Segregation and Inequality

- **Motivation**: Racial segregation of cities is an important cause of inequality in outcomes
- Question: Do local political boundaries in cities impact racial segregation and inequality?
- We study racial segregation between jurisdictions (cities and school districts), i.e. "between segregation"
- <u>Result 1</u>: More between-segregated metro areas have higher achievement gaps by race and lower intergenerational mobility

Figure 1:Between-segregation and achievement gap between white and under-represented minority (URM, black and Latino) students.

Figure 2:Between-Segregation and intergenerational mobility (Chetty et al. 2018).

Measuring Between-Segregation
 Let T ∈ {0,1} be indicator for minority from random draw: Let Z be a n × 1 "neighborhood selector" Minority neighborhood isolation is then E[E[T Z] T = 1] And segregation is
$\eta^2 = \frac{E[E[T Z] T=1] - E[T]}{1 - E[T]}$
• Let W be a $n \times 1$ "jurisdiction selector"
• And $E[T W]$ is the share minority in jurisdiction j
• Jurisdictional ("between") segregation is
$\eta_b^2 = \frac{E[E[T W] T=1] - E[T]}{1 - E[T]}$
• Define the share of between segregation:
$\phi = \frac{\eta_b^2}{\eta^2}$

Dividing Lines: Racial Segregation between Local Governments in U.S. Metropolitan Areas

Tomas E. Monarrez¹ and David Schönholzer²

¹Urban Institute, tmonarrez@urban.org; ²Institute for International Economic Studies, david.schonholzer@iies.su.se

Estimating Demographic Discontinuities at Local Government Boundaries

- One of the starkest **racial borders** is in the Detroit MI metro, the boundary between the City of Detroit and Grosse Pointe Park City
- We can quantify this inequality by estimating a boundary regression discontinuity on block demographic composition
- To interpret the RD coefficient α , we can use the following formula:

$$\eta_{\rm RD}^2 = \frac{D(1-D)}{Var(T)}\alpha^2,$$

where D is the population share on one side of the discontinuity • The rescaled RD coefficient squared is thus a measure of segregation between the two sides

Figure 3: Discontinuity in Demographics at Local Government Boundary

Do Local Government Boundaries Change?

- YES. While relatively rare, residential areas change **local education agency (LEA)** jurisdictions when school district mergers, secessions or annexations take place
- Between 2000-2010, AL MO, TX and TN saw substantial changes to LEA geographic jurisdictions
- Some prominent examples
- 2006 Wilmer-Hutchins Independent School District (ISD) is shuttered by the Texas Education Agency, merged with Dallas ISD
- 2007 Independence Public School District in MO annexes part of Kansas City Public Schools' jurisdiction
- 2009 Memphis City School District partial merger with Shelby County Schools territory in TN (reversed in 2011)
- 2006 Saraland residents in AL voted to secede from Mobile County Public Schools, creating Saraland City Schools.
- We leverage these jurisdictional changes to study the impact of local boundaries on residential segregation

Figure 4:Racial Dot Map of Detroit (left) and Grosse Point Park (right)

- We estimate boundary discontinuities in demographics across all adjacent local government pairs in US metropolitan areas (N > 20,000)
- Allows us to make statistical statements about the most racially unequal "dividing lines" in the country
- In some cities, particular dividing lines seem to be key drivers of segregation, akin to "racial borders", raising important policy considerations
- The most unequal racial borders are also linked with local discontinuities in outcomes, such as student achievement by race
- More on this coming soon!

Interpretation: A 50 p.p. increase in LEA exposure to minorities causes a loss of 1.1 white residents per census block, a gain of 0.8 black residents, a gain of 1.2 hispanic residents, and a loss of 0.5 residents from other groups

Effect of Boundary Changes on Sorting

Data

• Using GIS software and crosswalks from NHGIS, we construct a novel panel of census blocks for the years 1990, 2000, and 2010

• Data include identifiers for the school district (LEA) that the block was part of in each time period

• Define a geographic **partition of blocks in a given LEA** 1) those near a boundary (within 500 m), categorized separately based on which adjacent district they neighbor

(2) those not near a boundary – the "center" of the district

Empirical Framework

• We are interested in the impact of school district changes associated with meaningful shifts in demographics

$$Y_{ijkz} = \beta PctMinority_k^0 + X'_i\Gamma + \delta_{p(j)} + \eta_z + \epsilon_{ijkz}, \quad (1)$$

- Y_{ijkz} is a 2010 demographic outcome in block *i* located in 2000 LEA *j* and partition p(j), 2010 LEA k, and neighborhood z - X_i are block demographics in 1990 and 2000

• The treatment variable of interest is $PctMinority_i^0$, the intended percent minority of the 2010 LEA

- what the district's composition would have been in 2010, had no demographic changes taken place since 2000

• FE's $(\delta_{p(i)}, \eta_z)$ ensure that β is identified off of LEA jurisdictional changes and within-small-neighborhood comparisons

Impact of District Composition on Block Population by Race

ite	(1)	(2)	(3)	(4)
$Minority_i^0$	-8.715	-3.124**	-3.061**	-2.249**
	(5.441)	(1.257)	(1.211)	(1.104)
ck	(1)	(2)	(3)	(4)
$Minority_i^0$	5.033	2.014***	1.692*	1.627**
5	(3.094)	(0.692)	(0.877)	(0.755)
panic	(1)	(2)	(3)	(4)
$Minority_i^0$	4.344*	3.788***	3.297***	2.400**
5	(2.491)	(0.904)	(1.095)	(1.069)
er	(1)	(2)	(3)	(4)
$Minority_i^0$	-0.074	-2.196***	-1.383**	-1.177***
5	(0.564)	(0.507)	(0.552)	(0.447)
LEA FE	Х			
LEA Partition FE		Х	Х	Х
t FE			Х	
k-Group FE				Х
	0.779	0.782	0.812	0.828
	947,667	947,457	947,384	947,133

Note: Standard errors are clustered at the 2010 LEA level in all models. Covariates include: total population in 1990, 2000, and 2010, and lagged outcomes for 1990 and 2000. Mean demographic breakdown of blocks in sample: 35 white residents, 8 black, 24 hispanic, and 8 from other groups.