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1. Introduction

A great deal of research in macroeconomics is aimed at understanding the business cycle and

thinking about policy responses designed to dampen cyclical fluctuations. In our models, agents are

assumed to prefer smooth consumption streams and would therefore be willing to insure against

fluctuations in consumption. But how much they are willing to pay for such insurance depends

on how undesirable the otherwise non-smooth consumption streams would be. Lucas (1987, 2003)

showed that assuming transitory i.i.d. Gaussian consumption deviations from the postwar U.S.

trend under log utility resulted in very small welfare losses: less than 1/10 of a percent. Consumers’

willingness to forgo consumption to avoid cyclical fluctuations would therefore be strikingly small.

Even allowing for more volatile consumption, like the pre-war U.S. or like other countries; or

allowing expected utility and stochastic growth (Obstfeld, 1994), it is hard to get the costs of business

cycles (and hence potential gains from managing aggregate demand through economic policy)

to exceed 1–2 percent. If these costs are really this low, there would appear to be little scope for

countercyclical macroeconomic policy.

However, if the cost of business cycle fluctuations is low, then compensation for bearing this

risk should be low as well. Yet the risk premium—the compensation investors receive for holding

risky claims—is puzzlingly high. Why then are risk premiums so high if consumption volatility

has only minimal welfare costs? One possible explanation is “rare disasters”, that is, large but low

probability output losses, occurring in wars, pandemics, or revolutions. This is the key insight of

models that were developed to address the risk premium puzzle, such as Rietz (1988), Barro (2006),

Gabaix (2008), and Wachter (2013). But if growth has such fat tails, being negatively skewed by

infrequent economic catastrophes, then the welfare costs of consumption fluctuations could also

be much higher than in Lucas’s original calculations. Bringing these insights back to the welfare

calculation using historical panel data, Barro (2009) arrives at a welfare cost estimate of 17 percent

due to disaster-driven jumps, ten times larger than the 1.6 percent attributable to Gaussian growth

disturbances.1 The implied costs can be made larger still if utility is recursive, or if disasters have

stochastic probability, stochastic size, more persistence, or are permanent rather than transitory

(Barro and Jin, 2011; Gourio, 2012; Nakamura, Steinsson, Barro, and Ursúa, 2013; Obstfeld, 1994;

Reis, 2009). The key insight is that fat tails matter, with effectively all of the amplification of the

welfare costs of business cycles being driven by higher moments (Martin, 2008).2

From the “rare disaster” perspective, the true welfare cost of economic fluctuations stems from

such infrequent, but very costly events. But this view might be too optimistic still, and the value

of stabilization policy consequently even bigger. In this paper we argue that the “rare disasters”

method of measuring the costs of business cycles needs amendment: it is not that it is incorrect, but

rather that it does not go far enough.

1For comparability, this is for the CRRA case with γ = θ = 4 reported in Table 3 in Barro (2009).
2Research also shows that other sources of risk, notably uninsured idiosyncratic income risk, can also

amplify these costs (Atkeson and Phelan, 1994; Imrohoroğlu, 1989).
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In fact, when we use long-run historical data to look at growth at risk, we find that many business

cycles contain the skew that amplifies welfare costs. Deviations from the Gaussian benchmark do not

just appear in the extreme disasters—the wars, pandemics, revolutions, etc., considered by previous

research. Instead, we show that fat tails and persistence also appear in “normal recessions”—in

short, there are disasters everywhere.3 Once we embrace this idea, welfare cost judgments change

profoundly. In our estimates, even with low risk aversion, on average households would sacrifice

about 15 percent of consumption to avoid consumption fluctuations. Far from being a side-show for

macroeconomics, business cycle volatility is a first-order issue at the heart of the discipline.

The first part of our paper documents this new stylized fact using a comprehensive macro-

historical database (Jordà, Schularick, and Taylor, 2017). Using local projections (LP) methods (Jordà,

2005), we present a new direct test for the presence of disasters. Instead of assuming disasters are

present, or relying on general skewness tests, our test has the virtue of directly mapping into a

tractable empirical LP model of disasters discussed below. Our results apply to peacetime advanced

economies, a sample considered exempt from the more frequent dislocations seen in emerging

markets or wartime eras. Our finding ties into recent research on the importance of skewness for

macro and finance puzzles (Colacito, Ghysels, Meng, and Siwasarit, 2016; Dew-Becker, Tahbaz-Salehi,

and Vedolin, 2019) as well as the micro skewness underpinnings at the firm or household level

(Busch, Domeij, Guvenen, and Madera, 2018; Salgado, Guvenen, and Bloom, 2019). In this research,

skewness is a general phenomenon present at all times, not just in disaster episodes.4 Our analysis

also meshes with inherently asymmetric macro frameworks, like deLong and Summers (1988) or the

Friedman “plucking” model which has periodically attracted attention (Dupraz, Nakamura, and

Steinsson, 2019; Kim and Nelson, 1999). Fatás and Mihov (2013) echo this idea when noting that

even in the U.S., as postwar growth volatility fell in the Great Moderation, nonetheless negative

skewness increased. But, to our knowledge, we are the first to re-assay the debate over the costs of

business cycles in this novel framework of ubiquitous fat tails with disasters everywhere.

The second part of the paper proposes a new empirical framework for accurately estimating and

calibrating a growth process with these properties. At each date a recession occurs according to a

Bernoulli coin-flip process, but this can be a less-disastrous normal recession or a more-disastrous

financial crisis recession. We restrict to these cases and exclude wars to focus on peacetime welfare

costs. The recession type is governed by another coin-flip. If no recession occurs, consumption

growth is drawn from a Gaussian i.i.d. process. This is a baseline: in general we can allow for

many recession types and non-i.i.d. growth. If a recession occurs, then over some horizon the

path of consumption is subject to a stochastic penalty, the scale of which varies by horizon, and

by recession type. This formulation turns out to be convenient as it maps directly into estimation

via local projections (Jordà, 2005), and at larger horizons LP estimation may be preferred to VAR

methods when estimation is constrained to finite-lag specifications (Jordà, Singh, and Taylor,

3Deviations from Gaussianity are in line with venerable arguments for asymmetric business cycle dynamics.
See, e.g., Acemoglu and Scott (1994); Keynes (1936); Morley and Piger (2012); Neftçi (1984); Sichel (1993).

4The large literature on time-varying volatility also points to the importance of higher moments in macro.
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2020; Montiel Olea and Plagborg-Møller, 2020). LP estimation has been successfully employed

in fixed-coeffcient form to document the systematic, large, and persistent differences in paths in

normal and financial crisis recessions (Jordà, Schularick, and Taylor, 2013). Here we show how to

extend the approach using random-coefficient local projections (RCLP) as a natural way to model

variable-severity disasters, an essential feature in the data and a key driver of welfare consequences.5

The third part of the paper takes the estimated consumption growth process and simulates

an economy under various parameter configurations to assess actual and counterfactual welfare

losses due to peacetime business cycles.6 Our focus on the normal versus financial crisis recession

dichotomy speaks to the increased interest in the potential gains from macroprudential policies to

the extent that they can mitigate crisis risk: here direct policy actions are being debated and even

implemented as we write; in contrast other disastrous recessions, such as wars or revolutions, may

be less susceptible to purely economic policy interventions.

As in Barro (2009), we explore how much welfare loss is due to the Gaussian terms versus the

disaster terms. Results still depend on assumptions about the permanent component of the disasters.

But since disasters are now everywhere, including in normal recessions, we find that the welfare

costs of business cycles are much larger. Under simulation we reject the Gaussian null in favor of

our RCLP-estimated dynamic moments. In a peacetime setting, the Gaussian terms account for

only about a 1 percent loss (cf. Obstfeld, 1994); allowing fat tails with hypothetical 100% normal

recessions would increase this loss to 10 percent; and allowing fat tails with hypothetical 100%

financial crisis recessions would increase it to about 25 percent.

Summing up, we make two main contributions in this paper. First, we present a new empirical

methodology for estimation and simulation built around the attractive technique of local projections.

It is particularly suited to the problem of measuring disaster losses over multi-period horizons

without the complexity and fragility of more elaborate methods. In random coefficient form, local

projections are well equipped to model disaster gaps with stochastic scaling and persistence in a

tractable and flexible way. The methods make for an easy and transparent mapping from the LP

estimates to the calibrated simulation model.

Second, we offer a new perspective on the perennial macro question of the cost of business cycles

and the importance of stabilization policy. The main new insight is that disasters are everywhere—in

the sense that the growth process has fat tails everywhere, not just in the large Barro-type rare

disasters. And though these recessions are smaller in amplitude than the rare big disasters, they are

much more frequent, and we show that the welfare costs really add up to something substantial.

Looking at the post-1985 era in advanced economies, our model says agents would sacrifice about 20

percent of consumption to avoid all business cycles; and about 10 percent just to avoid financial-crisis

5One could also explore what happens in this setting when the recession-type probability has a conditional
mean which depends on covariates; a natural case to consider is when financial crisis probability depends on
the history of credit growth (Schularick and Taylor, 2012). We leave this extension for future research.

6Economics has little to say about how to stop wars. But other events classified as disasters outside of
wars are still very damaging. Here, as is well known, the most damaging type are financial crisis recessions
(see, e.g., Muir, 2017). Normal recessions are rarely very disastrous, though probabilistically some will be so.
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recessions. This goal was attainable in the 1950s–1960s era when financial crises were absent. This

result also speaks to the large potential gains from making our financial systems less crisis-prone.

In short, even outside of times of war and pandemics, there is considerable gain to smoothing

economic fluctuations, and all the more so in economies subject to financial instability.

2. Disasters everywhere? Testing for the presence of disasters

As noted, one canonical model of per capita consumption growth used in Lucas (1987, 2003)

is a trend with Gaussian shocks. Subsequently a widely-used baseline for a large literature in

macroeconomics and in finance has been a random walk with drift. Both processes are symmetric.

As a first approximation, this model has served the profession well. However, as remarked in

the introduction, evidence that the business cycle is asymmetric abounds. This section documents

some basic moments in the data on per capita consumption (and per capita output) growth for 17

advanced economies since 1870 drawn from the macrohistorical dataset of of Jordà, Schularick, and

Taylor (2017). The statistical features that we derive form the basis of the model specification that

we adopt in the next section, where we calculate the welfare costs of all “disasters.”

The analysis shows non-Gaussian or fat-tailed consumption growth dynamics, or what one could

term mini-disasters. This is true even outside the established rare disaster events in the benchmark

chronologies of Barro (2006), Barro and Ursúa (2008), and related studies. Basically, we show that

the entire universe of peacetime recessions in advanced economies since 1870 displays the same

qualitative fat-tailed behavior as the Barro disasters.

We will examine two alternative measures of economic activity that we generally label as X
and which refer to either real GDP per capita, Y, or real consumption per capita C. Let x = log(X),

hence, lowercase variables denote logs. We use a null model that characterizes the growth rate of x
(in logs) as a random walk with drift, such as

∆xt = xt − xt−1 = γ + εt ; εt ∼ N (0, σ2) . (1)

Although our data are organized as a panel, we omit cross-section index to avoid cluttered notation.

Our next step is to expand on this null model with a set of alternatives using a formal treatment

of event timing definitions. First, we define the key concept of a mapping m, assumed to be chosen

by the observer, which produces the classification of some time periods as events or “disasters.” The

index of events given the observer’s choice of mapping is denoted rm ∈ Z for rm = 1, . . . , Rm(T),
that is, given a sample of size T and based on the mapping, there are at most Rm such events. When

clear from context, we will omit the subindex m to simplify the presentation.

We will use the notation τ(r) to refer to the calendar time period where the rth event happens.

Hence H(r) ≡ τ(r + 1)− τ(r) refers to the number of calendar time periods that elapse between

two consecutive events, r− 1 and r. This is a common notation in studies where the arrival of events

follows a stochastic process (see, e.g., Hamilton and Jordà, 2002).
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As an illustration, consider one of the mappings we use below. In a sample where the focus is on

periods of recession regardless of their origin, a convenient way to date events is with the algorithm

of Bry and Boschan (1971). With annual data such as ours, τ(rAll) = t if xt−1 < xt > xt+1 with rAll

denoting the index of all recession peaks resulting from the mapping m = All. Of course, Barro

(2006), Barro and Ursúa (2008), and Nakamura, Steinsson, Barro, and Ursúa (2013) are canonical

examples of an alternative rare-disaster event mapping that we also explore in more detail shortly.

We now allow for the possibility that after an event r, the economy takes a hit beyond what the

Gaussian null model with random drift in Equation 1 would prescribe. Hence, Equation 1 can be

recast by first noting that

∆xt = γ + ψh + εt , (2)

for t = τ(r) + h and h ≥ 1. Thus, ψh denotes the amount by which growth gets knocked from trend

growth γ, h periods after an event r. It may seem natural to assume that ψh → 0 as h grows, but in

a rare disasters model such losses can be permanent, so we do not take that for granted. In sum,

ψ = (ψ1 . . . ψH) forms a sort of impulse response. It captures, on average, the negative effects on

the growth of x from experiencing a disaster, relative to the random walk with drift null path.

In order to characterize the cumulative effects of the disaster, we define ∆hxt ≡ xt − xτ(r), where

t = τ(r) + h as earlier. Note that ∆hxt = ∆xt + . . . + ∆xτ(r)+1. Thus, using Equation 2 to characterize

each term in this summation, it is easy to see that

∆hxt = γh +
h

∑
j=1

ψj +
h

∑
j=1

ετ(r)+j = γh + αh + ut , (3)

where it is clear that we define (ψ1 + . . .+ψh) = αh; and (ετ(r)+1 + . . .+ εt) = ut. It is straightforward

to test whether the data support departures from the null model in Equation 1. Based on Equation 3,

one would test the null H0 : α1 = . . . = αH = 0.

However, the null hypothesis can be sharpened by realizing that a given mapping m, under the

null, will generate, by construction, a recession path even under that null. In other words, the mere

definition provided by the mapping restricts the probability space of possible disaster paths. We

illustrate precisely how each of the mappings that we entertain below generate such paths and how

to properly test for the absence of event-specific distortions to the null model of Equation 1.

In a sample of data, a good way to illustrate what the cumulative path of x looks like after a

disaster relative to its null growth path is to examine the cumulative changes of x following disasters.

In practice, for a choice of finite H, these can be estimated using Jordà (2005) local projections with

∆hxt = γh + (α1D1
t + . . . + αHDH

t ) + ut , (4)

where we define the indicator variable Dh
t = 1 for h = 1, . . . , H , and again t = τ(r) + h, and where

Dh
t = 0 otherwise. Now, depending on the mapping m, one obtains a sequence of values under the
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null model of the cumulative impulse response, denoted α0,m
h , with which to compare the sample

estimates from Equation 4, α̂h, which arise from the data. Thus, when testing the null that disasters

are simply rare events consistent with the null model, we will be interested in testing the hypothesis

H0 : αh = α0,m
h .

To reiterate, different mappings m truncate the calendar-time data-generating-process in Equa-

tion 1 differently. Events, or disasters, defined by a given m, refer to particular regions of the

distribution of x rather than the entire sample space. For this reason, except for some mappings

where the null can be constructed analytically, we rely on numerical approximations to the null that

can be made as precise as needed. The next section provides a more detailed look at the dynamics

of disasters in our sample using these methods.

2.1. Testing for the role of different disasters

Our statistical framework guides the testing strategy that we now follow. We begin with a baseline

scenario where the theoretical null can be easily computed to illustrate how the definition of the

mapping—the rule chosen to define peaks or subsets, like disaster peaks—changes the LP path

under the Gaussian null. Thus, in Test 1 we consider all peaks of economic activity (m ≡ All) in

our sample (which excludes World Wars and the Spanish Civil War), where an event is defined as:

t = τ(rAll) if xt−1 < xt > xt+1, that is, a peak in activity defined as in Bry and Boschan (1971).

Now it is quite possible that a rejection of the null in Test 1 could be solely because some of the

events defined by our criterion will include Barro-Ursúa disasters. Test 2 hence begins by assessing

the null against these disasters, with the mapping denoted m ≡ BU. We will show this is indeed

the case, thus begging the question: Would we still find a rejection of the null if we excluded

Barro-Ursúa disasters from our sample?

We probe this question in Test 3, with the notation m ≡ All − BU. We again reject the null

despite excluding Barro-Ursúa disasters. But as Jordà, Schularick, and Taylor (2013); Muir (2017)

have shown, recessions associated with financial crises tend to be deep and protracted. Hence one

might ask if the null would be rejected if we focused only on typical recessions not associated with

a Barro-Ursúa disaster nor on any remaining financial crises. This is what we do in Test 4 using the

notation m ≡ N for normal recessions and m ≡ F for recessions associated to a financial crisis.

Summing up the preview of our results: disasters are everywhere. Economic slowdowns are

not merely unfortunate draws along trend growth. They are economic events whose economic

consequences need to be reevaluated in light of the results of Tests 1–4. This we do in the sections

that follow. But first, here is the summary of all four tests.

Test 1: All peacetime recessions This benchmark test applies to the mapping that uses all

recessions, denoted m = All. Every recession peak date is defined as a local maximum of x,

whether x = y (output peaks and output recessions) or x = c (consumption peaks and consumption

recessions) following Bry and Boschan (1971).
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This particular mapping has a closed form solution for the null. By construction, any year

after a peak will have conditional mean growth δ̄− = E(∆x|∆x < 0), whereas all other years will

have unconditional mean growth δ̄ = γ. Given the Gaussian null, the former is δ̄− = γ− b, where

b = σ[φ(−γ/σ)/Φ(−γ/σ) is the closed-form expression for the expected loss at the peak under

Gaussianity with φ and Φ referring to the normal density and distribution functions respectively.

Thus, under the null, the local projection Equation 4 should yield the following predicted path

estimates: ∆h x̂ = γh− bD1
t . That is, the null predicts a dogleg jump down of size b in the level after

a peak at h = 1, but after that growth reverts to trend as it is drawn afresh every subsequent period

from the Gaussian null for all h > 1.

To confirm that this is correct, Figure 1 and Table 1 show numerical null paths exactly that

exactly match the closed-form solution just discussed. For clarity, here and below, all LP paths are in

deviations relative to the mean growth path γh. The sample is all countries (N = 17), all peacetime

years (1870–2008) from the Jordà, Schularick, and Taylor (2017) dataset, excluding the two World

Wars and the Spanish Civil War. For log real GDP per capita, γ = 1.96%, σ = 3.62%, and the implied

jump loss under the null is b = −4.24%. For log real consumption per capita, γ = 1.78%, σ = 4.02%,

and the implied null has b = −4.42%. Both match the simulation LP output.

We now use historical data to test whether reality accords with the null, and it is easy to see

that the null is generally too high and easily rejected.7 In the figures, the 95% confidence intervals

are shown for the LP. For GDP the difference between the LP and the null paths is negative and

statistically significant when h ≥ 2, and for consumption when h = 1 and h ≥ 4. The behavior is as

one might have expected. Including all recessions in the sample leads in general to post-recession

paths skewed more to the downside than a Gaussian null would predict, and more in line with the

disaster model.

Test 2: All peacetime Barro-Ursúa disasters This benchmark test applies to the mapping

used by an investigator who employs the Barro and Ursúa (2008) rare disaster criterion, which we

denote m = BU. In BU, the mapping encompasses disaster events defined as a peak-to-trough drop

in annual real GDP per capita of at least 15%, resulting in a set of disaster events with frequency

p = 2.4% in the peacetime sample considered above. We construct the Gaussian null numerically by

imposing the same conceptual frequency cutoff.8

That is, we take all simulated peak-to-trough declines, and find the worst X% among them by

peak-to-trough ranking (as in BU), and then designate these as the rare disaster dates, choosing X
such that their empirical frequency among all years is 2.4%. Specifically, in the simulated Gaussian

null data we find that 12% of all observations are recession peaks, and so we choose X = 20%, to

generate the desired 2.4% rare disaster frequency.

7Rejection in one period is enough to reject the joint null, hence the joint null is not reported even if the
size of the implicit test is too small. Evidence from the data is overwhelming.

8That is, we do not use a calibration based on the drop cutoff, as it would yield hardly any disasters
under the Gaussian null, which is another way of stating the problem with the Gaussian null, as will become
apparent.
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Figure 1: LP test for non-Gaussianity, all JST recession peaks, all countries, peacetime sample
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Notes: See text. The null is a Gaussian process. The LP path and 95% confidence interval are from the data and disaster mapping used.

Table 1: LP test for non-Gaussianity, all JST recession peaks, all countries, peacetime sample

(a) Real GDP per capita, log y (×100)

Horizon h 1 2 3 4 5 6 7 8 9 10

α0,All
h −4.24 −4.25 −4.25 −4.25 −4.25 −4.25 −4.25 −4.25 −4.25 −4.25

α̂All
h −4.40 −5.13 −5.45 −6.26 −7.15 −7.65 −8.20 −8.62 −8.56 −8.67

Difference −0.16 −0.88
∗∗∗ −1.21

∗∗∗ −2.01
∗∗∗ −2.90

∗∗∗ −3.40
∗∗∗ −3.95

∗∗∗ −4.37
∗∗∗ −4.32

∗∗∗ −4.43
∗∗∗

s.e. 0.17 0.30 0.40 0.50 0.60 0.70 0.78 0.86 0.93 0.99

p-value 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N 2237 2220 2203 2186 2169 2152 2135 2118 2101 2084

(b) Real consumption per capita, log c (×100)

Horizon h 1 2 3 4 5 6 7 8 9 10

α0,All
h −4.42 −4.42 −4.43 −4.42 −4.42 −4.43 −4.43 −4.42 −4.42 −4.43

α̂All
h −3.39 −4.40 −5.31 −6.26 −7.61 −8.08 −8.29 −8.88 −9.04 −9.91

Difference 1.02
∗∗∗

0.02 −0.88
∗∗ −1.83

∗∗∗ −3.19
∗∗∗ −3.65

∗∗∗ −3.87
∗∗∗ −4.46

∗∗∗ −4.62
∗∗∗ −5.49

∗∗∗

s.e. 0.22 0.33 0.44 0.55 0.66 0.76 0.84 0.91 0.99 1.06

p-value 0.00 0.94 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N 2150 2133 2116 2099 2082 2065 2048 2031 2014 1997

Notes: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. See text. Units are in log times 100.
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The numerical null values are again negative, but they do not follow a simple dogleg: selection

into the disaster bin is not a simple mapping from the one-year post period growth rate, and

depends on the peak-to-trough change over a longer, endogenous, horizon.

The strong message from Figure 2 and Table 2 is that Barro (2006) and Barro and Ursúa (2008)

were right. At all horizons, the actual historical LP estimates are significantly below the simulated

null values, and by a huge margin, often more than minus 10% in level difference. The null

deviations are, of course, negative: after all the endogenous dating scheme was designed to capture

peaks with the worst quintile subsequent declines. But they are just not as negative as in the actual

data. The growth process of the Gaussian null is clearly inadequate to capture the fat tails seen

during rare disasters. If we constrain to match empirical consumption volatility, the worst 20% of

recessions as simply not as bad as the empirical rare disasters in the observed left tail.

The persistent negative loss of output lasts for many periods and the peak deviation from the

Gaussian null path is -14.69% in year 7, with a deviation of -9.43% still present after 10 years. For

consumption the peak deviation is -14.25% in year 7, with a deviation of -6.09% after 10 years. This

supports the standard view that disaster losses consist, in some large part, of permanent downshifts

in the trend path. There is also support for the mutli-period evolving disaster setup in Nakamura,

Steinsson, Barro, and Ursúa (2013), since the loss doesn’t fully appear in year 1 and slowly builds

up, before some transitory part begins to fade away.

Test 3: All peacetime recessions minus Barro-Ursúa disasters This test applies to the

mapping used by an investigator who employs the recession peak criterion used in Test 1, but

excludes all of the Barro-Ursúa disaster peaks used in Test 2. We refer to this mapping for the date

indicators as m = All − BU.

The equally strong message from Figure 3 and Table 3 is that disasters are indeed everywhere,

so to speak, and not just in Barro-Ursúa episodes. Every peak in the simulated data is counted

in the simulated date indicators, except those simulated as BU disaster peaks above. And every

peak in the actual data is counted in the real world date indicators, except BU disaster peaks (for

robustness we actually exclude peaks within ± 2 years of a BU disaster peak).

The numerical null values are again negative: all peaks on average have subsequent declines. The

null values are also lower than in Table 2, and higher than in Table 1, by construction: we excluded

rare disasters in the numerical calculations to focus on other recession events. The historical LP

estimates are also lower than in Table 2, and higher than in Table 1, by construction: we excluded

the actual rare disasters to focus on other recession events. The null is again no longer a simple

dogleg: recoveries from bad shocks that avoid the disaster threshold survive in this sample, but not

those that cross the threshold; on average, then, the path bounces up compared to the full sample.

Now the main result appears, as we clearly see, since the very same type evidence of non-

Gaussianity emerges. At almost all horizons, the actual LP estimates are again well below the

simulated values and the differences are statistically significant. However we should note that,

given the exclusion of the worst disaster events, the differences—like the estimates themselves—are

9



Figure 2: LP test for non-Gaussianity, all BU disaster peaks, all countries, peacetime sample
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(b) Real consumption per capita, c
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Notes: See text. The null is a Gaussian process. The LP path and 95% confidence interval are from the data and disaster mapping used.

Table 2: LP test for non-Gaussianity, all BU disaster peaks, all countries, peacetime sample

(a) Real GDP per capita, log y (×100)

Horizon h 1 2 3 4 5 6 7 8 9 10

α0,BU
h −6.19 −9.33 −10.16 −10.31 −10.34 −10.34 −10.34 −10.34 −10.34 −10.35

α̂BU
h −7.82 −13.64 −17.29 −23.49 −24.93 −25.03 −22.54 −22.90 −21.55 −19.78

Difference −1.63
∗∗∗ −4.31

∗∗∗ −7.13
∗∗∗−13.17

∗∗∗−14.59
∗∗∗−14.69

∗∗∗−12.20
∗∗∗−12.56

∗∗∗−11.22
∗∗∗ −9.43

∗∗∗

s.e. 0.62 0.97 1.28 1.57 1.90 2.21 2.49 2.72 2.91 3.07

p-value 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N 2237 2220 2203 2186 2169 2152 2135 2118 2101 2084

(b) Real consumption per capita, log c (×100)

Horizon h 1 2 3 4 5 6 7 8 9 10

α0,BU
h −6.45 −10.10 −11.21 −11.44 −11.47 −11.49 −11.49 −11.49 −11.48 −11.48

α̂BU
h −8.08 −14.85 −19.04 −25.05 −25.64 −25.75 −24.08 −23.47 −20.32 −17.57

Difference −1.63
∗∗∗ −4.75

∗∗∗ −7.83
∗∗∗−13.60

∗∗∗−14.17
∗∗∗−14.25

∗∗∗−12.59
∗∗∗−11.98

∗∗∗ −8.83
∗∗∗ −6.09

∗∗

s.e. 0.64 0.93 1.24 1.55 1.88 2.16 2.41 2.62 2.81 2.99

p-value 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04

N 2150 2133 2116 2099 2082 2065 2048 2031 2014 1997

Notes: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. See text. Units are in log times 100.

10



Figure 3: LP test for non-Gaussianity, all JST recession peaks, all countries, peacetime sample, excluding BU
disaster peaks (± 2 years) from the historical and simulated indicators
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(b) Real consumption per capita, c
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Notes: See text. The null is a Gaussian process. The LP path and 95% confidence interval are from the data and disaster mapping used.

Table 3: LP test for non-Gaussianity , all JST recession peaks, all countries, peacetime sample, excluding BU
disaster peaks (± 2 years) from the historical and simulated indicators

(a) Real GDP per capita, log y (×100)

Horizon h 1 2 3 4 5 6 7 8 9 10

α0,All−BU
h −3.77 −3.06 −2.55 −2.36 −2.32 −2.31 −2.31 −2.31 −2.31 −2.31

α̂All−BU
h −3.90 −4.18 −4.01 −4.18 −4.86 −5.31 −6.17 −6.57 −6.59 −6.72

Difference −0.14 −1.12
∗∗∗ −1.46

∗∗∗ −1.82
∗∗∗ −2.55

∗∗∗ −3.00
∗∗∗ −3.86

∗∗∗ −4.26
∗∗∗ −4.28

∗∗∗ −4.42
∗∗∗

s.e. 0.16 0.27 0.37 0.46 0.56 0.66 0.77 0.87 0.96 1.03

p-value 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N 2048 2031 2014 1997 1980 1963 1946 1929 1912 1895

(b) Real consumption per capita, log c (×100)

Horizon h 1 2 3 4 5 6 7 8 9 10

α0,All−BU
h −3.90 −3.05 −2.41 −2.15 −2.09 −2.08 −2.07 −2.07 −2.07 −2.07

α̂All−BU
h −2.73 −3.12 −3.77 −4.03 −5.33 −5.93 −6.49 −7.27 −7.76 −8.99

Difference 1.18
∗∗∗ −0.07 −1.36

∗∗∗ −1.88
∗∗∗ −3.24

∗∗∗ −3.86
∗∗∗ −4.42

∗∗∗ −5.20
∗∗∗ −5.69

∗∗∗ −6.92
∗∗∗

s.e. 0.20 0.30 0.40 0.50 0.59 0.69 0.79 0.90 1.01 1.12

p-value 0.00 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N 1956 1939 1922 1905 1888 1871 1854 1837 1820 1803

Notes: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. See text. Units are in log times 100.
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smaller in scale than in Table 2. The deviation from the null prediction is now -4.42% at 10 years for

GDP; -6.92% at 10 years for consumption.

We therefore conclude that the rare disaster approach is valid: those events are still the big

disasters. But now even all the other recessions in history can be viewed as mini-disasters of the

same ilk. That is, there are disasters everywhere.

Test 4: All peacetime normal and financial recessions minus Barro-Ursúa disasters This

test applies to the mapping used by an investigator who employs same the recession peak criterion

used in Test 3, minus the BU peaks, but the investigator allows different responses for Normal and

Financial Crisis recessions. The mapping is the same as m = All − BU, but we denote the different

responses by labels N and F, respectively.

This is a natural hypothesis to account for the previous result by allowing a role for financial

crises in generating these patterns. It is well established that recessions associated with financial

crises are more costly on average than other “normal recessions” (Jordà, Schularick, and Taylor,

2013; Muir, 2017), and this is true even outside of the rare disasters sample. To attack this question

we employ the Jordà, Schularick, and Taylor (2013) classification of recessions into N and F types,

where the latter means a financial crisis event occurs within ± 2 years of the peak. Now we just

repeat the previous test, but examine differences between the null and historical paths in N and F

types of recessions separately. The local projection estimates are now denoted by N and F subscripts.

Figure 4 and Table 4 deliver a potentially surprising answer. Financial Crisis type recessions

have much worse growth paths than the null, and a good deal of the fat-left-tail growth performance

seen in the last test clearly stems from the damage done in financial crisis events. However, even in

the Normal recessions we still find strong evidence against the Gaussian null. So the problem is

not just rare disaster causing fat tails, nor is it rare disasters and financial crises. It looks like even

Normal recessions contribute to the general pattern too.9

Implications for welfare: do all disasters matter? If we admit these fat-tailed mini-disasters

into a welfare accounting framework, there is prima facie evidence of their quantitative significance.

The intuition is clear for one-period disasters. It is well known that the welfare losses, risk premia,

and other features of disaster calculus depend—to a first approximation—on expressions of the form

pE(b), which is the event probability p times the expected one-shot jump loss E(b). For sure,

mini-disasters are on average less painful, about one quarter as severe as rare disasters. However,

they are about four times as likely to occur. Overall, then, they are potentially very consequential in

welfare terms, and possibly even more than the rare disasters.

Some back-of-the envelope calculations can motivate the rest of the paper. Specifically, in

peacetime, using the JST dataset analyzed above—not exactly the same as the BU dataset—the BU

9Note that the null is numerically constructed as in Test 3, so by construction includes “big” recessions that
would probably better characterize financial crises. Instead of adjusting the null, we left it as is to show that
even with this adverse choice of null, Normal recessions still exhibit statistically notable fat-tailed features.
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Figure 4: LP test for non-Gaussianity, all JST Normal and Financial recession peaks, all countries, peacetime
sample, excluding BU disaster peaks (± 2 years) from the historical and simulated indicators
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(b) Real consumption per capita, c
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Notes: See text. The null is a Gaussian process. The LP path and 95% confidence interval are from the data and disaster mapping used.

Table 4: LP test for non-Gaussianity, all JST Normal and Financial recession peaks, all countries, peacetime
sample, excluding BU disaster peaks (± 2 years) from the historical and simulated indicators

(a) Real GDP per capita, log y (×100)

Horizon h 1 2 3 4 5 6 7 8 9 10

α0,N
h −3.77 −3.06 −2.55 −2.36 −2.32 −2.31 −2.31 −2.31 −2.31 −2.31

α̂N
h −0.14 −0.76 −0.98 −1.39 −1.99 −2.32 −3.04 −3.57 −4.05 −4.31

α̂F
h −0.33 −2.43 −3.38 −3.75 −5.17 −5.97 −7.52 −7.64 −6.31 −6.08

Difference N −0.14 −0.76
∗∗ −0.98

∗∗ −1.39
∗∗∗−1.99

∗∗∗−2.32
∗∗∗−3.04

∗∗∗−3.57
∗∗∗−4.05

∗∗∗−4.31
∗∗∗

s.e. 0.19 0.31 0.42 0.53 0.64 0.76 0.88 1.00 1.09 1.17

p-value 0.45 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Difference F −0.33 −2.43
∗∗∗−3.38

∗∗∗−3.75
∗∗∗−5.17

∗∗∗−5.97
∗∗∗−7.52

∗∗∗−7.64
∗∗∗−6.31

∗∗∗−6.08
∗∗∗

s.e. 0.34 0.55 0.75 0.94 1.14 1.35 1.57 1.77 2.01 2.27

p-value 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

N 2077 2060 2043 2026 2009 1992 1975 1958 1941 1924

(b) Real consumption per capita, log c (×100)

Horizon h 1 2 3 4 5 6 7 8 9 10

α0,N
h −3.90 −3.05 −2.41 −2.15 −2.09 −2.08 −2.07 −2.07 −2.07 −2.07

α̂N
h 1.34 0.47 −0.50 −0.73 −1.92 −2.46 −2.79 −3.74 −4.51 −5.87

α̂F
h −0.16 −1.93 −3.80 −5.04 −6.88 −8.00 −9.30 −9.44 −9.03 −9.77

Difference N 1.34
∗∗∗

0.47 −0.50 −0.73 −1.92
∗∗∗−2.46

∗∗∗−2.79
∗∗∗−3.74

∗∗∗−4.51
∗∗∗−5.87

∗∗∗

s.e. 0.24 0.35 0.46 0.57 0.68 0.79 0.91 1.03 1.16 1.26

p-value 0.00 0.18 0.27 0.20 0.00 0.00 0.00 0.00 0.00 0.00

Difference F −0.16 −1.93
∗∗∗−3.80

∗∗∗−5.04
∗∗∗−6.88

∗∗∗−8.00
∗∗∗−9.30

∗∗∗−9.44
∗∗∗−9.03

∗∗∗−9.77
∗∗∗

s.e. 0.40 0.59 0.78 0.97 1.15 1.33 1.53 1.73 2.00 2.29

p-value 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N 1974 1957 1940 1923 1906 1889 1872 1855 1838 1821

Notes: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. See text. Units are in log times 100.
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rare disasters have a frequency p = 0.016; then, from the LP charts, we might calibrate E(b) = 16%,

which would be larger if wars were in our sample, as in BU. Thus, for the BU“rare” disasters the

expected loss is pE(b) = 0.26%.

What about our proposed “non-rare” mini-disasters using the JST recession classification? Our

Financial Crisis recessions above have p = 0.036 and from the charts we calibrate E(b) = 8%, for an

expected loss of pE(b) = 0.29%. And for Normal recessions we get p = 0.106 and from the charts

E(b) = 4%, for an expected loss of pE(b) = 0.42%. Adding these last two expected losses we get

0.71% for the total expected disaster losses of the “non-rare” or non-BU type. Thus the expected

jump loss from recessions other than rare disasters (0.71%) has a much larger magnitude than that

associated with the rare disasters themselves (0.26%).

Of course, these are first approximations, and neglect convex utility. Welfare losses from fat-

tailed disasters, rare or frequent, will be amplified under risk aversion: an agent prefers two small

losses to a single loss of twice the size, so to speak. So further analysis is needed, and the point

of the rest of this paper is to make the correct formal calculations. But the intuition holds up and

leads to the key finding of our paper. Rare disasters hurt a lot, but happen once in a blue moon;

but the smaller-but-frequent left-tail pain of other recessions really adds up. To the best of our

knowledge, no research has considered the existence of the latter type of non-Gaussianity, nor

measured the relative importance of these different flavors of disasters in the context of the literature

on the welfare costs of business cycles. Setting aside the rough motivation in the last paragraph, we

now need a carefully estimated growth process, a well calibrated model, and a set of meaningful

counterfactuals. To this we now turn.

3. Disaster paths with randomly varying severity

The previous section establishes that, on average, even plain vanilla recessions are like mini-disasters.

However, it does not quite tell us how much consumption the representative agent would forgo to

avoid them, a critical calculation to assess welfare costs. Motivated by the methods used above, we

introduce an estimation technique that will allow us to calibrate disaster dynamics directly from

local projections. Later we incorporate these estimates to conduct the proper welfare calculation.

We begin by conceiving of the economy as evolving under two different regimes. In normal

times the economy evolves as the random walk with drift of Equation 1. When a disaster event hits,

the economy is shunted onto a different regime whose dynamics we wish to characterize next.

Formally, consider the empirical process corresponding to all calendar dates associated with an

event r, that is {τ(rm)}Rm
rm=1. This is a point process with a long tradition in statistics (see, e.g., Cox

and Isham, 1980, for an introduction to the topic).

In particular, if we assume—as we will assume in our simulations later—that at each calendar

time period a Bernoulli draw with constant success probability determines whether an event

takes place, then the duration elapsed between events, H(r) = τ(r)− τ(r− 1), is approximately

distributed as an exponential random variable whose mean is the inverse of the Bernouilli probability
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of success. Also note that we will in practice usually refer to these events as peaks (i.e., of the cycle).

Applications of point processes in economics include models describing the arrival of policy

rate changes (Hamilton and Jordà, 2002; Hu and Phillips, 2004), descriptions of the arrival of trades

in financial markets (Bowsher, 2007; Engle and Lunde, 2003; Engle and Russell, 1998), and models

of trades in commodity markets (Davis and Hamilton, 2004), among others.

In order to potentially allow the severity of each disaster to vary randomly, we expand on our

previous specification. Therefore, at each event date τ(r), we assume that there is an associated

stochastic process characterizing the depth of the recession associated to the rth event. We denote the

path at each event r as s(r) = (s1(r), . . . , sH(r)(r)) (we omit reference to the mapping for simplicity).

The reason we use the notation sh rather than ψh as before is to differentiate estimates based on our

random coefficients model from the fixed coefficient models discussed earlier. This will become

clear momentarily.

Before becoming more specific, it is important to note that the stochastic process given by

{τ(r), s(r)}R
r=1 for r ∈ Z now becomes a marked point process (see Cox, 1972; Last and Brandt, 1995,

for two classical references). That means that the intensity or hazard rate with which events arrive

and the values that the marks take could be related, in principle.

Our strategy is more modest motivated by the evidence and to facilitate the simulations in later

sections. First, we assume that there is no duration dependence in the point process, that is, the

duration between two disasters is uninformative about when the next disaster will hit, or as stated

earlier, H(r) ∼ E(λ), that is, durations are exponentially distributed with constant hazard λ = 1/p
where p is the success probability in the Bernoulli trial. This seems consistent with findings reported

in the literature on recession prediction (see, e.g., Berge and Jordà, 2011; Chauvet and Hamilton,

2006; Diebold and Rudebusch, 1990). Second, the point process and the process for the marks are

assumed to be independent from each other. In other words, the severity a disaster is not a function

of how long ago the previous disaster happened. Here again the evidence does not strongly suggest

otherwise. Potential violations of these two assumptions in other contexts are an interesting area of

research that we reserve for a different paper.

A simple way to extend the framework of marked point processes is to build out from our earlier

local projections specification in Equation 2 as follows:

∆xt = g +
[

s1D1
t + . . . + sHDH

t

]
exp(ζτ(r)) + εt ; ζτ(r) ∼ N (0, σ2

ζ ) ; εt ∼ N (0, σ2) ; (5)

t = τ(r) + h ; r = 1, . . . , R ; h = 1, . . . , H(r) ; H = max{H(r)}R
r=1 ,

where ζ and ε are independent from each other and the Dh
t are the indicator variables defined in

the previous section. In Equation 5 the simplifying assumption that we make is that all impulse

response coefficients sh are shifted up or down by the same amount within event, but by different

amounts across events. Note that E(exp(ζ)) = exp(σ2
ζ /2) and hence, evaluated at the mean, the

average impulse response is sh exp(σ2
ζ /2) = ψh, which clarifies why we switched to the notation sh.

Also note that we present the model by omitting the panel dimension of our application to avoid
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notational clutter. Finally, it is important to understand that this estimation only applies at horizons

within a specific cycle, given the last restriction on h.

We refer to this model the random coefficient local projections or RCLP model. To get a tangible

sense of what the RCLP specification buys us, notice that exp(ζ) ∈ (0, ∞) since ζ ∈ (−∞, ∞). So, as

ζ → −∞, the disaster approaches the Gaussian null model and shown in Equation 1. This is why

we do not scale the constant term by exp(ζ) as we do with the other coefficients. As ζ → +∞, the

disaster becomes increasingly severe.

As we will show momentarily, we estimate σζ ≈ 0.375. This means that the recession penalty

coefficients, sh are scaled up or down as follows. Take a centered 95% probability range for ζ. At the

low end, the coefficient sh is scaled down by a factor of 0.48, approximately. At the other end, it gets

scaled by a factor of approximately 2.1. In other words, the worst recession is about 4.3 times worse

than the mildest when comparing the 2.5% quantile to the 97.5% quantile of the distribution of the

latent variable ζ.

As an example, if the typical recession results in a 2% decline in GDP in the first year, the mild

recession above will see a decline of about 1%, whereas the severe recession will see a decline on

the order of 4%. Thus, this simple extension of the model permits quite a range of variation in

the severity of disaster events, which can easily bracket the mild recession of 2001 and the Great

Recession in the U.S., for example. Note also that e0.3752/2 = 1.07 so the median responses sh should

be inflated by a factor 1.07 to compute mean responses.

The model in Equation 5 can be extended in a number of ways that we leave unexplored here as

those extensions are not our primary focus in this paper. In more general applications, a typical

local projection exercise would include additional controls. However, it is easy to see how these

extensions could be accommodated. The specification in Equation 5 can be estimated by maximum

likelihood for each horizon h = 1, . . . , H noting that because we work in event time, ζt is common

to all horizons and the system of equations can be set up accordingly. Our specific environment

allows for a simpler approach that relies on single equation maximum likelihood estimation.

Of course, the counterpart to Equation 3 using a similar RCLP approach as in Equation 5 is:

∆hxt = gh +
[

a1D1
t + . . . + aHDH

t

]
exp(ζi,τ(r)) + ut , (6)

where ah exp(σ2
ζ /2) = αh, ah = (s1 + . . .+ sh), and ut = (εt + . . .+ ετ(r)+1) since τ(r)+ h = t. Hence,

note that the variance of ut is hσε, that is, the residual ut is mechanically heteroskedastic.

3.1. Estimating the baseline RCLP model

Using the methods above, we now estimate a baseline RCLP model on the data that we subsequently

simulate for use in welfare calculations of the cost of business cycles. Hence, we focus only on real

consumption per capita in what follows. Thus, let cit denote the log of annual real consumption per

capita across years t = 1, ..., T and countries i = 1, ..., I. The relevant sample will be drawn from the
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same peacetime dataset as above, with recession peaks, r, further sorted into two types: recessions

associated with financial crises (F) and normal recessions (N). In due course, the occurrence of these

peaks will be modeled as Bernoulli draws, as in standard disaster models. We set a maximal horizon

for estimation Hmax = 10 years as a practical matter since few expansions last more than 10 years,

so we have insufficient observations at large horizons to get plausibly accurate parameter estimates.

Estimation proceeds by adapting the specification in Equation 5 for our panel of consumption

data. Hence, we specify the LHS variable of the LP in similar fashion as ∆ci,t = ci,t − ci,t−1.

Specifically, we estimate the following expression over every cycle:

∆ci,t = g +
[

sn
1 N1

i,t + . . . + sn
H NH

i,t + s f
1 F1

i,t + . . . + s f
H FH

i,t

]
exp(ζi,τ(r)) + εi,t , (7)

where the sample is for all i, all r, and all t such that τ(r) < t ≤ τ(r + 1).

Here, g is (conditional) trend drift in growth form. For each i and r, and h = 1, . . . , max(H(r), Hmax),

and t = τ(r)+ h, we then define the indicator variable Nh
i,t = 1 if r corresponds to a normal recession,

and t ≤ τ(r + 1), 0 otherwise. Fh
i,t = 1 is defined similarly for r corresponding to a financial recession.

Note that once a given cycle r ends, the indicators for that cycle do not carry forward. We will

examine the importance of this choice below.

Here, the sn
h and s f

h measure disaster-type growth losses within a cycle. In particular, s f
h measures

the growth impact of a financial crisis recession at h-years, relative to trend. The interpretation

of the coefficient sn
h is analogous for normal recessions. Both are modulated by eζi,τ(r) to allow for

potentially random variation in the severity of the episode, as explained in the previous section.

Next, as noted, we cannot achieve reasonable sample sizes of outcomes at large H. Thus,

pragmatically, we truncate LP estimations at a reasonable horizon Hmax. Beyond that horizon we

implicitly assume in the growth rate regression that the process reverts to the random walk with

drift for h > H. That is, the growth losses captured by the sn
h and s f

h parameters will cease at that

point, and no further growth losses are incurred: the disaster is over.

Finally, to avoid multicollinearity with the drift g, we impose the restriction sn
1 + . . .+ sn

10 = 0, that

is, we assume that normal recessions do not have long-run permanent level effects on consumption

growth. We view this as a conservative assumption. Of course, we expect, and will obtain, estimates

s f
1 + . . . + s f

10 < 0, in line with the consensus that financial recession do have long-run permanent

level effects. The hypothesis that a financial crisis recession leads to a permanent loss has become

the consensus view since at least the work of Cerra and Saxena (2008). Assuming that a normal

recession also leads to a permanent loss, however, might be controversial, and is avoided.10

10That is, this type of constraint effectively adjusts the trend drift component and therefore also rescales
all financial recession coefficients. In other words, if financial recessions had the same long-run impact as
normal recessions, the financial recession coefficients would sum up to zero as well. We will discover that this
is clearly not the case, in line with consensus. Of course, all else equal, these restrictions limit the welfare
losses in the normal recessions, and lower estimates of welfare costs, and in that sense are conservative.
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3.2. Results

We now show how to estimate the parameters of the data generating process for consumption

growth given by estimating equation Equation 7. Recall that to get to this point, the first results in

this paper have established that recession peaks are associated with subsequent non-Gaussianity in

the process for a considerable time, and that the occurrence of persistent left-tail is not just a feature

of the so-called rare disaster events but is also seen in peacetime financial crisis and even normal

recessions. We argue that our estimating equation Equation 7 is a flexible yet parsimonious way to

capture the evolving growth penalty that comes in the wake of our broader class of mini disasters,

and that the results are robust. We process in steps, building up to our preferred specification.

Fixed coefficients A first step is to present an estimate of Equation 7 but restricted to fixed

coefficients rather than random coefficients. That is, we drop the random scaling terms exp(ζiτ(r)).

This leaves us with a standard LP estimation which can be performed using OLS methods:

∆ci,t = g +
[

sn
1 N1

i,t + . . . + sn
H NH

i,t + s f
1 F1

i,t + . . . + s f
H FH

i,t

]
+ εi,t . (8)

Note here that the Nh
i,t and Fh

i,t indicators pick up growth effects when an event occurred at time

τ(r) = t− h within the same cycle r. As stated earlier, we impose the restriction sn
1 + . . . + sn

10 = 0.

That is, we start off by estimating a simpler data generating process where the disasters are

uniform rather than variable. All else equal, this process of course would be expected to yield

smaller welfare losses—since a source of volatility has been suppressed—for the same reasons as in

Barro (2006), and we can indeed confirm this intuition later.

Our estimate of the fixed coefficient local projection (FCLP) model in Equation 8 is shown in

Table 5, column (1) and Figure 5, panel (a). In the figure, the cumulated estimated ân and â f

coefficients are shown where blue denotes normal and red denotes financial, an
h = (sn

1 + . . . + sn
h)

and a f
h = (s f

1 + . . . + s f
h). We also show 95% confidence intervals. For reference, the pure conditional

drift path gh is also shown. We see that normal recessions last about one year. By year two the

economy regains the peak level, and continues to grow. Financial recessions are deeper, longer, and

even 10 years out, sit about 10 percentage points below the normal recession path.

These preliminary results are not so new, but serve as a sense check. They reassuringly conform

to previous research using local projection methods. As is well documented in large samples, (e.g,

Jordà, Schularick, and Taylor, 2013, 2017; Reinhart and Rogoff, 2014), there are significant differences

between normal and financial crisis recessions. And the local projections in Jordà et al. (e.g, 2013)

are similar to these paths expressed as deviations from trend.

As a second step we pause to ask whether the data structure used in Equation 8 is innocent.

Note that these LPs are estimated only using within cycle observed paths for each cycle r: the data

traces out a path for the normal and financial subsets starting at time t = τ(r), and the sh coefficients

in Equation 8 simply recover the unconditional mean change from there up to time t = τ(r) + h.
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Table 5: Fixed and Random Coefficient Local Projections

(1) (2) (3) (4)
FCLP FCLP RCLP RCLP

(non-truncated) (GBF)
sn

1 −5.17
∗∗∗ −4.58

∗∗∗ −5.49
∗∗∗ −5.23

∗∗∗

(0.23) (0.24) (0.26) (0.24)
sn

2 −0.76
∗∗∗ −0.28 −0.74

∗∗∗ −0.96
∗∗∗

(0.23) (0.24) (0.21) (0.15)
sn

3 0.02 0.20 0.08 −0.20

(0.26) (0.24) (0.22) (0.13)
sn

4 0.40 0.50
∗∗

0.46
∗

0.63
∗∗∗

(0.29) (0.25) (0.25) (0.16)
sn

5 1.10
∗∗∗

0.69
∗∗∗

1.45
∗∗∗

1.23
∗∗∗

(0.33) (0.25) (0.30) (0.16)
sn

6 1.00
∗∗∗

0.67
∗∗∗

1.01
∗∗∗

1.44
∗∗∗

(0.37) (0.25) (0.36) (0.12)
sn

7 0.60 1.03
∗∗∗

0.67
∗

1.29
∗∗∗

(0.41) (0.25) (0.40) (0.11)
sn

8 1.26
∗∗∗

0.80
∗∗∗

1.27
∗∗∗

0.94
∗∗∗

(0.45) (0.26) (0.43) (0.15)
sn

9 0.99
∗∗

0.90
∗∗∗

0.88
∗

0.57
∗∗∗

(0.49) (0.26) (0.47) (0.15)
sn

10 0.56 0.07 0.41 0.30
∗∗∗

(0.53) (0.26) (0.55) (0.12)
s f

1 −5.37
∗∗∗ −5.24

∗∗∗ −5.48
∗∗∗ −6.20

∗∗∗

(0.36) (0.37) (0.40) (0.39)
s f

2 −2.12
∗∗∗ −2.03

∗∗∗ −2.55
∗∗∗ −1.75

∗∗∗

(0.36) (0.37) (0.35) (0.21)
s f

3 −1.71
∗∗∗ −1.42

∗∗∗ −1.73
∗∗∗ −1.38

∗∗∗

(0.41) (0.38) (0.37) (0.21)
s f

4 −1.10
∗∗ −0.15 −1.46

∗∗∗ −0.96
∗∗∗

(0.47) (0.38) (0.41) (0.24)
s f

5 −0.31 −0.07 0.14 −0.67
∗∗

(0.57) (0.39) (0.46) (0.29)
s f

6 −0.34 0.24 −0.36 −0.53

(0.67) (0.39) (0.60) (0.33)
s f

7 −0.11 0.00 0.11 −0.43

(0.79) (0.41) (0.71) (0.39)
s f

8 −0.33 −0.31 −0.31 −0.17

(0.89) (0.42) (0.78) (0.48)
s f

9 −0.13 −0.01 −0.14 0.32

(1.04) (0.44) (0.98) (0.59)
s f

10 −0.22 −0.44 −0.26 0.96

(1.22) (0.48) (1.15) (0.66)
g 2.80

∗∗∗
2.38

∗∗∗
2.88

∗∗∗
2.86

∗∗∗

(0.10) (0.09) (0.09) (0.09)
Unconditional drift, actual 1.89 1.89 1.89 1.89

Unconditional drift, fitted 1.89 1.89 1.89 1.89

σ2
ε 11.71 11.81 10.84 10.99

σ2
ζ 0.14 0.14

(0.02) (0.02)
R2

0.26 0.22 0.35 0.34

RMSE 3.42 3.51 3.21 3.24

Observations 2143 2143 2143 2143

Notes: Dependent variable: ∆ci,t × 100. The table displays regression coefficients for the FCLP and RCLP models with H=10. Standard
errors in parentheses. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. We impose sn

1 + . . . + sn
10 = 0. The row σ2

ζ displays the estimate of the variance
of the latent variable ζ in the RCLP specifications. See text.
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Figure 5: Recession paths for Normal and Financial Crisis Recessions: Fixed Coefficient Local Projections

(a) FCLP estimates
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(b) FCLP estimates (non-truncated)
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Notes: The figure shows Normal versus Financial Crisis recession paths based on Fixed Coefficient Local Projections. The coefficients
of the growth versions are reported in cumulative form by adding up the coefficient estimates appropriately. The estimates are scaled
by 100 to show the results in percent (log ×100) deviations from the peak of consumption. 95% confidence intervals are provided. Note
that coefficients are restricted such that normal recessions have no long run effect. See text.
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Information from events before the peak at time t = τ(r) are ignored. This means that if one or

previous cycles terminated early at a horizon h < Hmax = 10 then potential catch-up growth due to

the later years of that cycle at horizons h + 1, . . . , 10 is ignored.

We therefore formally consider the natural alternative where the growth effects from all past

cycles are always carried forward into future periods, whether those are in the same cycle r or

not. To do this, we simply re-estimate Equation 8 with the added requirement that the Nh
i,t and Fh

i,t

indicators are now redefined, only for this estimation, to denote an event that occurred at time t,
whether or not that event was within the same cycle or not, unlike before.

Our estimate of this “non-truncated” LP model is shown in Table 5, column (2) and Figure 5,

panel (b). It is clear from the figure that overall the change in the recession paths is fairly small.

The only notable change, as expected, is in the estimate of the conditional drift g, which is 0.42%

per annum lower in this case (2.38 versus 2.80). The intuition is straightforward: in the FCLP in

column (1), growth catching up in the late stages of cycles is truncated. When a new recession peak

event hits, no cumulation of any past cyclical catch up is carried forward. Thus when a cycle of

either type ends at a horizon h < 10 a permanent level loss is baked in going forward. To offset

this, and for the model to still match the unconditional mean as it should, a higher drift intercept

must be estimated. In column (2), full recovery and catch up out to h = 10 is allowed and so no

permanent losses materialize for normal recessions, and smaller permanent losses materialize for

financial recessions. Thus, a higher drift intercept must be estimated. Either way, as the table shows,

the models still always match the unconditional mean.

Still the LP path difference are not that great, and in what follows as our preferred method

we use the truncated estimation method for three reasons. First, judged by measures of fit like R2

and RMSE, the results in Table 5 favor the model in column (1) versus (2). Second, as we shall

see below, the differences in estimated welfare that obtain when we use these two methods are

negligible. Thirdly, when we move to random coefficient estimation the technical difficulties of

keeping track of multiple draws over past cycles of the latent state variable ζ in the RCLP would

prove computaionally very costly, for minimal gain of insight, as compared to simply modeling a

single draw for the current cycle at each observation.

Random coefficients We now move to our preferred baseline approach where a variable-disaster

data generating process is estimated using random coefficients local projections (RCLP) based on

the specification in Equation 7 and we impose τ(r) < t ≤ τ(r) + H(r), so estimation of the growth

effects is again within-cycle. As always, we continue to impose the restriction sn
1 + . . . + sn

10 = 0.

Our estimate of this RCLP model is shown in Table 5, column (3) and Figure 6, panel (a). In the

table, the estimate of σ2
ζ is added, along with its standard error. In the figure, as before, estimated

ân and â f coefficients are again shown, with 95% confidence intervals. Recall that these coefficients

are now median growth effects, corresponding to a draw of ζ = 0. To give a sense of the range of

variability of the growth effects the figure also displays a fan chart on dotted lines corresponding to

every decile of the distribution of ζ, where blue denotes normal and red denotes financial.
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Figure 6: Recession paths for Normal and Financial Crisis Recessions: Random Coefficient Local Projections

(a) RCLP estimates
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(b) RCLP estimates (GBF)
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Notes: The figure shows Normal versus Financial Crisis recession paths based on Random Coefficient Local Projections. The coefficients
of the growth versions are reported in cumulative form by adding up the coefficient estimates appropriately. The estimates are scaled
by 100 to show the results in percent (log ×100) deviations from the peak of consumption. 95% confidence intervals are provided. Note
that coefficients are restricted such that normal recessions have no long run effect. See text.
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Note that, as a robustness check, we have estimated variants (not shown) where we allow σζ to

differ between normal and financial recession events. However, the results indicated no significant

difference between these two σζ estimates, so we kept the more parsimonious specification above. It

may seem surprising given that the fan charts show wider ranges for financial versus normal events,

but this is just a result of the fact that growth deviations on the financial are larger, and so scale up

to create much larger ranges when mutliplied by the random draws of exp(ζi,τ(r)).

The main message from these estimates is that the RCLP model is the preferred specification

so far. The estimated s and a coefficients are quite similar to those in the FCLP models. But we

can see that measures of fit are better for this model as compared to the FCLP models, with the R2

rising substantially to 0.35, versus 0.26 and 0.22. The variance of the random draw parameter σζ

is not close to zero, is precisely estimated, and the fan charts show that the induced variability is

meaningfully large. The data seem to be much better described by a mini-disaster model that allows

for variability in disaster intensity.

Finally, we estimate a variant of our preferred RCLP model that allows for dimension reduction

in the description of the data generating process. It is well understood that an important occupa-

tional hazard for researchers studying rare disasters is the temptation to try to estimate too many

parameters from too few observed disaster states, as noted by Nakamura, Steinsson, Barro, and

Ursúa (2013). In our RCLP model we are estimating 22 parameters: the 20 fixed coefficients s with

one restriction, the drift g, the residual variance σ2
ε , and a random draw variance σ2

ζ . We now show

how to employ a standard “smoothed LP” technique to reduce the 20 fixed coefficients s down to 6.

Formally, in any setting one can restrict LP impulse response coefficients to be described

by a suitable parametric function of the horizon h. A useful choice in many applications is

to approximate impulse responses by using one or more Gaussian Basis Functions of the form

G(h; θl , θm, θn) = G(h;θ) = θl exp((h− θm)/θn)2), which was proposed by Barnichon and Matthes

(2018). We therefore re-estimate the RCLP model subject to the following functional approximations

of the cumulative impulse responses:

an
h = G(h;θ1)− G(10;θ1) , h = 1, . . . , 10 ;

an
h = 0 , h > 10 ;

a f
h − an

h = G(h;θ2) , h = 1, . . . , 10 ;

a f
h − an

h = G(10;θ2) , h > 10 .

These describe the cumulative impulse responses a, which can be straightforwardly differenced to

obtain the noncumulative impulse responses s. Here, in the first two equations, the normal recession

response an
h is described by a Gaussian Basis Function up to horizon 10, and the intercept shift term

is imposed in order to force a zero cumulative level effect at horizon 10 and beyond. In the second

two equations, the additional financial recession response a f
h − an

h is described by a second Gaussian

Basis Function up to horizon 10, and the level difference then becomes a persistent cumulative level

effect which stays constant after horizon 10.
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Our estimate of this RCLP-GBF model is shown in Table 5, column (4) and Figure 6, panel (b).

With fewer underlying parameters, the precision of each LP coefficient is sharpened, but at some

cost in fit. Yet the paths are almost identical, and the R2 in the GBF approximation falls to only 0.34

versus 0.35 in the preferred RCLP. The main message from these estimates is that the RCLP model

and its GBF approximation differ very little. The approximation is good, and it could be employed

as a parsimonious description of mini-disaster cycles if concerns about over-parameterization prove

troubling, or if the researcher wishes to impose a smoothed response.

Summing up, our estimates of the data generating process appear robust and stable. With these

estimates in hand we now turn to simulating these models as the basis of counterfactual welfare

analysis.

4. Costs of business cycles with disasters everywhere

Recessions are not just bad consumption draws from a random walk with drift. They have patterns

that defy this Gaussian null model in ways we have shown above—in this sense, disasters are

everywhere, and not only of the rare kind. If so, how much is a representative consumer willing to

pay to avoid such pervasive and weighty left-tail randomness? In this section we take the lessons

from our empirical work seriously and apply them in a standard welfare counterfactual exercise.

Our starting point will be to simulate our baseline two-state model of consumption growth. In

“good” no-disaster states consumption follows the familiar Gaussian random walk with drift model.

However, with some probability drawn from a Bernoulli distribution, a “bad” recession disaster

event takes place, although we rule out a disaster in consecutive years to match the empirical

constraint that a peak in output or consumption by definition cannot occur in two consecutive years.

If such a disaster occurs, then with some probability taken as a sub-draw from another Bernoulli

distribution, the normal or financial type of disaster is decided. When such draws yield a disaster,

we then characterize the average path of consumption using our preferred RCLP estimates ŝh above,

adjusting its severity by taking a draw calibrated to the latent process ζ. Thus, growth deviations

imposed on the path are exp(ζ)ŝh as h ≥ 1 counts upwards within a given cycle.

Once on a disaster path, the economy remains on it until either (i) horizon h = Hmax is

encountered and the economy returns to the no-disaster state, or (ii) another disaster draw is

encountered at horizon h < Hmax and a new disaster path begins immediately, truncating the old

path. In the latter case, no further growth deviations from the old path are cumulated in the baseline

model. As a robustness check we also simulate versions of the other three data generating processes

we estimated above, although we find only small difference in their welfare implications.

To sum up, the consumer in our simulation faces uncertainty from various quarters. First, at any

point a disaster may take place. Second, when a disaster happens, its type and severity are uncertain.

Third, the duration of the disaster is also variable. Faced with these multiple sources of uncertainty,

the consumer is willing to pay a price to insure against the instability of the consumption stream.

How much consumption is she willing to forgo? This is big question we try to answer.
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4.1. Model simulations

To make progress, we simulate an artificial consumption series given by the following process for

annual consumption growth. The simulation is for an individual country, so the i subscript is

dropped. Just as described above, we will assume consumption follows a two-state process given by

∆ct = ĝ + εt , (RCLP: No-disaster period)

∆ct = ĝ + exp(ζt)
Hmax

∑
h=1

(
ŝ f

h Fh
t + ŝ f

h Nh
t

)
+ εt . (RCLP: Disaster period)

where εt is drawn from N (0, σ̂2
ε ), and ζt is drawn from N (0, σ̂2

ζ ) once per recession cycle at τ(r).

The parameters ĝ, ŝ f
h , ŝn

h , σ̂2
ε , and σ̂2

ζ are taken from the RCLP estimates reported in Table 5.

To fully specify the simulation, it remains to define the process governing the evolution of

the disaster event dummies indicating when there is a recession (normal or financial), namely

Rt = {Nt, Ft}. So what remains is to set the probabilities for the two Bernoulli draws: the top-level

draw probability (p) for entering a disaster period (excluding in years with h = 1 as noted), and the

sub-draw probability for whether the type is normal (qn) or financial (q f ).

Candidates for baseline probabilities are chosen as follows, based on empirical frequency in the

data in the full sample of the JST dataset, excluding wars:

• Disaster events For the top-level draw, using earlier notation, we set p = P(D0
t = 1|D0

t−1 =

0) = 16.3%, the sample frequency of a disaster today given no disaster the previous year.11

• Peak types Given a disaster occurs, D0
t = 1, the sub-draw probability determines type. The

sample frequency is q f = 28.6% for a financial recession (F) and qn = 71.4% for a normal

recession (N), with qn + q f = 1.

To illustrate how varying the sub-draw probabilities (qn, q f ) affects welfare outcomes, holding p
fixed, we also consider alternative simulations using a range of other calibrations as follows:

• Zero financial crisis risk q f = 0, qn = 1, empirical frequencies for the “quiet” 1950s–60s.

• Medium financial crisis risk q f = 0.25, qn = 0.75, approximate empirical frequencies of the

pre-WW1 era.

• High financial crisis risk q f = 0.50, qn = 0.50, approximate empirical frequencies of the

post-1985 era.

• Variable financial crisis risk any q f , qn combination.

Here, empirical frequencies are based on the dataset and classifications above. We explore a range

of scenarios to provide guidance on the welfare cost implications of varying financial crisis risk.

11Note that this probability is higher than the unconditional JST recession probabilities used earlier in this
paper. It must be defined here in a different way given the simulated data-generating process.
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We can now completely specify the simulated consumption process. Simulation begins at time

t = 0 and (wlog) h = Hmax + 1 with the economy in a No Disaster Period. The relevant draw for

consumption growth is then made and t and h are stepped forward one year. But if a peak was

drawn, a ζ is drawn afresh for the newly-starting Disaster Period, and h will be forced back to 1 next

period. Two peaks cannot happen in a row, so no draws happen when h = 1, but after that draws

restart. A new Disaster Period may be drawn when 1 < h ≤ Hmax in which case the current cycle

Disaster Period ends, and a new cycle Disaster Period starts up. If at any time we reach h > Hmax,

we revert to the No Disaster process until a draw dictates a new Disaster Period. To recover the path

in log levels, ct, we simply cumulate growth draws, and then we can convert to absolute levels Ct.

In fact, we implement our simulation in a simpler way. We actually start by simulating only two

consumption growth series: one in which all disasters are Financial recessions (q f = 1, qn = 0) and

one in which all disasters are Normal recessions (q f = 0, qn = 1). Any other sub-draw probability

(0 < qn, q f < 1) can easily be simulated by switching between these two extreme processes, for any

sub-draw probabilities which we wish to assign, including the empirical frequencies above, and

then re-cumulating to recover levels as necessary.

To afford welfare comparisons with other benchmarks from the literature, we complement

our simulated models above with three additional simulated models of consumption growth: a

deterministic trend, ct = ĝ t, to be used as a welfare baseline; a “Lucas” path, ct = ĝ t + νt, which is

a deterministic trend plus i.i.d. Gaussian shocks; and an “Obstfeld” path, ∆ct = ĝ + εt, which is a

random walk with drift and i.i.d. Gaussian shocks. Formally, we can write these as follows using

first differences, imposing εt = νt − νt−1, so

∆ct = ĝ , (Deterministic)

∆ct = ĝ + νt − νt−1 , (Lucas)

∆ct = ĝ + εt . (Obstfeld)

Here, ĝ refers to the conditional annual growth rate term in our baseline RCLP model estimation,

and σ̂2
ε is also from the same estimation. We set σ̂2

ν = σ̂2
ε /2 to match residual moments.

What is being assumed in these counterfactuals? Following standard practice in the disasters

literature, we assume that all permanent losses and temporary skew arising from the extra disaster

terms are completely switched off in the counterfactuals (see, e.g., Barro, 2006).12 In the case of paths

with permanent losses (i.e., our financial recessions) this means that the counterfactual process will

inherit a higher unconditional mean growth, as well as being stripped of negative-skewed terms.

For paths with no permanent losses (i.e., our normal recessions) the counterfactual process will have

unchanged unconditional mean growth but will still be stripped of negative-skewed terms. In the

counterfactuals, these changes will contribute to higher welfare for the representative consumer.

12An implicit assumption is that a move to the counterfactual will not damage mean drift, but only tamp
down higher moments of growth. Policies may or may not achieve that objective and specifics matter. This
remains an open debate in theory and empirics (see, e.g., Rancière, Tornell, and Westermann, 2008).
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For numerical implementation, we simulate a large history of all series over T = 110,000 years

for the five models indexed by M ∈ {Financial, Normal, Lucas, Deterministic, Obstfeld}. For each

model history we then randomly draw starting points for S = 1,000 episodes, each of 1,000 years

length, based on which we compute 1,000 distinct consumption series cM,s,t for each model. Using

the re-weighting method above we can use the Financial and Normal type draws to derive a path

for any 0 < q f < 1. We then obtain a welfare estimate for each model by averaging the discounted

lifetime utility for all the related 1,000 sub-series draws. We assume CRRA preferences with risk

aversion parameter γ = 2 and a discount factor of β = 0.96 for annual data.

The welfare level for model M is then given by

WelfareM =
∑S

j=1 ∑T
t=s(j) βt−s C1−γ

M,s,t
1−γ

S
,

where s(j) refers to the initial period of the jth sub-series.

Our utility choices are conservative. By today’s standards the choice of γ = 2 may seem low,

but it is midway between the values picked in seminal papers, namely γ = 1 (Lucas, 1987, 2003)

and γ = 4 (Barro, 2006, 2009). We will, however, consider other γ values as a sensitivity check. As

for our functional form, Barro (2006); Lucas (1987, 2003) preferences are CRRA, but Barro (2009)

employs Epstein-Zin-Weil preferences. EZW preferences tend to magnify welfare losses, all else

equal. However, as we show, our CRRA environment with a conservative choice of γ = 2, generates

considerable welfare losses: in our setup, disaster-style fat tails are a feature of all recessions, and so

weigh much more heavily in the full welfare cost.

4.2. Comparing welfare under actual and counterfactual histories

Our main result is shown in Figure 7. Using the deterministic model as a baseline, the verti-

cal axis shows welfare relative to the baseline, in log ×100 units, computed as ∆WelfareM =

log(WelfareM/Welfaredeterministic). The horizontal axis shows the relative probability of a financial

crisis for the subdraw q f which varies between zero and one. The reference level for the deterministic

model is the thin dotted line at ∆WelfareM = 0.

Consider first the Lucas reference model, shown by the thin solid blue line. The welfare loss is a

fixed amount and miniscule (about 0.05%), a small fraction of one percent, in line with the prior

literature even with the more volatile histories of consumption growth for samples that are broader

than just the tranquil post-WW2 United States period. Next consider the Obstfeld model, shown by

the thin green dot-dash line. The welfare loss is still a fixed amount but notably larger, about 1%,

which is about 20 times the Lucas loss, and as expected for the random walk case where shocks are

permanent rather than transitory.

Now we move on and compare with our disaster model. In contrast, the solid red line shows

the welfare losses for our simulated model, using the RCLP estimates, which are roughly and

order of magnitude larger, ranging between about 10 and 25 percent. The line shows how the
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Figure 7: Simulation: Main Results
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value of q f in our full non-war JST sample data. See text.

variable financial crisis disaster frequency q f impacts the welfare losses relative to the deterministic

counterfactual. Three particular points on the line are picked out with hollow black diamonds

corresponding to the zero, medium, and high frequency baselines described above. Note that these

illustrative cases hold fixed the top-level Bernoulli recession disaster probability p, and change only

the sub-draw probabilities (qn, q f ). In reality, the top-level p value may also have varied across

eras, but we do not attempt to recalibrate the parameter here for an illustrative exercise.13 Finally,

we denote with a solid black diamond the welfare loss given the empirical value of q f in our full

non-war JST sample data. At the latter point, the welfare loss is about 15%, which is 15 times the

Obsfeld loss, and 300 times the Lucas loss.

These calculations are staggering, given that we are using a CRRA parameter of just γ = 2.

They speak not only to the massive welfare losses associated with frequent financial crises, but

also to the hitherto ignored but nontrivial welfare losses felt even in normal recessions. The latter

effects have not been captured in traditional models Barro (2006); Lucas (1987, 2003) which treat

normal recessions as deriving from Gaussian processes with no fat tail disaster attributes. Instead,

as our LP tests have shown, even normal recessions are non-Gaussian, with significant fat tails in

the consumption path relative to the null. Figure 7 shows that, in welfare terms, this really matters.

13For example, recessions were more frequent before WW1 and less frequent after WW2, compared to the
full sample, which would pull down the middle dot, and lift up the left and right dots somewhat, if the
values of p were also adjusted.
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Why? As the figure shows, a representative agent living in a world of high financial crisis risk,

like the recent decades, (q f = 0.50, post-1985) would enjoy a welfare gain of about 20% from moving

to the deterministic path. In a world of medium financial crisis risk (q f = 0.25, pre-WW1) they

would gain about 15% from moving to the deterministic path. But even with zero financial crisis

risk, and all recessions constrained to be of the normal type (q f = 0.00, 1950s–1960s), they would

gain 10% from moving to the deterministic path. Taking a rough post-WW2 average, an agent living

in time like our current peacetime era would also gain about 10% from moving to the deterministic

path. These are very large permanent-consumption equivalent gains, and they arise with wartime

rare disasters not present at all in the analysis, and with no rare disasters of any kind in the latter

simulation restricted to purely normal peacetime recessions.

4.3. Robustness

Sensitivity to Other Fixed and Random Coefficients Models A robustness check shown in

Figure 8 examines shutting down variable disasters by constraining the randomly drawn scaling

factor eζt(r) = 1 (equivalently, setting σ̂2
ζ = 0). For this we replace our baseline RCLP estimates

with the FCLP estimates in Table 5. The corresponding welfare results are also shown by the blue

dash-dot line in and there is no surprise here. At the empirical value of q f , baseline welfare costs

of about 15% under RCLP estimation decline to about 13% when we switch to fixed-coefficient LP

estimation. Interestingly, the effect of variable disasters is of the expected direction, but not as large

as in the rare disasters model. As noted by Barro (2006, 2009), the additional kick from variable

disasters matters profoundly for risk premium and welfare analysis as compared to fixed disasters.

The same is of course true here in our “disasters everywhere” setup. But whereas, say, Barro (2006)

rare disasters had a widely dispersed empirical distribution between 15% and over 60%, our latent

scaling shock produces much less dispersion in the impulse response paths, as we saw from the

decile fan charts seen earlier. Hence, adding variability to our disasters matters less for welfare.

Two other robustness checks are shown in Figure 8 using simulations of the other two models

in Table 5. The FCLP estimation without truncation is simulated like the plain FCLP, but growth

effects are fully cumulated in all cycles out to h = Hmax = 10, even if a new disaster event occurs.

The RCLP with GBF estimation is exactly as in the baseline, except that the coefficients ŝh are

replaced with their GBF approximated versions. Neither of these models radically change the

welfare implications of our analysis. The FCLP without truncation produces smaller welfare costs as

expected: it approximates cycles with lower conditional growth but also less negatively skewed ŝh.

Thus, the simulated path is a bit smoother than the plain FCLP. But the effect on welfare is minimal,

about 1%–2% at any level of q f . The effect of switching from plain RCLP to RCLP with GBF are

smaller still. The latter makes welfare losses a little smaller, but by less than 1% at any level of q f .

Sensitivity to risk aversion parameter γ A robustness check shown in Figure 9 examines the

sensitivity of calculations to different values of the CRRA risk aversion parameter γ. As noted, we
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Figure 8: Simulation: Sensitivity to Other Fixed and Random Coefficients Models
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Figure 9: Simulation: Sensitivity to risk aversion parameter
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made a conservative choice with γ = 2. Lucas (2003) considers values in the range of 1 to 4 plausible

and we are in the middle of that range, close to the highest value 2.5 Lucas entertains.14 Barro (2006,

2009) has a baseline of γ = 4, which is low relative to values of γ = 10 or more in macro asset

pricing research. Here, as alternatives to our baseline γ = 2, we re-compute welfare losses for the

cases γ = 3 and γ = 4.

The results are shown in Figure 9 and the losses can be huge for even these ostensibly moderate

risk aversion parameters, rising above 20% (at the empirical q f ) when γ = 3, and over 30% when

γ = 4. These are very large welfare losses, and of the same order of magnitude as the rare disasters

(wars and Great Depression events) in Barro (2009). Although our disasters are smaller, less skewed,

and happen in peacetime, they occur much more often and the welfare cost really adds up.

5. Conclusions

At the time of writing this paper, the world’s economies were experiencing one of the largest and

most sudden declines in output due to the COVID-19 pandemic. This is one example of the rare

disasters that Barro (2006, 2009) saw as a cause of the large equity premium and large welfare losses.

Absent from standard stochastic growth models, such extreme left-tail events present the most

obvious justification for stabilization policy.

However, our argument in this paper is that such extreme and costly rare events are not the only

tail events that matter. This is because disasters are everywhere and we do not live in a Gaussian

world. We find that all business cycles are asymmetric and resemble “mini-disasters”. Consumers

experience considerable welfare losses from less extreme but more frequent peacetime recessions.

The depth and duration of such recessions are variable, and because they cause skewed deviations

from trend growth that can last for extended periods, households would be happy to pay a nontrivial

cost to insure against them.

Our paper re-calculates the costs of business cycles in this setting of frequent fat tails. The size

of the welfare loss that we find is large: almost 20% of permanent consumption for cycles in the

crisis-prone past three decades under very moderate risk aversion, maybe 15% over the full sample.

This loss is more than two magnitudes above that in a Lucas (1987) model, and more than one

magnitude above that in an Obstfeld (1994) model. Moreover, the welfare costs have increased

in the recent decades as financial crises have become more frequent. If these results are a good

approximation of reality, then substantial gains in welfare could be achieved from well-designed

policies to prevent financial crises and mitigate even normal recessions. More than ever, depression

prevention and stabilization policies are central to the discipline of macroeconomics.

14Low values close to one were preferred to avert the risk-free rate puzzle, but subsequent research has
proposed alternative theories to solve that separate but distinct conundrum.

31



References

Acemoglu, Daron, and Andrew Scott. 1994. Asymmetries in the Cyclical Behaviour of UK Labour
Markets. Economic Journal 104(427): 1303–1323.

Atkeson, Andrew, and Christopher Phelan. 1994. Reconsidering the Costs of Business Cycles with
Incomplete Markets. NBER Macroeconomics Annual 9: 187–207.

Barnichon, Regis, and Christian Matthes. 2018. Functional Approximation of Impulse Responses.
Journal of Monetary Economics 99(C): 41–55.

Barro, Robert J. 2006. Rare Disasters and Asset Markets in the Twentieth Century. Quarterly Journal
of Economics 121(3): 823–866.

Barro, Robert J. 2009. Rare Disasters, Asset Prices, and Welfare Costs. American Economic Review
99(1): 243–264.

Barro, Robert J., and Tao Jin. 2011. On the Size Distribution of Macroeconomic Disasters. Econometrica
79(5): 1567–1589.
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Hamilton, James D., and Òscar Jordà. 2002. A model of the federal funds rate target. Journal of
Political Economy 110(5): 1135–1167.

Hu, Ling, and Peter C. B. Phillips. 2004. Dynamics of the federal funds target rate: a nonstationary
discrete choice approach. Journal of Applied Econometrics 19(7): 851–867.
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