equal to the action of

one firm (if J is odd) or two firms (if J is even), and variables Y2 and Y3 evenly divide the

actions of the rest of the firms. Denote by J̃ the number of firms collected in Yi, i = 2, 3,

with J = 2 J̃ + 1 if J is odd or J = 2 J̃ + 2 if J is even. For i = 1, 2, 3, let PYi(κ) be the

vector of CCPs for each element of Yi conditional on component κ. The main idea is then
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to identify L from the observed joint distribution of Y2 and Y3:

P(Y2 = y2, Y3 = y3) ≡
L

∑
κ=1

Pr(Y2 = y2|κ) Pr(Y3 = y3|κ) fκ(κ)

or, in matrix notation,

PY2,Y3 ≡ PY2|κ diag( f κ) P′Y3|κ, (36)

where: PY2,Y3 is the 2 J̃ × 2 J̃ matrix with elements P(y2, y3); PYi|κ is the 2 J̃ × L matrix with

elements Pr(Yi = y|κ); and diag( f κ) is the L× L diagonal matrix with the probabilities

fκ(κ).5

LEMMA 5. Without further restrictions, Rank(PY2,Y3) is a lower bound to the true value of

parameter L. Furthermore, if (i) L < 2 J̃ and (ii) for i = 2, 3 the L vectors PYi(κ = 1), PYi(κ = 2),

..., PYi(κ = L) are linearly independent, then L = Rank(PY2,Y3). �

The point identification of the number of components L from the observed matrix

PY2,Y3 hinges on a “large enough” number of firms J̃ and on the matrices PY2|κ and PY3|κ

being of full column rank, so that the CCPs associated to each component κ cannot be

obtained as linear combinations of the others.

Given L and a value of x, the number of restrictions in (35) is equal to 2J − 1 (i.e., the

number of non-redundant values of the vector a = (a1, a2, ..., aJ)), and the number of

free parameters is JL+ (L− 1), i.e., JL CCPs, and L− 1 mixing probabilities. Therefore, a

necessary order condition for identification is 2J ≥ (J + 1)L, or equivalently L ≤ 2J/(J +

1). Even with only two market types, L = 2, sequential identification requires more than

two firms/products, J ≥ 3.6

Allman et al. (2009) study the identification of nonparametric multinomial finite mix-

ture models that include our binary choice model as a particular case. They establish that

a mixture with L components is identified if J ≥ 3 and L ≤ 2J/(J + 1). The following is

an application to our model of Theorem 4 and Corollary 5 in Allman et al. (2009).

PROPOSITION 1. Suppose that: (i) J ≥ 3; (ii) L ≤ 2J/(J + 1); and (iii) for i = 1, 2, 3, the L

vectors PYi(κ = 1), PYi(κ = 2), ..., PYi(κ = L) are linearly independent. Then, the probability

5Remember that if J is odd, then J̃ = (J − 1)/2; while if it is even, then J̃ = (J − 2)/2.
6As shown in Aguirregabiria and Mira (2019), identification can be achieved with J = 2 if the sequential

identification approach is replaced with a joint identification approach. See Proposition 6 in Aguirregabiria
and Mira (2019), and section 5.4 in that paper, where the authors present an example of a two player (J = 2)
binary choice game with L = 2 that is identified.
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distribution of κ – fκ(κ) for κ = 1, 2, ..., L – and the equilibrium CCPs – Pj(κ) for j = 1, 2, ..., J

and κ = 1, 2, ..., L – are uniquely identified up to label swapping �

Note that the order condition (i) of Lemma 5 is in general more stringent than the

order condition (ii) of Proposition 1: that is, for J ≥ 3, we have that 2 J̃ ≤ 2J/(J + 1).

In this sense, for any J ≥ 3, when the conditions in Lemma 5 hold and the L vectors

PY1(κ = 1), PY1(κ = 2), ..., PY1(κ = L) are linearly independent, then L = Rank(PY2,Y3),

and the distribution of κ and the equilibrium CCPs are uniquely identified, up to label

swapping.

4.2.2 Identification based on additivity between zm and κm in expected profit

Assumption 4’. (i) The expected profit function πP
j (x̃m, wm) is strictly monotonic in each of the

arguments wim that form the vector wm = zm + κm. (ii) κm is independent of zm (though it

may have dependence with respect to x̃m) with a CDF Fκ that is known to the researcher up to a

finite vector of parameters θκ. (iii) ηjm is independent of (κm, zm) and is i.i.d. with a CDF Fη

that is strictly increasing over the real line and is known to the researcher. (iv) zm is a vector of

continuous random variables with support RJ . �

Proposition 2 presents our first identification result in our sequential approach.

PROPOSITION 2. Suppose that Assumptions 1 to 3 and 4’ hold. (A) The equilibrium choice

probability functions Pj,x,κ are nonparametrically identified over the whole support of the variables

(xm, κm). (B) The vector of parameters θκ that defines the CDF of κm is identified as long as the

dimension of θκ is not larger than J − 1. �

Proof of Proposition 2. For notational simplicity, we omit the argument x̃m but all the

results below can be interpreted as conditional to an arbitrary value of this vector of ob-

servable variables. Define Pj(z) ≡ Pr(ajm = 1|zm = z) = E[ajm|zm = z]. It is clear that

Pj(z) is nonparametrically identified for every z ∈ RJ . According to the model:

Pj(z) =
∫

Pj(z1 + κ1, ..., zJ + κJ) dFκ(κ1, ..., κJ) (37)

We want to show the identification of the function Pj(w1, ..., wJ) for every (w1, ..., wJ) ∈ RJ .

For the sake of illustration, we start showing identification for the simpler case with J = 1.

Also, given that the results are for a given firm/product j, we also omit the subindex j.
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Proof for J = 1. In this case J − 1 = 0 such that Proposition 1(B) implies that there is

not any θκ to identify and the CDF Fκ is known to the researcher. We need to show the

identification of P(w) for every w ∈ RJ .

The entry equilibrium condition is am = 1{πP(zm + κm)− ηm ≥ 0}. Strict monotonic-

ity of the expected profit function implies that we can represent the equilibrium condition

as am = 1{ vm ≤ zm}, where vm is the random variable equal to π−1(ηm)− κm, and π−1(.)

is the inverse function of πP(.). Therefore, for any z ∈ R, we have that P(z) = Fv(z),

where Fv is the CDF of vm. This means that Fv is identified over the whole real line. Next,

given the CDFs Fv and Fκ we identify the CDF of the random variable η̃m ≡ π−1(ηm)

applying deconvolution properties (see Horowitz, 1998, chapter 4). For t ∈ R, let ϕv(t),

ϕη̃(t), and ϕκ(t) be the characteristic function of the variables v, η̃ and κ, respectively. By

definition, for any random variable x with CDF Fx, we have that ϕx(t) =
∫ +∞
−∞ exp{i t x}

dFx(x). Independence between η̃ and κ, together with v = η̃ − κ, implies that ϕv(t) =

ϕη̃(t)/ϕκ(t), such that ϕη̃(t) = ϕv(t) ϕκ(t). Taking into account the relationship between

the characteristic function and the CDF of a continuous random variable, we have that

for any value u0 ∈ R:

Fη̃(u0) =
∫ u0

−∞

∫ +∞

−∞

1
2π

exp {−i t u} ϕv(t) ϕκ(t) dt du (38)

with ϕv(t) =
∫ +∞
−∞ exp{i t v} dFv(v) and ϕκ(t) =

∫ +∞
−∞ exp{i t κ} dFκ(κ). Therefore,

equation (38) provides a closed-form expression representation of the identification of Fη̃

given Fv and Fκ. Finally, given the CDF Fη̃, we have that for any value w ∈ R, Fη̃(w) =

Pr(π−1(ηm) ≤ w) = Pr(ηm ≤ πP(w)) = Fη(πP(w)) = P(w) such that P(w) is identified

as P(w) = Fη̃(w). Or taking into account equation (38) and Fv(z) = P(z), for any value

w ∈ R:

P(w) =
∫ u0

−∞

∫ +∞

−∞

1
2π

exp {−i t u} ϕκ(t)
[∫ +∞

−∞
exp{i t z} dP(z)

]
dt du (39)

Note that in this proof we have not used any parametric restriction on the distribution of

the unobserved private information ηm.

Proof for J > 1. For the moment, consider that the distribution of the vector κm is known

to the researcher. The entry equilibrium condition is am = 1{πP(z1m + κ1m, ..., zJm +

κJm) − ηm ≥ 0}. Strict monotonicity of the expected profit function with respect to

each of the J arguments, say argument i, implies that we can represent the equilibrium
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condition as am = 1{ vim ≤ zim}, where vim is the random variable η̃im − κim, with

η̃im ≡ π−1(i)(ηm, z−im + κ−im) and π−1(i) is the inverse function of πP(.) with respect

to its i − th argument. Note that this inverse function not only depends on ηm but also

on the vector z−im + κ−im with elements z`m + κ`m for every ` 6= i. For this reason, the

random variable vim depends on z−im, and we use Fvi|z−i
to represent the CDF of vim con-

ditional on z−im. Given the representation am = 1{ vim ≤ zim}, we have that for any

vector z ∈ RJ , P(z) = Pr(vim ≤ zi|zm = z) = Fvi|z−i
(zi). This means that the conditional

distribution Fvi|z−i
(u) is identified everywhere, for any u ∈ R, and z−i ∈ RJ−1.

4.3 Second Step: Identification of Demand Parameters

Following the discussion in section 2.2, we represent the demand system using the inverse

d(a)−1
j (s(a)m , p(a)m , x(a)m ) from Lemma 1. Among those markets with ajm = 1, this system

can be expressed as:

δjm(σ) = α pjm + x′jm β+ ξ jm, (40)

where we use the notation δjm(σ) to emphasize that δjm is a function of the parameters

σ characterizing the distribution of the random coefficients υh. The selection problem

appears because the unobservable ξ jm is not mean independent of the market entry (or

product availability) condition ajm = 1. Therefore, moment conditions that are valid

under exogenous product selection may no longer be valid when ξ jm and ajm are not

independent.

Suppose for a moment that the market type κm were observable to the researcher after

identification in the first step. In this case, the selection term would be ψj
(

Pj(xm, κm), κm
)

from equation (33) and we would have — as in Example 2 — a relatively standard selec-

tion problem represented by the semiparametric partially linear model:

δjm(σ) = α pjm + x′jm β+ ψj
(

Pj(xm, κm), κm
)
+ ejm. (41)

A key complication of the selection problem in our model is that the market type

κm is unobserved to the researcher. After the first step identification, we do not know

the unobserved type of a market but only its probability distribution conditional on xm.

Therefore, in the second step we cannot condition on κm as in Example 2 or (41) and, as

derived in equation (33) of Example 3, we instead need to deal with the more complex
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selection function:

λj(xm) ≡ E
[
ξ jm|xm, ajm = 1

]
=

L
∑

κ=1
fκ(κ) ψj

(
Pj(xm, κ), κ

)
= f ′κψj(Pjm), (42)

where f κ, Pjm, and ψj(Pjm) are all vectors of dimension L × 1 such that f κ ≡ ( fκ(κ) :

κ = 1, 2, ..., L), Pjm ≡ (Pj(xm, κ) : κ = 1, 2, ..., L), and ψj(Pjm) ≡ (ψj
[
Pj(xm, κ), κ

]
: κ =

1, 2, ..., L).

An important implication of Assumption 4 is that the selection term can be repre-

sented as a function of an identifiable vector of dimension potentially lower than xm. Let

us denote Pjm ≡ (Pj(xm, κ) : κ = 1, 2, ..., L), the vector collecting the CCPs identified in

the first step. Then, equation (42) implies:

E
[
ξ jm|Pjm, ajm = 1

]
= E

[
E
[
ξ jm|xm, ajm = 1

]
|Pjm, ajm = 1

]
= f ′κψj(Pjm) (43)

We are interested in the identification of the true demand parameters θδ ≡ (α, β, σ)

given a nonparametric specification of the functions ψj(Pj(xm, κ), κ), κ = 1, 2, ..., L. As in

Example 2, we follow the pairwise differencing strategy proposed by Ahn and Powell

(1993), Powell (2001), and Aradillas-Lopez et al. (2007). For firm j active in markets m

and n with Pjm = Pjn, one can eliminate the nonparametric selection term by differenc-

ing it out. Identification of θδ then hinges on the availability of valid instruments both to

address the problem of price endogeneity and to pin down the parameters of the distri-

bution of random coefficients, σ. Define the vector of regressors as x̃jm = (pjm, x′jm)
′ and

the associated demand parameters as β̃ ≡ (α, β), then for any two markets m and n such

that Pjm = Pjn:

δjm(σ)− δjn(σ) = (x̃jm − x̃jn)
′ β̃+ (ejm − ejn). (44)

Define the vector of instruments as ζ̃ jm = (ζ′jm, x′jm)
′, where ζ jm is constructed from

xm, and the moment function obtained from (44) by g(ejm, ejn, θδ) = (ζ̃ jm− ζ̃ jn)(ejm− ejn).

Our second step identification is then based on the moment conditions:

E[g(ejm, ejn, θ0
δ)|Pjm = Pjn, ajm = ajn = 1] = 0, (45)

whose Jacobian matrix can be expressed as:

Σ(θδ) =
∂E[g(ejm, ejn, θδ)|Pjm = Pjn, ajm = ajn = 1]

∂θ′δ
. (46)
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The following is a sufficient condition commonly used for identification in semipara-

metric partially linear models, see for example, Chamberlain (1986), Robinson (1988),

Coslett (1991), Ahn and Powell (1993), Powell (2001), Aradillas-Lopez et al. (2007), or

Newey (2009).

Assumption 5. The following conditions hold. (A) Exogeneity of the instruments: E[ejm − ejn

| ζ̃ jm − ζ̃ jn, Pjm = Pjn, ajm = ajn = 1] = 0. (B) The conditional distribution of Pjm given

ajm = 1 is absolutely continuous with respect to the Lebesgue measure and bounded from above.

(C) The Jacobian matrix Σ(θδ) defined in equation (46) has constant and full column rank in a

neighborhood of the true demand parameters θδ. �

PROPOSITION 3. Given Assumptions 1 to 5, the true value of the demand parameters θδ ≡
(α, β, σ) is locally identified. �

5 Estimation and Inference

In this section, we describe an estimation method based on our identification result in

Proposition 1. Similar to identification, estimation also unfolds in two sequential steps. In

the first step, we initially determine the number of unobserved market types L(xm) and

then estimate f κ and Pjm building on the non-parametric procedure proposed by Xiao

(2018). The second step instead follows Aradillas-Lopez et al. (2007): we use our first

step f̂ κ and P̂jm to construct an estimate of Pjm necessary to difference out the selection

term f ′κψj(Pjm) as in (44) and to obtain estimates of the true demand parameters θδ.

5.1 First Step: Estimation of f κ and Pjm

In this section, we discuss the estimation of f κ and Pjm from data on firms’ entry decisions

across markets. For this, we build on the nonparametric procedure proposed by Xiao

Xiao (2018). We describe how to determine L(xm) = Rank(PY2,Y3(xm)) and then — for

given L — the nonparametric estimation of f κm and Pjm. Note that, even though the two-

step estimator proposed by Xiao (2018) is not robust to the general form of unobserved

heterogeneity considered here, her first step is still valid for the estimation of f κm and Pjm.

As discussed by Aguirregabiria and Mira (2019), the identification up to label swapping

in the first step would — in the context of our model — cause problems in the second step

of Xiao (2018)’s procedure, i.e. the estimation of firms’ profit functions. As illustrated in
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the previous section though, for the purpose of correcting demand estimates from sample

selection, we only need estimates of f κm and Pjm.

Employing the sequence of rank tests implemented by Xiao (2018) on the basis of

Robin and Smith (2000), we illustrate how to determine L(xm) = Rank(PY2,Y3(xm)). Xiao

(2018) uses frequency estimators and assumes that xm is discrete. We instead allow for

xm to contain both discrete and continuous variables. Denote the sub-vector of discrete

variables in xm by xd
m and the continuous one by xc

m, where xc
m ∈ Rq. For any realization

xm = x ≡ (xc, xd), we estimate each element of the matrix of joint probabilities PY2,Y3(x)

by:

P̂r(Y2m = y2, Y3m = y3, xm = x) =
∑M

m=1 1
(
Y2m = y2, Y3m = y3, xd

m = xd)Kb1(x
c
m, xc)

∑M
m=1 1

(
xd

m = xd
)

Kb1(x
c
m, xc)

,

(47)

where Kb1(x
c
m, xc) = ∏

q
s=1 k

(
xc

ms−xc
s

b1

)
and k(·) is a kernel function, b1 a bandwidth, and

1(·) the indicator function. In the remaining part of this section, we denote by P̂ an esti-

mator of matrix P along the lines of (47) and, when our arguments are conditional on a

specific realization of xm, for notational simplicity we omit the reference to xm. Each rank

test in the sequence r = 1, ..., 2 J̃ − 1 has null hypothesis Hr
0 : Rank(PY2,Y3) = r against the

alternative Hr
1 : Rank(PY2,Y3) > r and is based on a characteristic root statistic denoted

by CRTr. The sequence of tests starts with a null hypothesis of rank equal to r = 1. If the

null is rejected, then r = 2 and the test is repeated, and so on. Along the sequence of tests,

Rank(PY2,Y3) is estimated to equal that value of r for which Hr
0 obtains the first rejection.

In order to guarantee weak consistency of the rank estimator, Xiao (2018) adjusts the

asymptotic size αr of the test at each stage r to depend on the sample size M, αrM. The

critical region at stage r corresponding to the adjusted critical value cr
1−αrM

is then denoted

by {CRTr ≥ cr
1−αrM

}. Finally, the estimator of L is defined as:

L̂ ≡ minr∈{1,...,2 J̃−1}{r : CRTr ≥ ci
1−αiM

, i = 1, ..., r− 1, CRTr < cr
1−αrM

}. (48)

Xiao (2018) shows in her Appendix C the weak consistency of L̂. For more detail on rank

tests, see also Robin and Smith (2000) and Kleibergen and Paap (2006).7

7Given the well known difficulties in characterizing the asymptotic distribution of rank estimators, in
what follows we consider L̂ as a tool to facilitate model selection. In this sense, we interpret the weak
consistency of L̂ as consistent model selection. See Xiao (2018) for a discussion, especially in relation to the
next part of the estimation procedure.
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Once the number of components L is determined, Xiao (2018)’s nonparametric estima-

tor of f κ,m and Pjm requires “collapsing” the 2 J̃ × 2 J̃ matrix PY2,Y3 of rank L into a smaller

L × L non-singular matrix PỸ2,Ỹ3
. The non-singular matrix PỸ2,Ỹ3

can be obtained from

PY2,Y3 by summing up some of its columns and rows, and Lemma 2 in Xiao (2018) proves

that such a transformation is always possible given our assumptions.8 Given PỸ2,Ỹ3
, we

define the full rank matrices PỸ2|κ and PỸ3|κ as in (36), the diagonal matrix PY1=a|κ ≡
diag [Pr(Y1 = a|κ = 1), ..., Pr(Y1 = a|κ = L)], and the observed matrix PY1=a,Ỹ2,Ỹ3

as:

PY1=a,Ỹ2,Ỹ3
≡ PỸ2|κ PY1=a|κ diag{ f κ} P′Ỹ3|κ,

where all the matrices are of dimension L × L. On the basis of the following eigen-

decomposition:

PY1=a,Ỹ2,Ỹ3
P−1

Ỹ2,Ỹ3
= PỸ2|κ PY1=a|κ P−1

Ỹ2|κ
, (49)

we estimate PỸ2|κ as the L× L eigenvector matrix:

P̂Ỹ2|κ = e
(

P̂Y1=a,Ỹ2,Ỹ3
P̂
−1
Ỹ2,Ỹ3

)
, (50)

where the operator e(·) denotes the eigenvector function. Note that here the scale is

determined by imposing that each column of PỸ2|κ is a probability distribution that must

sum up to 1. Given P̂Ỹ2|κ, we can estimate f κ and PỸ3|κ, respectively, by:

f̂ κ = P̂
−1
Ỹ2|κ P̂Ỹ2

P̂Ỹ3|κ =

[(
P̂Ỹ2|L diag{ f̂ κ}

)−1
P̂Ỹ2,Ỹ3

]′
,

(51)

where PỸ2
is the observed L× 1 vector of marginal probabilities Pr(Ỹ2 = ỹ2), ∀ỹ2, 1 is a

L× 1 vector of 1’s.

In the last step of the procedure, we estimate the CCPs for firm j on the basis of the

two following systems of equations:

PỸ2,j = PỸ2|κ diag{ f κ} P′j,κ for any aj part of Y1 or Ỹ3

Pj,Ỹ3
= Pj,κ diag{ f κ} P′Ỹ3|κ

for any aj part of Ỹ2,
(52)

8Given that for any PY2,Y3 there are many ways of constructing L× L matrices, Xiao (2018) suggests to
create various candidates and then to pick the one associated to the smallest condition number (the smaller
the condition number of a matrix, the more likely the matrix is to be non-singular).
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where PỸ2,j is the observed L × 2 vector of joint probabilities Pr(Ỹ2 = ỹ2, aj = a), ∀ỹ2,

a ∈ {0, 1}, Pj,Ỹ3
is the analogous observed 2× L vector, and Pj,κ is the vector of firm j’s

CCPs. Pj,κ can finally be estimated for any firm j as:

P̂j,κ =

[(
P̂Ỹ2|κ diag{ f̂ κ}

)−1
P̂Ỹ2,j

]′
for any aj part of Y1 or Ỹ3

P̂j,κ = P̂j,Ỹ3

(
diag{ f̂ κ} P̂

′
Ỹ3|κ
)−1

for any aj part of Ỹ2.

(53)

Xiao (2018) characterizes the asymptotic properties of the procedures described here and

shows that the proposed estimator is
√

M-consistent and asymptotically normal when xm

is discrete. To reduce estimation bias in the first step and guarantee a parametric rate of

convergence of the second step estimator, we rely on higher order kernels in the first step

estimator.

5.2 Second Step: Estimation of θδ

Here we describe a GMM estimator θ̂δ of the true demand parameters θ0
δ = (β̃

0
, σ0) from

demand model (44) that builds on Aradillas-Lopez et al. (2007). We refer the reader to

Ahn and Powell (1993), Powell (2001), as well as Aradillas-Lopez (2012) for additional

details on the original method. We illustrate that the second step estimator θ̂δ achieves a

parametric rate of convergence and is asymptotically normal despite the nonparametric

first step estimator of Pjm, P̂jm ≡
(

P̂j(xm, κ) : κ = 1, 2, ..., L
)

.

In demand model (44), the nonparametric selection term f ′κmψj(Pjm) is differenced out

relying on a pair of markets m and n where firm j is active and such that f ′κ,mψj(Pjm) =

f ′κ,nψj(Pjn). In practice, there may be no such pair of markets for any firm j and this exact

differencing may not be possible. To overcome this practical difficulty, Aradillas-Lopez et

al. (2007) propose a GMM estimator on the basis of the differences between all possible

pairs of markets (m, n) in which firm j is active, with each pair weighed according to the

“distance” between the estimated Pjm and Pjn:

Djmn =
1

(b2)L

L

∏
κ=1

k̃

(
P̂j,xm,κ − P̂j,xn,κ

b2

)
, (54)

where k̃(·) is a kernel function, and b2 is a bandwidth.
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Given demand model (44), moment conditions (45), and weights as in (54), building

on Aradillas-Lopez et al. (2007) we propose to estimate θ0
δ by GMM as follows:

θ̂δ = arg min
θδ

(
J

∑
j=1

(
Nj
2

))−1 J

∑
j=1

∑
m,n∈Nj
m<n

Djmn g(ejm, ejn, θδ)
′ Ω g(ejm, ejn, θδ), (55)

where Nj = ∑M
m=1 ajm is the number of markets where firm j is active, Nj the collection

of these Nj markets, g(ejm, ejn, θδ) = (ζ̃ jm − ζ̃ jn)(ejm − ejn) the moment function obtained

from demand model (44), and Ω a positive definite symmetric weighting matrix.

Because kernel methods as those used here are not accurate in the tails of distributions,

following Robinson (1988) and Aradillas-Lopez et al. (2007), we trim the extreme realiza-

tions of xm to reduce the bias in the nonparametric first step estimator P̂jm. Accordingly,

our second step GMM estimator becomes:

θ̂δ = arg min
θδ

1
M̃

J

∑
j=1

∑
m,n∈Nj
m<n

Djmn g(ejm, ejn, θδ)
′ Ω g(ejm, ejn, θδ) φ(xjm) φ(xjn), (56)

where M̃ =

(
∑J

j=1

(
Nj
2

))
and φ(·) is a trimming function.

Note that, for nested logit model (25) with ln(sjm/s0m) = δjm, in the just-identified

case (56) simplifies to the linear IV estimator proposed by Powell (2001):

θ̂δ =

( J

∑
j=1

(
Nj
2

))−1

Σ̂ζx

−1

×

( J

∑
j=1

(
Nj
2

))−1

Σ̂ζδ

 (57)

where

Σ̂ζx =
J

∑
j=1

Nj−1

∑
m=1

Nj

∑
n=m+1

Djmn (ζ jm − ζ jn) (x̃jm − x̃jn)
′

Σ̂ζδ =
J

∑
j=1

Nj−1

∑
m=1

Nj

∑
n=m+1

Djmn (ζ jm − ζ jn) (δjm − δjn)
′.
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6 Monte Carlo Experiments

In this section, we present results from several Monte Carlo experiments. The purpose

of these experiments is threefold. First, we want to evaluate the performance of the pro-

posed estimation method to deal with sample selection. We are particularly interested

in evaluating the loss of precision due to the nonparametric approach. Second, we are

interested in measuring the magnitude of the biases associated to different forms of mis-

specification of the model. Finally, we compare our method with alternative approaches.

6.1 Data Generating Process

The industry consists of three firms (J = 3) and M ∈ {500, 1000, 5000, 10000} geographic

markets. Each firm sells one product.

6.1.1 Consumer demand.

Consumer demand is a nested logit with two nests. One nest includes only the outside

alternative j = 0, and the other nest includes all the J = 3 products. Therefore, if ajm = 1,

the equation for the demand of product j = 1, 2, 3 is:

ln
(

sjm

s0m

)
= β xjm + α pjm + σ ln

(
sjm

1− s0m

)
+ ξ jm, (58)

where sjm/(1− s0m) = sjm/(s1m+ s2m+ s3m) is the within-nest market share of product j.

Variable xjm is a characteristic of product j that varies across markets.9 We consider that

xjm ∼ i.i.d. |N(0, σ2
x)|. We use xm to represent vector (x1m, x2m, x3m).

6.1.2 Demand unobservables.

The demand unobservables (ξ1m, ξ2m, ξ3m) are distributed according to a mixture of nor-

mals. More specifically, there are two ‘types’ of markets, indexed by κ ∈ {`, h}. The type

of market m, κm, determines the mean of the normal distribution of the variables ξ jm. This

mean is equal to µ` if κm = ` and equal to µh if κm = h. Accordingly, we have that:

ξ jm ∼ 1{κm = `} N(µ`, σ2
ξ ) + 1{κm = h} N(µh, σ2

ξ ) (59)

9For instance, in the demand for air travel, consumers value an airline’s degree of operation in the origin
and destination airports of the market. Therefore, xjm can be the number of other airports that the airline
connects to from/to the airports in market m.
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Market type κm is independent of xm and i.i.d. across markets with Pr(κm = `) = fκ(`).

The realization of the normal random variables N(µ`, σ2
ξ ) and N(µh, σ2

ξ ) is independent

over markets and over firms. Note that the market type κm is the same for the three firms,

and this introduces positive correlation between the variables ξ1m, ξ2m, and ξ3m.

Note that variable ξ jm is correlated with the unobservable component of the entry cost

ηjm. See below in our description of the market entry game.

6.1.3 Price competition and marginal costs.

Given an hypothetical entry profile a = (a1, a2, a3) ∈ {0, 1}3, firms compete in prices a

la Bertrand. In this nested logit model, equilibrium prices given entry profile a – that we

represent as pm(a) = (p1m(a),p2m(a),p3m(a)) – are the solution to the following system

of best response equations:

pjm(a) = mcjm −
1− σ

α
(

1− σ
sjm(pm(a),a)

s1m(pm(a),a)+s2m(pm(a),a)+s3m(pm(a),a)
− (1− σ) sjm(pm(a), a)

) .

(60)

To avoid the computation of this Bertrand equilibrium (for every market and Monte Carlo

simulation), we consider that prices come from the following approximation to an equi-

librium:

pjm(a) = mcjm −
1− σ

α

(
1− σ

s∗jm(mcm,a)
s∗1m(mcm,a)+s∗2m(mcm,a)+s∗3m(mcm,a) − (1− σ) s∗jm(mcm, a)

) , (61)

where s∗jm(mcm, a) represents the market share of product j in market m under entry

profile a and under the hypothetical scenario that the price of each firm were equal to

its marginal cost. That is, a firm’s price is equal to its best response to the belief that other

firms are charging their marginal costs.

A firm’s marginal cost in market m is a deterministic function of xjm: mcjm = ω0 +ω1

xjm, where ω0 and ω1 are parameters.

6.1.4 Market entry game.

When making their entry decisions, firms know xm and κm. Let a−j represent the vec-

tor with the (hypothetical) entry decisions of all the firms except j. Let πj
(
a−j, xm,κm

)
be the expected variable profit for firm j given

(
a−j, xm,κm

)
. This variable profit is ob-
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tained integrating [pj
(
a−j, xm,ξm

)
− mcjm] sj

(
a−j, xm,ξm

)
over the distribution of ξm =

(ξ1m, ξ2m, ξ3m) conditional on κm.

The entry cost of firm j in market m is γj zm + ηjm, where γj is a parameter, zm is

a variable that is observable to the researcher, and ηjm is unobservable and i.i.d. over

(j, m)with standard normal distribution. Variable zm is i.i.d. over markets with a Uniform

distribution over the interval [zmin, zmax]. The M sample realizations of zm are generated

by dividing interval [zmin, zmax] into a grid of M equally spaced points. Let ∆ = (zmax −
zmin)/(M− 1). Then, for any market m = 1, 2, ..., M, we have that zm = zmin + (m− 1)∆.

We keep this grid fixed across all the Monte Carlo simulations. Firm j knows zm and at its

own ηjm when making its entry decision.

Given (xm, zm, κm), we solve for a Bayesian Nash equilibrium of the entry game by

solving the following system of 3 equations and three unknown probabilities (P1m, P2m, P3m).

For j = 1, 2, 3 :

Pjm = Φ
(

πP
j (xm,κm)− γj zm

)
(62)

where πP
j (xm,κm) = ∑a−j∈{0,1}2

[
∏i 6=j (Pim)

ai (1− Pim)
1−ai

]
πj
(
a−j, xm,κm

)
, and Φ(.) is

the CDF of the standard normal.

The unobserved entry variable ηjm is correlated with the demand unobservable ξ jm.

Note that this introduces a source of endogenous selection in addition to the one that

comes from κm. Parameter ση,ξ measures the correlation between ηjm and ξ jm. Therefore,

we have that:

E
(
ξ jm | xm, zm, κm, ajm = 1

)
= µκm + ση,ξ

φ
((

πP
j (xm,κm)− γj zm

))
Pj (xm, zm, κm)

(63)

where φ(·) is the standard normal density function. If the researcher knew the true distri-

bution of the unobservables, then she would use equation (63) as the control function for

selection in the second step of the method. We consider that the researcher does not have

this information. However, in our experiments, we will evaluate what is the improvement

in the precision of the estimates if the researcher had this information.

6.1.5 Solving for an equilibrium of entry game.

For a given value of (xm, zm, κm), we need solve for a Bayesian Nash equilibrium of the

entry game. There are two main computational tasks involved in this solution.
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First, we need to compute the expected variable profit πj
(
a−j, xm,κm

)
for every hy-

pothetical value of a−j by integrating [pj(a−j, xm,ξm)−mcjm] sj(a−j, xm,ξm) over the dis-

tribution of (ξ1m, ξ2m, ξ3m) conditional on κm. We approximate this expectation by using

Monte Carlo simulation. That is, for each market m, we simulate 500 random draws of ξ jm

from the normal distribution N
(

µκm , σ2
ξ

)
and then obtain the average of [pj(a−j, xm,ξm)−

mcjm] sj(a−j, xm,ξm) over these simulations.

Second, we need to solve numerically for a fixed point of the system of equations (62).

We use fixed point iterations.

6.1.6 Generating simulations

Our Monte Carlo experiments are based on 100 Monte Carlo simulations or samples.

We describe here the different steps to generate one single sample in our Monte Carlo

simulations.

1. Generate the M values of zm using the grid points described above.

2. Generate M independent random draws of (xm, κm : m = 1, 2, ...M) from the distri-

bution of these variables.

3. For each market m, given (xm, zm, κm), compute the BNE CCPs (Pj(xm, zm, κm) :

j = 1, 2, 3). Then, generate ajm as a random from the Bernoulli with probability

Pj(xm, zm, κm).

4. For each market m, given κm, generate a random draw of the variables (ξ1m, ξ2m, ξ3m).

5. For each market m, given (xm, am, ξm), compute equilibrium prices and market

shares.

To better explore the performance of our estimator, we simulate 16 “types” of dataset

by varying the number of markets M ∈ {500, 1.000, 5.000, 10.000} and the number of

times we observe entry decisions being made for each market m, nobs ∈ {1, 10, 100, 1.000}.
While M affects the properties of both the first and the second step estimators, nobs only

affects the precision of the first step estimator. That is, demand is always estimated on M

observations irrespective of nobs.

Table 1 summarizes the values of all the parameters in the DGP.
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Table 1. True Values of Parameters in DGP

Parameter True Value Parameter True Value

β = 2.0 σ2
ξ = 2.0

α = −2.0 ση,ξ = 1.9999
σ = 0.6

σ2
x = 0.3

µ` = −4.0 zmin = 0.1
µh = 4.0 zmax = 0.2

fκ(`) = 0.6 γ1 = γ2 = γ3 = 1.0

6.2 Estimators

For each of the 16 possible (M, nobs) configurations, we generate 100 repetitions of the

data, and implement several estimators. The estimators we consider are the following.

(i) OLS. It is he most naive approach to the estimation of a nested logit demand system.

It ignores not only endogenous sample selection but also the endogeneity of price and of

the within-nest share.

(ii) 2SLS. It accounts for the endogenity of prices and within-nest share, but it ignores

endogenous sample selection. We construct instruments on the basis of xm. This is the

classic BLP (1995) GMM estimator.

(iii) Our estimator. It estimates CCPs Pj(xm, zm, κm) and fκ(`) nonparametrically on the

basis of nobs entry observations per market m, and then feeds them in a second step semi-

parametric estimator which controls for both endogeneity and selection. In the second

step estimator, we use the same instruments as in the 2SLS. This is our proposed estimator.

(iv) Our estimator with true CCPs. It implements the second step of our semi-parametric

estimator using as inputs the true values of the CCPs Pj(xm, zm, κm) and fκ(`), rather than

their nonparametric estimates. The purpose of looking at this estimator is to obtain a

measure of the loss of precision demand estimates due to the nonparametric estimation

of the incidental parameters in the first step.

(v) Oracle estimator. Controls for endogeneity as in BLP (1995), but it also exactly con-

trols for selection by subtracting the true value of the selection term f ′κψj(Pjm) from the

dependent variable of the 2SLS estimator. We call it Oracle because it relies on perfect
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knowledge of the selection function. Of course, this estimator is unfeasible in an actual

application. We use this estimator as a benchmark of comparison as it provides the most

precise BLP-type estimator that controls for sample selection.

The OLS, 2SLS, and Oracle always control for product-specific intercepts even though

the nested logit demand model used to generate the data does not include them (i.e.,

they are equal to zero).10 Controlling for these intercepts attenuates the estimation bias

induced by endogenous sample selection on the structural parameters. Importantly, we

do not consider the (huge) estimation bias on these intercepts (i.e., difference from zero)

in our comparisons with Our estimator and Our estimator with true CCPs.

6.3 Results

Table 2 shows some relevant statistics of the generated data for 5000 markets averaged

over 100 replications.

Table 2. Summary Statistics from DGP

Percentage of Zeros Avr market Share Average p-c/p

Firm 1 81.3% 0.16 79.9 %
Firm 2 81.4% 0.16 79.9%
Firm 3 81.4% 0.16 80%

Table 3 reports the average point estimates and their standard deviations computed

over 100 Monte Carlo repetitions for the d.g.p. with M = 1000 and nobs = 1.

10We set these product-specific intercepts to zero because Our estimator and Our estimator with true CCPs
difference them out.
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Table 3. Monte Experiment with M = 1000, nobs = 1
Mean and Standard Deviation of Parameters Estimates

Parameter True Value OLS 2SLS Our Our(True P) Oracle
β Mean 2 1.2161 1.6352 1.7754 1.9835 2.0011

Std. Dev. (0.1483) (0.1974) (0.2573) (0.0203) (0.0071)

α Mean -2 -1.9046 -1.9254 -1.9657 -1.9967 -2.0001
Std. Dev. (0.0134) (0.0136) (0.0115) (0.0017) (0.0004)

σ Mean 0.6 0.5892 0.6677 0.6277 0.6042 0.6001
Std. Dev. (0.0113) (0.0287) (0.0146) (0.0022) (0.0008)

Table 4 reports the relative root mean square error (RMSE) of three pairs of estimators

across the four d.g.p.’s with nobs = 1. The RMSE of each estimator in each d.g.p. is

computed over 100 repetitions.

Table 4. Monte Experiments with for different values of M
Ratios Between RMSEs of Different Estimators

M = 500 M = 1, 000
Our/2SLS Our/Our-True Our-True/Oracle Our/2SLS Our/Our-True Our-True/Oracle

β 0.8435 10.9144 4.4753 0.8236 13.0788 3.6581
α 0.5138 7.9534 9.4354 0.4772 9.8504 9.327
σ 0.5743 7.0440 4.3611 0.4262 6.6343 5.5341

M = 5, 000 M = 10, 000
Our/2SLS Our/Our-True Our-True/Oracle Our/2SLS Our/Our-True Our-True/Oracle

β 0.5835 17.7773 3.9737 0.4947 18.0781 4.8414
α 0.1838 7.4314 12.8114 0.1232 6.4403 13.1430
σ 0.1509 4.3426 7.1205 0.0958 3.2940 9.2273

Figure 1 plots the average root mean square error (RMSE) of “Our” estimator and

the 2SLS across the 16 possible configurations of (M, nobs). Note that we report only

one RMSE that aggregates the three demand parameters: that is, RMSE = (MSE(α̂)+

MSE(β̂)+ MSE(σ̂))1/2.
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Figure 1: Average RMSE of "Our" and 2SLS estimators
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