Wiener-Hopf Parametrization of Possibly Non-Invertible SVARMA Models

Bernd Funovits

University of Helsinki and TU Wien

Virtual ASSA 31 Dec 2020

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability

Results Identifiability

Literature

Univariate Multivariate

Identifiability

Spectral Density→Factor MA→WHF

Asymptotics

Empirical Application Monetary

Big Picture and Motivation

Impulse Response Functions and Productivity Example 1

Model, Parametrization, Identifiability

Literature

Identifiability Problem and Solution

Asymptotic Normality and Implementation

Empirical Application

Summary

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability Results

Identifiability

Literature

Univariate Multivariate

Identifiability

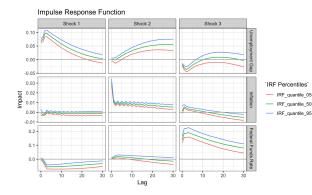
Spectral Density→Factor MA→WHF

Asymptotics

Empirical Application Monetary

Impulse Response Function (IRF)

- Trace out the response of an economic variable of interest with respect to true underlying economic shocks
 - Important part of macroeconomic analysis since "Sims (1980): Macroeconomics and Reality"



Non-Invertible SVARMA

Bernd Funovits

Big Pictur

Impulse Response

Model, Parametrization, Identifiability Results Identifiability

Literature

Univariate Multivariate

Identifiability

Spectral Density→Factor MA→WHF

Asymptotics

Empirical Application

Monetary

Reconstructing Shocks from IRF

Example: Productivity $y_t = \varepsilon_t + b\varepsilon_{t-1}$

- ε_t = Shock on productivity (i.i.d.)
 - Underlying true economic shock
- ▶ b > 1: Maximal impact occurs with lag
- 1. Can we **reconstruct** the shocks from present and past observables? No!

$$\varepsilon_t = y_t - b\varepsilon_{t-1} = y_t - by_{t-1} + b^2\varepsilon_{t-2} = \cdots$$

2. Reconstruct true underlying shock from future observables? Yes! $\varepsilon_t = \frac{1}{b} \sum_{j=1}^{\infty} \left(-\frac{1}{b}\right)^j y_{t+j}$

Non-Invertible SVARMA

Bernd Funovits

Big Picture

Impulse Response

Model, Parametrization, Identifiability Results Identifiability

Literature

Univariate Multivariate

Identifiability

 $\begin{array}{l} \textbf{Spectral} \\ \textbf{Density} \! \rightarrow \! \textbf{Factor} \\ \textbf{MA} \! \rightarrow \! \textbf{WHF} \end{array}$

Asymptotics

Empirical Application

Monetary

Big Picture and Motivation

Model, Parametrization, Identifiability Results on Parametrization Identifiability

Literature

Identifiability Problem and Solution

Asymptotic Normality and Implementation

Empirical Application

Summary

Non-Invertible SVARMA

Bernd Funovits

Big Pictur

Impulse Response

Model, Parametrization, Identifiability Results Identifiability

Literature

Univariate Multivariate

Identifiability

Spectral Density→Factor MA→WHF

Asymptotics

Empirical Application Monetary

Structural Vector Autoregressive Moving Average Models

$$\underbrace{\left(I_n - a_1 z - \dots - a_p z^p\right)}_{=a(z)} y_t = \underbrace{\left(b_0 + b_1 z + \dots + b_q z^q\right)}_{=b(z)} B\varepsilon_t,$$
(1)

- ▶ Stable AR polynonmial: det $(a(z)) \neq 0$ for all $|z| \leq 1$
- Possibly non-invertible MA polynomial: det (b(z)) ≠ 0 for all |z| = 1
 - ▶ b₀ may be singular, identifiability conditions on factorised b(z)
- (ε_t) independent across time, non-Gaussian, independent in cross-section with $\mathbb{E}(\varepsilon_t) = 0$ and $\mathbb{E}(\varepsilon_t \varepsilon'_s) = \delta_{ts} \text{diag}(\sigma_1, \dots, \sigma_n) = \delta_{ts} \Sigma$
- (B, Σ) jointly identified (signed permutations)

Non-Invertible SVARMA

Bernd Funovits

Big Picture

Impulse Response

Results Identifiability

Literature

Univariate Multivariate

Identifiability

 $\begin{array}{l} \textbf{Spectral} \\ \textbf{Density} \!\rightarrow\! \textbf{Factor} \\ \textbf{MA} \!\rightarrow\! \textbf{WHF} \end{array}$

Asymptotics

Empirical Application

Monetary

Parametrization for Possibly Non-Invertible SVARMA

"Past" p(z): All zeros outside the unit circle

$$b(z) = \left[p(z)\underbrace{\operatorname{diag}\left(z^{\kappa+1},\ldots,z^{\kappa+1},z^{\kappa},\ldots,z^{\kappa}\right)}_{=s(z)}f(z)\right]B\varepsilon_{t}$$

- stable polynomial in z, i.e. det (p(z)) ≠ 0 for all |z| ≤ 1; all zeros outside the unit circle
- Zero and one restrictions to obtain uniqueness

$$p(z) = \begin{pmatrix} I_k & 0_{k \times (n-k)} \\ p_{0,21} & I_{n-k} \end{pmatrix} + \begin{pmatrix} p_{1,11} & 0_{k \times (n-k)} \\ p_{1,21} & p_{1,22} \end{pmatrix} z + \cdots$$
$$\cdots + p_{q-\kappa-1} z^{q-\kappa-1} + \begin{pmatrix} 0_{k \times k} & p_{q-\kappa,12} \\ 0_{(n-k) \times k} & p_{q-\kappa,22} \end{pmatrix} z^{q-\kappa}$$

► $(a_{\rho}, [p_{[q-\kappa-1,\bullet1]} \quad p_{[q-\kappa,\bullet2]}])$ of full rank

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability

Results Identifiability

Literature

Univariate Multivariate

Identifiability

 $\begin{array}{l} \textbf{Spectral} \\ \textbf{Density} \!\rightarrow\! \textbf{Factor} \\ \textbf{MA} \!\rightarrow\! \textbf{WHF} \end{array}$

Asymptotics

Empirical Application Monetary

Parametrization for Possibly Non-Invertible SVARMA

"Future" f(z): All zeros inside the unit circle

$$f(z) = f_0 + f_1 z^{-1} + \dots + \begin{pmatrix} f_{\kappa, [1:k,\bullet]} \\ f_{\kappa, [k+1:n,\bullet]} \end{pmatrix} z^{-\kappa} + \begin{pmatrix} f_{\kappa+1, [1:k,\bullet]} \\ 0_{(n-k)\times n} \end{pmatrix} z^{-\kappa-1}$$

- stable polynomial in ¹/_z: det (f (¹/_z)) ≠ 0 for all |z| ≤ 1; all zeros inside the unit circle
- ▶ f₀ of full rank
 - Natural normalization: $f_0 = I_n$
 - Unnatural normalization: $b_0 = I_n$, implying

$$p_0^{-1} = \begin{pmatrix} f_{\kappa+1,[1:k,\bullet]} \\ f_{\kappa,[k+1:n,\bullet]} \end{pmatrix} = \begin{pmatrix} I_k & 0_{k\times(n-k)} \\ -p_{0,21} & I_{n-k} \end{pmatrix}$$

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability

Results Identifiability

Literature

Univariate Multivariate

Identifiability

 $\begin{array}{l} \textbf{Spectral} \\ \textbf{Density} \! \rightarrow \! \textbf{Factor} \\ \textbf{MA} \! \rightarrow \! \textbf{WHF} \end{array}$

Asymptotics

Empirical Application Monetary

Parametrization for Possibly Non-Invertible SVARMA

"Shifts" s(z) with partial indices (κ, k)

$$a(z) = \left[p(z) \underbrace{\operatorname{diag} \left(z^{\kappa+1}, \dots, z^{\kappa+1}, z^{\kappa}, \dots, z^{\kappa} \right)}_{=s(z)} f(z) \right] B\varepsilon_t$$

Unique

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization,

Results Identifiability

Literature

Univariate Multivariate

Identifiability

 $\begin{array}{l} \textbf{Spectral} \\ \textbf{Density} \! \rightarrow \! \textbf{Factor} \\ \textbf{MA} \! \rightarrow \! \textbf{WHF} \end{array}$

Asymptotics

Empirical

Monetary

Identifiability

Connect External Characteristics Uniquely to Internal Characteristics

- Is there an injective function from the (deep) parameters to the observed aspects of the stochastic process?
- Is it possible to deduce the internal characteristics from the external ones?

Here

- Second moment information (spectral density) does not allow for identification of root location and the static shock transmision matrix.
- Higher order spectral densities do (under assumptions)!

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability Results Identifiability

Literature

Univariate Multivariate

Identifiability

 $\begin{array}{l} \textbf{Spectral} \\ \textbf{Density} \!\rightarrow\! \textbf{Factor} \\ \textbf{MA} \!\rightarrow\! \textbf{WHF} \end{array}$

Asymptotics

Empirical Application Monetary

Assumptions on Input Shocks

(a) Non-zero cumulants

Components of ε_t are **mutually independent** (not necessarily i.i.d.), have a **non-zero cumulant** of order $r \ge 3$ and **finite moments up to order** τ , where $\tau > r$ is even.

(b) Non-Gaussian i.i.d.

Components of ε_t are i., identically, d., and non-Gaussian.

Theorem (Chan, Ho, Tong (2004, 2006))

Under (a) or (b), the deep parameters in $(a(z), p(z)s(z)f(z), B, \Sigma)$ are identifiable up to signed permutations of B.

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability Results Identifiability

Literature

Univariate Multivariate

Identifiability

 $\begin{array}{l} \textbf{Spectral} \\ \textbf{Density} \! \rightarrow \! \textbf{Factor} \\ \textbf{MA} \! \rightarrow \! \textbf{WHF} \end{array}$

Asymptotics

Empirical Application Monetary

Big Picture and Motivation

Model, Parametrization, Identifiability

Literature Univariate Multivariate

Identifiability Problem and Solution

Asymptotic Normality and Implementation

Empirical Application

Summary

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability Results Identifiability

Literature

Univariate Multivariate

Identifiability

Spectral Density→Factor MA→WHF

Asymptotics

Empirical Application Monetary

Literature: Univariate

- Deconvolution using entropy methods: Wiggins (1978), Donoho (1981), Gassiat (1993)
- Andrews, Breidt, Davis, Lii, Rosenblatt (1982-2007+): Deconvolution, MLE for non-Gaussian, non-invertible ARMA, MLE for non-causal AR, rank-based estimation of all-pass models etc
 - Rosenblatt's 2000 book "Gaussian and Non-Gaussian Linear Time Series and Random Fields"
- Gouriéroux, Zakoian (2015, JTSA): On uniqueness of MA representations of heavy-tailed stationary processes
- Velasco, Lobato (2019, Annals): Non-causal and non-invertible ARMA using polyspectra

Non-Invertible SVARMA

Bernd Funovits

Big Picture

Impulse Response

Model, Parametrization, Identifiability Results Identifiability

Literature

Univariate Multivariate

Identifiability

Spectral Density→Factor MA→WHF

Asymptotics

Empirical

Monetary

Literature: Multivariate

- Chan, Ho, Tong (2004, 2006, Biometrika): Uniqueness of two-sided multivariate non-Gaussian moving average processes
- Lanne, Saikkonen (2013, ET): Non-causal VAR
- GMR = Gouriéroux, Monfort, Renne (2019, ReStud): Identification and Estimation in Non-Fundamental SVARMA Models
- Velasco (2020): Non-invertible SVARMA Polyspectra approach
 - Similar problems as GMR but still a working paper
 - Multivariate version of the univariate objective function in VL19

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability Results Identifiability

Literature

Univariate Multivariate

Identifiability

Spectral Density→Factor MA→WHF

Asymptotics

Empirical Application Monetary

Funovits (2020, arxiv): Comment on GMR

- Bivariate VARMA(p,1)
- $b_0 = I_2$ excludes zeros at zero (corresponding to delays)
- Estimates 2^{n·q} models via root flipping, similar to the approach presented at TU Dortmund in Jan 2017
 - WHF approach estimates $n \cdot q$ models
- Ignores deliberately complex-conjugated roots
 - Leaves real-valued parameter space
 - Non-trivial problem, see Scherrer, Funovits (2020, arxiv)

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability Results Identifiability

Literature

Univariate Multivariate

Identifiability

 $\begin{array}{l} \textbf{Spectral} \\ \textbf{Density} \!\rightarrow\! \textbf{Factor} \\ \textbf{MA} \!\rightarrow\! \textbf{WHF} \end{array}$

Asymptotics

Empirical Application Monetary

Big Picture and Motivation

Model, Parametrization, Identifiability

Literature

Identifiability Problem and Solution From Spectral Density to Spectral Factor From MA Polynomial to (Unique) WHF

Asymptotic Normality and Implementation

Empirical Application

Summary

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability **Results**

Identifiability

Literature

Univariate Multivariate

Identifiability

Spectral Density→Factor MA→WHF

Asymptotics

Empirical Application Monetary

External Characteristics: Second Moment Information

Autocovariance Function $\gamma(s)$ of (y_t)

$$\gamma(s) = Cov\left(y_{t+s}y_t'
ight)$$

Spectral density of (y_t)

$$F(z) = \frac{1}{2\pi} \sum_{s=-\infty}^{\infty} \gamma(s) z^s, \quad z = e^{-i\lambda}$$
$$= \frac{1}{2\pi} a(z)^{-1} b(z) b'\left(\frac{1}{z}\right) a^{-1'}\left(\frac{1}{z}\right), \quad z = e^{-i\lambda}$$

Same information as autocovariances $\gamma(s) = \mathbb{E}(y_{t+s}y'_t)$, but sometimes easier to manipulate

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability Results Identifiability

Literature

Univariate Multivariate

Identifiability

Spectral Density→Factor MA→WHF

Asymptotics

Empirical Application Monetary

Overview: From External to Internal Characteristics

- 1. From (full rank) rational spectral density f(z) to true spectral factor l(z) such that $f(z) = l(z)l'(\frac{1}{z})$ holds.
- From (normalized) spectral factor k(z) to polynomial matrix fraction description (a(z), b(z)) such that l(z) = a(z)⁻¹b(z)BΣ with
- From MA polynomial matrix (b(z), B, Σ) to
 Wiener-Hopf factorization ((p(z), s(z), f(z)), B, Σ)

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability Results Identifiability

Literature

Univariate Multivariate

Identifiability

 $\begin{array}{l} \textbf{Spectral} \\ \textbf{Density} \!\rightarrow\! \textbf{Factor} \\ \textbf{MA} \!\rightarrow\! \textbf{WHF} \end{array}$

Asymptotics

Empirical Application

Monetary

Observationally Equivalent Spectral Factors

For a given (observed) rational spectral density, there are many spectral factors:

MA(1):
$$y_t = \varepsilon_t + 3\varepsilon_{t-1}$$
 or $y_t = \tilde{\varepsilon}_t + \frac{1}{3}\tilde{\varepsilon}_{t-1}$?

$$\begin{aligned} \sigma(z) &= (1+3z)\sigma^2 \left(1+\frac{3}{z}\right) = \\ &= \left(\frac{1}{3z}+1\right)3z\sigma^2\frac{3}{z}\left(\frac{z}{3}+1\right) \\ &= \left(1+\frac{z}{3}\right)\left[9\sigma^2\right]\left(1+\frac{1}{3z}\right) \end{aligned}$$

Non-Invertible SVARMA

Bernd Funovits

Big Picture

Impulse Response

Model, Parametrization, Identifiability **Results**

Identifiability

Literature

Univariate Multivariate

Identifiability

Spectral Density→Factor MA→WHF

Asymptotics

Empirical Application Monetary

Solution of Dynamic Identifiability Problem "Time-equivalent" of Orthogonal Matrices: All-Pass Filters

In the same way as $QQ' = I_n$ for orthogonal matrices Q it holds for all-pass filters that

$$T(z)T'\left(\frac{1}{z}\right) = I_{r}$$

►
$$t(z)t\left(\frac{1}{z}\right) = \left[\frac{1-3z}{z-3}\right]\frac{1-3\frac{1}{z}}{\frac{1}{z}-3} = \left[\frac{1-3z}{z-3}\right]\frac{\frac{1}{z}(z-3)}{\frac{1}{z}(1-3z)} = 1$$

All-pass filters are "dynamic rotations"

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization,

Results Identifiability

Literature

Univariate Multivariate

Identifiability

Spectral Density→Factor MA→WHF

Asymptotics

Empirical Application Monetary

Solution of Dynamic Identifiability Problem Third Order Cumulants

Cumulant Function

$$\gamma^{(3)}(r,s) = Cumu\left(y_{t+r}y_{t+s}y_t
ight)$$

Cumulant based bispectral density

$$f^{(3)}\left(e^{-i\lambda_1}, e^{-i\lambda_2}\right) = \left(\frac{1}{2\pi}\right)^2 \sum_{r,s=-\infty}^{\infty} \gamma^{(3)}(r,s) e^{-i(r\lambda_1+s\lambda_2)}$$

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability Results Identifiability

Literature

Univariate Multivariate

Identifiability

Spectral Density→Factor MA→WHF

Asymptotics

Empirical Application Monetary

Solution of Dynamic Identifiability Problem Example: Blaschke factor $t(z) = \frac{1-3z}{z-3}$

Spectral density of $y_t = t(z)\varepsilon_t$ is constant!

$$f\left(e^{-i\lambda}\right) = rac{1-3e^{-i\lambda}}{e^{-i\lambda}-3}rac{1-3e^{i\lambda}}{e^{i\lambda}-3} \equiv 1$$

Bispectral density of $y_t = t(z)\varepsilon_t$

$$f^{(3)}\left(e^{-i\lambda_{1}}, e^{-i\lambda_{2}}\right) = \frac{1 - 3e^{-i\lambda_{1}}}{e^{-i\lambda_{1}} - 3} \frac{1 - 3e^{-i\lambda_{2}}}{e^{-i\lambda_{2}} - 3} \frac{1 - 3e^{i(\lambda_{1} + \lambda_{2})}}{e^{i(\lambda_{1} + \lambda_{2})} - 3}$$

• Cumulant of ε_t : $\kappa_3 = 1 \neq 0$

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability Results Identifiability

Literature

Univariate Multivariate

Identifiability

Spectral Density→Factor MA→WHF

Asymptotics

Empirical Application Monetary

Generic Partial Indices

Theorem (Gohberg, Krein (1960))

In an open and dense (aka. generic) set in the parameter space, the difference between the largest and the smallest partial index is smaller than two.

•
$$\kappa_1 = \cdots = \kappa_k = \kappa + 1$$
 and $\kappa_{k+1} = \cdots = \kappa_n = \kappa$

- Weaker assumption than Velasco's root separation.
- Not mentioned in GMR.

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability Results

Identifiability

Literature

Univariate Multivariate

Identifiability

Spectral Density→Factor MA→WHF

Asymptotics

Empirical Application Monetary

(Non-) Uniqueness of WHF

Theorem (Clancey, Gohberg (1981))

The partial indices of b(z) are unique.

- In the case (κ, 0), the WHF can be made unique by requiring that p(0) = I_n.
- In the case (κ, k), k ≠ 0, the equivalence class of WHFs is described by unimodular matrices of the form

$$u(z)=u_0+\begin{pmatrix}0&\tilde{u}_1\\0&0\end{pmatrix}z.$$

•
$$\mathring{p}(z) = p(z)u(z), \ \mathring{f}(z) = s(z)^{-1}u(z)^{-1}s(z)f(z).$$

 transformation does not change the row degrees of f(z) or s(z)f(z).

Theorem (Funovits 2020)

A unique representative among all tuples (p(z), s(z), f(z))such that b(z) = p(z)s(z)f(z) can be chosen and is of the described form.

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability Results Identifiability

Literature

Univariate Multivariate

Identifiability

Spectral Density→Factor MA→WHF

Asymptotics

Empirical Application Monetary

Big Picture and Motivation

Model, Parametrization, Identifiability

Literature

Identifiability Problem and Solution

Asymptotic Normality and Implementation

Empirical Application

Summary

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability Results Identifiability

Literature

Univariate Multivariate

Identifiability

Spectral Density→Factor MA→WHF

Asymptotics

Empirical Application Monetary

Remarks

- Asymptotics are standard, similar to Rosenblatt (2000, Chapter 8)
- Main difficulty is identifiability
 - From identifiability it follows that information matrix is non-singular (main difficulty in "Lii, Rosenblatt 1996: MLE for non-Gaussian non-minimum phase ARMA sequences")
- Invertibility of f_0 is essential
 - $f_0 = I_n$ simplifies Jacobian
- Formulas are complicated in the multivariate case
 - Equality restrictions in the case (κ, k)

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

mpulse Response

Parametrization, Identifiability Results Identifiability

Literature

Univariate Multivariate

Identifiability

 $\begin{array}{l} \textbf{Spectral} \\ \textbf{Density} \!\rightarrow\! \textbf{Factor} \\ \textbf{MA} \!\rightarrow\! \textbf{WHF} \end{array}$

Asymptotics

Empirical

Monetary

R-Packages

- Building on two packages written by Wolfgang Scherrer and myself
 - rationalmatrices
 - Implements matrix polynomials, left- and right-matrix fraction description of rational matrices, state space representations of rational matrices, Hankel matrices as representations
 - Conversions between these (S3-) classes, Kronecker normal forms, etc
 - Matrix factorizations: Smith-form, Wiener-Hopf factorization, column reduction

RLDM (Rational Linear Dynamic Models)

- Mainly estimation algorithms, optimization of different (structural) models
- Simulations, visualization of IRF, FEVD, prediction
- Templates for different realizations (Kronecker form for VARMA, state space system, etc)

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability Results Identifiability

Literature

Univariate Multivariate

Identifiability

Spectral Density→Factor MA→WHF

Asymptotics

Empirical

Applicatio Monetary

Feasibility

- Seems that the WHF parametrisation is the only feasible approach
 - Easy to check location of roots of p(z) and f(z)
 - Easy to provide useful initial values
 - No root flipping required
 - Very costly to evaluate cumulant spectra (sample size $200 \Rightarrow 200^3$ frequency to integrate over)

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability Results Identifiability

Literature

Univariate Multivariate

Identifiability

Spectral Density→Factor MA→WHF

Asymptotics

Empirical Application

Monetary

Big Picture and Motivation

Model, Parametrization, Identifiability

Literature

Identifiability Problem and Solution

Asymptotic Normality and Implementation

Empirical Application Monetary Model + Real Exchange Rate

Summary

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability Results Identifiability

Literature

Univariate Multivariate

Identifiability

Spectral Density→Factor MA→WHF

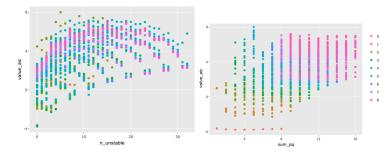
Asymptotics

Empirical Application

Monetary

Monetary Model + RER

- unemployment, FFR, CPI inflation, real exchange rate
- AR models clearly best, no unstable roots



Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, dentifiability

Results Identifiability

Literature

Univariate Multivariate

Identifiability

 $\begin{array}{l} \textbf{Spectral} \\ \textbf{Density} \!\rightarrow\! \textbf{Factor} \\ \textbf{MA} \!\rightarrow\! \textbf{WHF} \end{array}$

Asymptotics

Empirical Application

Monetary

Big Picture and Motivation

Model, Parametrization, Identifiability

Literature

Identifiability Problem and Solution

Asymptotic Normality and Implementation

Empirical Application

Summary

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability Results Identifiability

Literature

Univariate Multivariate

Identifiability

 $\begin{array}{l} \textbf{Spectral} \\ \textbf{Density} \!\rightarrow\! \textbf{Factor} \\ \textbf{MA} \!\rightarrow\! \textbf{WHF} \end{array}$

Asymptotics

Empirical Application

Monetary

Summary and Conclusion

- New feasible parametrisation for estimating and analyzing non-invertible SVARMA
 - Exists on a topologically large set in the parameter space
 - Parametrises the number of MA zeros inside the unit circle
- Allows data-driven evaluation of DSGE models
- Makes "incredible restrictions" testable (and unnecessary to impose them apriori)

Non-Invertible SVARMA

Bernd Funovits

Big Picture Impulse Response

Model, Parametrization, Identifiability Results Identifiability

Literature

Univariate Multivariate

Identifiability

Spectral Density→Factor MA→WHF

Asymptotics

Empirical Application Monetary