Revisiting the Optimal Inflation Rate with Downward

Nominal Wage Rigidity: The Role of Heterogeneity

Tomohide Mineyama, International Monetary Fund

TMinevama@imf.org

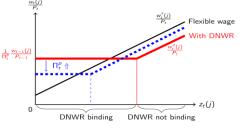
Disclaimer: The views expressed herein are those of the author and should not be attributed to the IMF, its Executive Board, or its management.

Research question

✓ How does the optimal inflation rate change in the presence of worker heterogeneity in an economy with downward nominal wage rigidity (DNWR)?

Approach

Develop a heterogeneous agent (HA) NK model with asymmetric wage adj. cost.


- Previous studies find it is close to zero in a rep, agent (RA) New Keynesian (NK) model.

Estimate the adj. cost according to U.S. micro wage data.

Key findings

- U.S. micro wage data implies substantial DNWR.
- DNWR causes cross-sectional misallocation of labor as well as inefficient dynamics. - Welfare cost in a 2% inflation economy: RA model: 0.20%->HA model: 0.97% of consumption.
- The optimal inflation rate becomes higher due to worker heterogeneity.
- Larger "grease the wheels" effect of inflation.

Model overview ✓ Cost and benefit of inflation Cost: Benefit: Price rigidity **DNWR** Optimal inflation rate Wage setting with DNWR (stylized example) $\frac{w_t(j)}{P_t} = \max \left\{ \frac{w_t^d(j)}{P_t} , \frac{1}{\Pi_t^p} \frac{w_{t-1}(j)}{P_{t-1}} \right\}$ $\frac{w_t^d(j)}{P_t} = \mu_w z_t(j) mrs_t(j) - \beta \frac{\mathbf{E}_t[\boldsymbol{\psi}_{t+1}(j)]}{\mathbf{W}_t^d(j)} \left(u_{c,t}(j) \frac{\theta_w h_t(j)}{w_t^d(j)} \right)$ where w^d : desired wage, ψ : shadow value of DNWR Flexible wage

- DNWR leads to both upward and downward deviation from flexible wage

Estimation

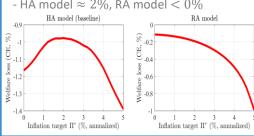
Mean of unconditional wage change S.D. of unconditional wage changes

- Quantitative model with asymmetric wage adj. (fixed+linear) cost.
 - SMM according to U.S. micro wage data.

- 46 data moments* vs. 10 model param.

Data moments are those reported by,
Grigsby, J., E. Hurst and A. Yildirmaz, "Aggregate Nominal Wage Adjustments:
New Evidence from Administrative Payroll Data," NBERWP No.25628, 2019.

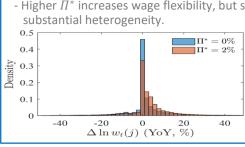
	Quarterly changes		Yearly changes	
Moment	Data	Model	Data	Model
Job-stayers				
Probability of positive wage changes	0.185	0.187	0.639	0.638
Probability of negative wage changes	0.009	0.011	0.024	0.035
Median size of positive wage changes	0.033	0.041	0.035	0.046
Median size of negative wage changes	-0.077	-0.074	-0.066	-0.072
Mean size of positive wage changes	0.057	0.055	0.063	0.067
Mean size of negative wage changes	-0.087	-0.080	-0.073	-0.080
Median of unconditional wage changes	0.000	0.000	0.024	0.035
Mean of unconditional wage changes	0.010	0.010	0.039	0.040
S.D. of unconditional wage changes	0.037	0.029	0.065	0.056
Job-changers				
Probability of positive wage changes	0.527	0.589	0.568	0.610
Probability of negative wage changes	0.374	0.402	0.380	0.371
Median size of positive wage changes	0.167	0.191	0.185	0.202
Median size of negative wage changes	-0.136	-0.173	-0.158	-0.161
Mean size of positive wage changes	0.235	0.209	0.261	0.223
Mean size of negative wage changes	-0.165	-0.187	-0.185	-0.178
M-di	0.009	0.042	0.046	0.005


Welfare analysis

- Welfare loss in a 2% inflation economy
 - Cross-sectional misallocation of labor enlarge welfare loss in the HA model.

	(1)	(2)	(3)	(4)		
	With wage rigidity		Without w	Without wage rigidity		
-	HA model	RA model	HA model	RA model		
	(baseline)					
Welfare loss (CE, %)	-0.97	-0.20	-0.27	-0.22		
$\sigma_j \left(\ln w_t(j) \right) (\%)$	17.21	_	21.05			
$\rho_j \left(\ln w_t(j), \ln z_t(j) \right)$	0.98		1.00			
/	C1					

✓ Optimal inflation rate Π^*


- HA model $\approx 2\%$, RA model < 0%

Cross-sectional distribution and Π

Wage change distribution

- Higher Π^* increases wage flexibility, but still substantial heterogeneity.

Sensitivity analysis

- \checkmark Key determinants of optimal Π^* include
 - Trend productivity growth, Size of idiosyncratic shock,
- Labor supply/demand elasticity.
- Results are robust to Rebating adi. cost,

0.070

- Alternative monetary policy rule, etc.