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1 Introduction

In representative agent rational expectations models, beliefs must be martingales, and forecast

errors must be unpredictable. Survey evidence measuring investor beliefs, however, often shows that

consensus forecast errors are positively correlated with forecast revisions — see, for example, Coibion

and Gorodnichenko (2015). I further document that stock market returns on forecast revision days

negatively predict subsequent returns on macroeconomic announcement days when forecast errors

are realized. This stock market return predictability is particularly strong in periods of high

economic uncertainty. The joint evidence of the positive predictability of forecast errors and the

negative predictability of stock market reactions to them pose a challenge to rational expectations

models. The purpose of this paper is to develop a dynamic noisy rational expectations equilibrium

model (NREE) with periodic macroeconomic announcements to provide a unified explanation for

the above facts.

Using data from the Survey of Professional Forecasters (SPF) and Consensus Economics (CE), I

first show that consensus forecast revisions positively predict subsequent forecast errors. Both sur-

veys ask participants to report, on a quarterly basis, forecasts of key macroeconomic variables such

as GDP, unemployment and Consumer Price Index (CPI) for the next four quarters. The differ-

ence between the current forecast for this quarter and the previous forecast submitted last quarter

provides a measure of forecast revisions concerning the current quarter. Consistent with Coibion

and Gorodnichenko (2015), I show that revisions of consensus forecasts are positively correlated

with their errors. I next show that the stock market returns on forecast revision days negatively

predict announcement day returns, especially during periods of high economic uncertainty. Stock

market returns over the forecast revision periods represent market reactions to forecast revisions

and announcement day returns represent market reactions to forecast errors. Taken together, my

evidence suggests that the stock market’s responses to these forecast revisions negatively predict

market responses to forecast errors.

The main contribution of my paper is to develop a dynamic NREE model to account for the

dynamics of beliefs, returns and trading patterns around macroeconomic announcements. My

model builds on the continuous-time setup of Wang (1993). It features two groups of investors,

the informed and uninformed. I further assume that dividends are driven by a hidden state,

unobservable to both investors. This generates uncertainty for both investors due to hidden state

estimation errors. Informed investors observe a noisy signal about the latent state variable, whereas

the uninformed do not. In addition, pre-scheduled macroeconomic announcements fully reveal the

true value of the latent state, thereby periodically resolving the uncertainty. Finally, both investors

update their beliefs based on observed equilibrium stock prices.

Both groups of investors continuously revise their beliefs rationally using the Kalman filter as

new information arrives. Forecast errors are revealed periodically upon macroeconomic announce-

ments. I demonstrate that revisions of the consensus forecast, defined as the average forecast of

both investors, positively predict the forecast errors realized on announcement days. Intuitively,

arrivals of the private information not only contribute to revisions of informed investors’ belief but
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also lead to errors of the uninformed investors, who cannot update their beliefs accordingly. As a

result, forecast revisions of informed investors positively predict the errors of the rational but un-

informed investors. Because the consensus forecast is an average of both informed and uninformed

investors’ forecasts, its revisions positively predict subsequent forecast errors.

To study the predictability of announcement returns in my model, I solve for the noisy ra-

tional expectations equilibrium under periodically scheduled macroeconomic announcements. As

in standard NREE models, the equilibrium price can be represented as a linear function of two

state variables, the posterior belief about the state variable that governs dividend dynamics (fun-

damentals) and the posterior belief about the noisy supply of the stock, where posterior beliefs are

computed under all publicly available information. I establish three results in this context.

First, I show that if the pricing coefficients are continuous over time, then announcement day

pricing errors are unpredictable by past returns. Pricing errors are unpredictable because in equi-

librium, price is a linear combination of Bayesian beliefs, and the errors of rational Bayesian beliefs

cannot be predicted by their past revisions. Traditional dynamic NREE models such as Wang

(1993) feature continuous (in fact, constant) pricing coefficients. Therefore, they cannot generate

the observed predictability of announcement-day pricing errors.

Second, I show that the pricing coefficient on noisy supply in my model is an increasing function

of time in between announcements, and then jumps downward discontinuously at announcements.

I demonstrate that this feature of the pricing function generates negative predictability of pricing

errors. Intuitively, following announcements, equilibrium prices become increasingly sensitive to

noisy supply as the uncertainty about fundamentals accumulates. For example, a negative supply

shock raises the stock price. When uninformed investors are uncertain about fundamentals, rational

learning from prices implies that they will attribute part of the price increase to positive news about

fundamentals, and respond by purchasing more stocks. This produces a positive forecast revision

from the uninformed investors, and accordingly, the market reacts positively. As a result, the price

must increase further to clear the market. In periods without macroeconomic announcements,

uncertainty accumulates since the underlying state has yet to be revealed. Consequently, the above

effect becomes stronger and the pricing function’s noisy supply coefficient gradually rises over time.

Upon announcements, however, the true state is revealed, and the market must correct itself.

Because there is a discrete reduction in uncertainty upon announcements, the equilibrium price

jumps instantaneously upon announcements to reflect the revealed fundamental value of the asset.

Increases in the stock price between announcements due to accumulated noise, for example, will be

associated with a downward adjustment upon announcements as the market corrects itself. I provide

a proposition that formally establishes that the above mechanism generates negative predictability

of pricing errors. The above effect is quantitatively small if the uncertainty about the hidden state

and therefore the degree of asymmetric information is small, but stronger in periods of heightened

uncertainty and information asymmetry.

Third, I show that my model predicts a sharp increase in the trading volume upon announce-

ments and an immediate drop afterwards, which is also consistent with empirical evidence. While
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the discontinuity in the pricing function accounts for the pricing error predictability, the disconti-

nuity in demand functions accounts for the spikes in trading volume.

In my model, the pricing coefficients on the state variables, as well as the value and policy

functions of investors, are time varying. They are jointly characterized by a system of ordinary dif-

ferential equations (ODEs) subject to boundary conditions at the announcement dates. I develop

a recursive method to simultaneously solve the system of ODEs numerically to obtain equilib-

rium prices and policy functions. I calibrate my model to match general asset market moments

and replicate the regressions I conducted using the actual data. I demonstrate that my model

can quantitatively account for the the predictability of consensus forecast errors, the predictabil-

ity of announcement returns, and the dynamics of trading around pre-scheduled macroeconomic

announcements as in the data.

Related Literature This paper builds on the noisy rational expectations literature pioneered by

Grossman and Stiglitz (1980), Grossman (1981), and Hellwig (1980). Breon-Drish (2015) extends

this class of models to allow for general information structures. Bond and Goldstein (2015) study

government intervention in a model in which prices aggregate private information. Banerjee and

Green (2015) analyze an environment in which uninformed investors are uncertain about whether

other traders are informed or not. Han, Tang, and Yang (2016) and Goldstein and Yang (2017)

analyze public information disclosure in financial markets. Gao, Sockin, and Xiong (2020) study

information aggregation in the housing market.

Several recent papers study information aggregation on financial markets using this framework.

Within this literature, my model is more closely related to dynamic NREE models such as Wang

(1993, 1994). Relatedly, Sockin (2019) studies the feedback between financial investor trading

behavior and real investment. Buffa, Vayanos, and Woolley (2019) analyze equilibrium pricing in

an environment with delegated asset management. More recently, the paper by Andrei and Cujean

(2017) show that an increasing rate of information acquisition can generate both momentum and

reversals on financial markets. Andrei, Cujean, and Wilson (2018) incorporates time-varying public

information into a NREE model to provide a novel explanation of the empirical fact that the capital

asset pricing model holds on macroeconomic announcement days but not on non-announcement

days. In contrast, my focus here is on the time variation in the price sensitivity to news generated

by periodic macroeconomic announcements and its implications for pricing error predictability.

This paper is also related to the growing literature on measuring and explaining the expectations

formation process. My evidence for belief error predictability is closely related to Coibion and

Gorodnichenko (2012, 2015), who attribute the positive predictability of consensus forecast errors

to the existence of information frictions.1 This paper focuses on belief formation in the content

of the asset market environment, which is similar in spirit to Allen, Morris, and Shin (2006) and

1By comparing surveys of return expectations and realized returns, Adam, Matveev, and Nagel (2018) find that
expected stock market returns are unconditionally unbiased. Greenwood and Shleifer (2014) argue that investor
expectations from data measurements are strongly negatively correlated with expected returns implied by rational
expectations representative investor models.
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Jouini and Napp (2007) on analyzing the consensus beliefs in the stock market and shows the

predictability in terms of asymmetric information. Allen, Morris, and Shin (2006) show that prices

exhibit short-run positive correlation, whereas Banerjee, Kaniel, and Kremer (2009) demonstrate

that the correlation will be negative if agents learn from prices. None of the above papers provide

a quantitative study for belief error predictability, announcement return predictability, as well as

the dynamics of trading volume around announcements in an infinite horizon setup as I do.

A large literature has addressed the importance of heterogeneous expectations in macroeco-

nomics and finance. Besides heterogeneous information (e.g., Wang, 1994; He and Wang, 1995;

Goldstein and Yang, 2015), investors might simply hold divergent opinions even when all infor-

mation is publicly available (Mayshar, 1983; Kandel and Pearson, 1995). Another stream of the

literature uses survey data to directly study belief heterogeneity in asset markets. For example,

Giglio, Maggiori, Stroebel, and Utkus (2019) demonstrate that beliefs are mostly characterized

by individual heterogeneity, which affects trading and expected returns. Das, Kuhnen, and Nagel

(2020) show that heterogeneity in individuals’ socioeconomic status (income and education) influ-

ences investors’ expectations and stock market participation. Piazzesi and Schneider (2009) study

heterogeneity in households’ beliefs and housing prices. This paper argues that heterogeneity arising

from asymmetric information is crucial in explaining the positive predictability of consensus forecast

errors under the assumption of rational expectations. In addition, this information asymmetry is

eliminated periodically following macroeconomic announcements, producing negative predictability

of price responses to the information revelation.

The remainder of the paper is organized as follows. Section 2 provides empirical evidence on

the relationships between forecast revisions and forecast errors and the stock market’s reactions to

them. Section 3 develops a dynamic continuous-time general equilibrium model featuring periodic

macroeconomic announcements. Section 4 provides a quantitative analysis of the model. It shows

that data generated from the model can explain the empirical evidence documented in Section 2.

Finally, Section 5 concludes by discussing a few possible extensions. A technical appendix contains

robustness checks, proofs, and derivations.

2 Empirical Evidence

In this section, I present two sets of related empirical evidence about the expectations formation

process on macroeconomic variables and investors’ reactions on financial markets. First, revisions

of consensus forecasts for key macroeconomic variables, such as GDP, unemployment and CPI,

positively predict the errors of consensus forecasts. Second, the stock market returns on forecast

revision days negatively predict the stock market returns on GDP, unemployment and CPI an-

nouncements days, and this effect is stronger in periods with high economic uncertainty. I provide

the details of the data construction and robustness analysis in Appendix 5.1.
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2.1 Survey Forecasts and Macroeconomic Announcements

The Survey of Professional Forecasters (SPF) and Consensus Economics (CE) collect professional

quarterly forecasts of macroeconomic variables, for example quarterly GDP, unemployment and

CPI, whereby panelists are asked to provide quarter-by-quarter forecasts over five horizons. The

realizations of these macroeconomic variables are eventually published by government agencies.

For example, GDP is announced by the Bureau of Economic Analysis (BEA) quarterly, and the

unemployment rate and CPI are published by the Bureau of Labor Statistics (BLS) on a monthly

basis.

Figure 1: Timeline

SPF Survey Submission BEA GDP Announcement

Oct.28 (t+1)May.10 (t-1) Aug.9 (t)

2016Q1 2016Q2     2016Q3 2016Q4       2017Q1 2017Q2 2017Q3 …

This figure illustrates an example of the underlying timing of the data. The triangle displays SPF survey submission
dates and the diamond shows the GDP announcement date. After the BEA’s announcement for the 2016Q2 GDP,
panelists are asked to submit the survey on August 9 (time t). Panelists must forecast quarter by quarter over five
horizons, from the current quarter, 2016Q3 to 2017Q3. On October 28 (time t+ 1), the BEA announced an advance
(first) estimate of 2016Q3 realized GDP. The same procedure also took place in the last quarter (2016Q2), when
panelists needed to forecast from 2016Q2 to 2017Q2, and they submitted on May 10 (time t− 1).

I illustrate the timing of professional forecasts and macroeconomic announcements in Figure

1 using the SPF data as an example. In this example, the macroeconomic variable under con-

sideration, which I denote as x, is the third quarter GDP of 2016. On May 10 of 2016, which I

denote as time t − 1, survey forecasts for the current and next four quarters (2016Q2 to 2017Q2)

are submitted, which include the third quarter GDP of 2016. On August 9, 2016 (time t), the GDP

forecast of the current quarter, which is the third quarter of 2016, along with that of the next four

quarters are submitted. The third quarter GDP is eventually announced by BEA, in this case, on

Oct 28, 2016 (time t+ 1).

In general, for any macroeconomic variable x, I define the forecast revision of x at time t,

Frevt (x), to be the revision of the consensus forecast for x submitted at time t relative to that

from time t− 1:

Frevt (x) = Ēt (x)− Ēt−1 (x) , (1)

where Ēt (x) is the consensus forecast (the cross-sectional average forecast) of x made at time t.

Hence, forecast revisions reflect the new information obtained and processed by agents from t− 1

to t. In the above example, it is the difference between the consensus forecast for the third quarter

GDP submitted on August 9 and the previous forecast made on May 10.

For a macroeconomic variable x announced at t + 1, I define the forecast error of x as the
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difference between the realized value and its most recent consensus forecast made at t:

Ferrt+1 (x) = x− Ēt (x) . (2)

2.2 Empirical Evidence

My first empirical evidence is the predictability of the consensus forecast errors. This follows and

confirms the result of Coibion and Gorodnichenko (2015). Following their paper, I regress consensus

forecast errors of the real GDP growth rate, unemployment rate, and CPI, respectively, on their

forecast revisions:

Ferrt+1 (x) = α+ βFFrevt (x) + εt+1, (3)

where x is either the quarter-t real GDP growth rate, the unemployment rate or the CPI. Under

the representative agent rational expectations hypothesis, nothing should predict the error of a

rational belief, βs should not be significantly different from zero. However, using the data from

SPF, the regression coefficient βF is 0.39 for the real GDP growth rate with a Newey-West t-

statistics of 2.29, significantly different from zero. Likewise, the point estimates of βF are 0.42 and

0.58 for unemployment and CPI forecasts, with the respective t-statistics of 5.15 and 4.11, again

significantly positive. This result implies that the consensus forecast does not respond sufficiently

to newly-arrived information relative to the representative agent rational expectations benchmark.

Evidently, the stock market responds to macroeconomic forecasts. I use the cumulative return

between current and last quarter forecast submission days to measure the stock market reaction

to forecast revisions: Rrevt = Pt−Pt−1

Pt−1
, where P stands for the closing price of the S&P 500 ETF

(SPY), and t and t − 1 are two consecutive forecast submission dates. In the above example, it

is the cumulative return from May 10 to August 9, 2016. Furthermore, I use the return on SPY

generated during the 30 minutes around the announcement at 8:30 a.m. (8:15 - 8:45 a.m.) from

CRSP Millisecond Trade and Quote (TAQ) dataset to measure the stock market reaction to forecast

errors. I use Rerrt+1 (x) to denote the announcement return of x.2

My second empirical evidence is the predictability of the stock market announcement day re-

turns. I show that stock market return over forecast revision days negatively predicts the return

on announcement days, especially during periods of high economic uncertainty. I regress the 30

minutes window announcement return on the return during the forecast revision period:

Rerrt+1 (x) = α+ βPRrevt (x) + εt+1. (4)

Using the Consensus Economics data, for example, the estimate βP , is −0.011 of GDP with a

Newey-West t-statistic of −2.71. Similarly, the same regression produces a βP of −0.009 for the

unemployment and −0.005 for the CPI announcement with t-statistics of −1.90 and −2.16, respec-

tively. Positive returns on revision days predict negative returns on the announcement day, which

2Specifically, Rerrt+1 (x) is defined as the difference between the stock price at 8:45 am and 8:15 am divided
by the price at 8:15 am. The result is robust to different specifications of announcement-day returns, for example,
one-hour return around the announcement or 8:25 am-to-8:55 am return.
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implies that the stock market responds too much to information relative to the representative agent

rational expectations benchmark.

To further examine the impact of economic uncertainty on the predictability of announcement

returns, I use the CBOE Volatility Index (VIX) to measure the economic uncertainty and create

an indicator variable IL (t) which equals one if the VIX is below its median at time t and zero

otherwise.3 I conduct the following regression:

Rerrt+1 (x) = α+ βHRrevt (x) + βDifIL (t)×Rrevt (x) + βDummyIL (t) + εt+1, (5)

where the coefficient βH measures the predictability of the announcement return by the cumulative

return over belief revision days during periods of high economic uncertainty, and βDif measures

the difference between the predictability of high and low economic uncertainty periods.

I report the key regression coefficients, βH and βDif in Table 1, where I use two measures of

forecast revision days from SPF and CE. As I show in Table 1, the regression coefficients βHs are

significantly negative for GDP and unemployment announcements at the 1% level and significant

for the CPI announcement at the level of 10%. This predictability is insignificant or even positive

for periods of low economic uncertainty.

Table 1: Announcement Return Predictability

Panel A: SPF Panel B: CE

GDP UE CPI GDP UE CPI

βH -0.0181*** -0.0203*** -0.00626* -0.0139*** -0.0121*** -0.00424*

(-3.70) (-3.09) (-1.65) (-4.15) (-3.74) (-1.81)

βDif 0.0184* 0.0455* 0.0126 0.0167*** 0.00828 -0.00256

(1.75) (1.89) (1.40) (3.20) (0.45) (-0.54)

This table reports the coefficient estimates of equation (5) for real GDP growth rate, unemployment rate (UE) and
Consumer Price Index (CPI), respectively. Panel A and B use survey submission dates from Survey of Professional
Forecasters (SPF) and Consensus Economics (CE), respectively. The variable Rrevt is the close-to-close returns
on SPDR S&P 500 ETF (SPY) between two consecutive forecast submission days, and Rerrt+1 represents the
announcement return, which is the cumulative return earned in the 30-minutes window, 8:15 a.m. to 8:45 a.m., of
the announcement at 8:30 a.m. The full sample period is from 2003Q1 to 2019Q4. Newey-West t-statistics (with 5
lags) are in parentheses. Note: *p < 0.1, ** p < 0.05, *** p < 0.01.

Taken together, consensus forecast revisions positively predict subsequent forecast errors real-

ized on announcement days. In addition, the stock market return over revision days negatively

predicts announcement day returns, especially during periods of high economic uncertainty. Both

shreds of evidence suggest a rejection of the representative agent rational expectations hypothesis.

The literature (for example, Coibion and Gorodnichenko, 2015) typically interprets the forecast

error predictability as a rejection of the full information rational expectations hypothesis. In this

3In Appendix 5.1, I show that my results are robust if using the daily news-based U.S. Economic Policy Uncertainty
(EPU) index from Baker, Bloom, and Davis (2016) as an alternative measure of economic uncertainty. My results
are also robust if excluding the 2007-2008 financial crisis period or controlling for the crisis dummy.
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paper, I show that a deviation from the representative agent setup, but not the rational expecta-

tions assumption, is enough to reconcile the above evidence. In the rest of the paper, I present a

noisy rational expectations model to jointly account for both empirical facts.

3 The Dynamic Model

In this section, I develop a continuous-time NREE model with periodic macroeconomic announce-

ments to explain the above facts on the predictability of forecast errors and the stock market’s

reaction to them. The model is based on Wang (1993), except that here I incorporate periodic

macroeconomic announcements following Ai and Bansal (2018). The dynamic setup allows me

to study the predictability of forecast and pricing errors under a coherent equilibrium framework.

It also allows me to calibrate the model and examine its quantitative implications. I choose the

continuous-time setup because it is particularly suitable to capture the fact that macroeconomic

announcements happen within a short window of time and the stock market reacts instantaneously.

The model can therefore capture the high-frequency return and trading dynamics that occurred at

the announcement.

3.1 Model Setup

Preference and Endowment There is a unit measure of investors who maximize identical

CARA utilities represented by
[
E
´∞

0 −e
−ρt−Ctdt

]
, where Ct is the consumption at time t and ρ is

the subjective time discount rate. For simplicity, I assume that the absolute risk aversion is 1. The

model can easily accommodate more general CARA preferences.

There are two assets available for trading, a stock and a risk-free bond. I assume that the

risk-free return r is constant. The stock is the claim to the following dividend process:

dDt = (xt −Dt) dt+ σDdBD,t, (6)

where Dt is the dividend flow, xt is the long-run trend for the dividend flow, σD is the volatility

of the dividend flow, and dBD,t is an i.i.d. shock to the dividend payment modeled as a standard

Brownian motion. I model the expected dividend flow as xt − Dt, so that the dividend process

is stationary. The assumption that the mean revision rate equals 1 is not important and can be

relaxed without affecting most parts of the model. The long-run trend of the dividend flow, xt, is

itself mean reverting, modeled as an Ornstein-Uhlenbeck (OU) process:

dxt = b (x̄− xt) dt+ σxdBx,t, (7)

where x̄ is the long-run mean of xt, b is the rate of mean reversion, σx is the volatility of the

hidden state xt, and Bx,t is a standard Brownian motion. In addition, as is standard in the NREE
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literature, I assume that the total equity supply is a stochastic process and denote it as θt:

dθt = −aθtdt+ σθdBθ,t. (8)

In the above equation, a is the rate of mean reversion for θt and σθ is the noisy supply volatility.

Assume that Brownian motions BD,t, Bx,t, and Bθ,t are mutually independent. For tractability, I

assume that the long-run average of θt is zero.

Information Structure The dividend is observable to all investors. However, its long-run trend

xt and the total risky asset supply θt are not. Assume that a fraction (1− ω) of investors are

informed, meaning that they observe a noisy signal about xt, denoted as st:

dst = xtdt+ σsdBs,t, (9)

where σs is the signal volatility and Bs,t is a Brownian motion independent of BD,t, Bx,t, and

Bθ,t. The standard Kalman-Bucy filter implies that the informed investor’s belief about xt can be

summarized by a posterior mean and a posterior variance, x̂t ≡ Êt [xt] and q̂ (t) ≡ Êt
[
(x̂t − xt)2

]
,

respectively, where Êt stands for the conditional expectation under the informed investor’s infor-

mation set at time t.

Uninformed investors do not observe the signal st but can update their beliefs based on in-

formation in the equilibrium asset price. Denote x̃t ≡ Ẽt [x̂t] and q̃ (t) ≡ Ẽt
[
(x̃t − x̂t)2

]
as the

uninformed investor’s posterior mean and variance of the informed investor’s posterior belief about

xt, and θ̃t ≡ Ẽt [θt] for their posterior mean of the total equity supply. From here on, denote Ẽt as

the conditional expectation under the uninformed investor’s information set at time t.

In addition, at predetermined times, macroeconomic announcements are made by the govern-

ment. As in Ai and Bansal (2018), I assume that macroeconomic announcements are made every

T periods. That is, for n = 1, 2, · · · , at time t = nT , a macroeconomic announcement is made and

assumed to reveal the true value of xt. Because announcements fully reveal xt, investors’ beliefs

about it instantaneously reset to its true value right after announcements: x̂+
nT = x̃+

nT = xnT for all

n, where I use superscript + to denote quantities right after the announcements: x̂+
T = limt→T+ x̂t.

Similarly, I will use superscript − for quantities right before the announcements, for example,

x̂−T = limt→T− x̂t. After the announcement, information about xt starts to become imprecise, and

both x̂t and x̃t drift away from the true value of xt. Uncertainties start to build up as the estimation

errors q̂ (t) and q̃ (t) accumulate over time.

Learning from Prices As in standard NREE models, the informed investors observe more

information than the uninformed and try to profit from it by trading competitively and non-

strategically in the stock market. Because their trading affects asset demand and therefore the

stock price, their information is reflected in the price. Because of the presence of the noisy asset

supply, the equilibrium price is only partially revealing and contains noisy information about the
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fundamentals, xt. I conjecture and later verify that the equilibrium stock price takes the following

linear form:

Pt = φ+ φDDt − φθ (t) θt + φx (t) x̂t + φ∆ (t) x̃t (10)

= φ+ φDDt − φθ (t) θ̃t + φ̄xx̃t, (11)

where φθ (t) , φx (t), and φ∆ (t) are time-varying sensitivities of price to θt, x̂t, and x̃t, respectively.

As I guess and verify in Appendix 5.2, the price coefficient on dividends φD is time invariant, and

so is the sum of φx (t) and φ∆ (t), denoted as

φ̄x = φx (t) + φ∆ (t) . (12)

The informed investors observe the realizations of Dt, st, Pt, and the pre-scheduled announcements.

At announcements, x̂t is set to the true value of xt, and q̂ (t) goes to zero. After announcements,

q̂ (t) increases above zero as the uncertainty about xt accumulates, and informed investors use

the standard Kalman-Bucy filter to compute their posterior beliefs, {x̂t, q̂ (t)}. Because the un-

informed investors’ information is a subset of the informed investors’ information, the informed

can perfectly infer the posterior belief of the uninformed, x̃t. Thus, informed investors can per-

fectly compute the total equity supply θt from the price (10). In this linear pricing framework,

the private information of the informed investors on asset prices is completely summarized in the

posterior mean, x̂t. The conditional expectation can therefore be summarized as Êt ≡ Et
[
� |F iτ

]
,

where F iτ = {Dτ , sτ , Pτ , x̃τ ; τ ≤ t}, or equivalently, F iτ = {Dτ , θτ , x̂τ , x̃τ ; τ ≤ t}.
On the other hand, the uninformed investors do not observe st. They observeDt, the equilibrium

price Pt, and the announcements. Unlike the informed, observing the price only reveals a noisy

combination of x̂t and θt to the uninformed. As xt, x̂t, and θt are unknown to the uninformed

investors, in general, one needs to characterize the posterior beliefs of all three variables in order

to solve the optimization problem of the uninformed. However, it turns out that characterizing the

dynamics of x̃t and q̃ (t) is sufficient to compute the posteriors of all three variables. To see this,

first, Ẽt [xt] = Ẽt [x̂t], by the law of iterated expectations. Second, because uninformed investors

observe the price, Pt = Ẽt [Pt] must hold. Computing the conditional expectation of price in (10)

gives (11). Because the uninformed investor observes Pt and Dt, given the pricing function (10),

the posterior belief about θt can be computed as

θ̃t =
1

φθ (t)

(
φ+ φDDt + φ̄xx̃t − Pt

)
= θt −

φx (t)

φθ (t)
(x̂t − x̃t) . (13)

Third, as shown in equation (63) in Appendix 5.2, the posterior variance-covariance matrix can be

further inferred from the above equation.

To formulate the uninformed investors’ learning problem, it is useful to define ξt = φx (t) x̂t −
φθ (t) θt − q̂(t)

σ2
D
φx (t)Dt. As shown in Appendix 5.2, the dynamic of ξt is conditionally independent

of Dt, which gives the filtering problem a more intuitive interpretation. From the perspective of
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the uninformed investors, observing the price and the dividend process is equivalent to observing

ξt and Dt because the mapping between Pt and ξt is one to one. Hence, I call ξt the information

content of the price. It is now clear that the conditional expectation can be defined in terms

of the uninformed investors’ information set as Ẽt ≡ Et [� |Fuτ ], where Fuτ = {Dτ , x̃τ , Pτ ; τ ≤ t},
or equivalently, Fuτ = {Dτ , x̃τ , ξτ ; τ ≤ t}. This easily shows that informed investors observe all

information from the uninformed, Ẽt ⊆ Êt, whereas the uninformed only observe a noisy information

set of what informed investors know.

3.2 Dynamics of Posterior Beliefs

This section characterizes the dynamics of informed and uninformed investors’ posterior beliefs.

Then I discuss the implications for forecast error predictabilities. I demonstrate that in my model,

consensus forecast revisions positively predict subsequent consensus forecast errors.

Forecast Error Predictability The posterior beliefs of the informed and uninformed investors

can be computed using the standard Kalman-Bucy filter (see, for example, Liptser and Shiryaev

(2001), Theorem 10.3). The following lemma summarizes the dynamics of posterior beliefs.

Lemma 1. In the interior, t ∈ ((n− 1)T, nT ), n = 1, 2, . . ., the posterior mean of informed

investors, x̂t satisfies

dx̂t = b (x̄− x̂t) dt+
q̂ (t)

σD
dB̂D,t +

q̂ (t)

σs
dB̂s,t, (14)

where dB̂D,t = 1
σD

(
dDt − Êt [dDt]

)
and dB̂s,t = 1

σs

(
dst − Êt [dst]

)
are innovations in the dividend

flow and informed investors’ signal process, respectively. The dynamic for the posterior variance

q̂ (t) is given in equation (51) in Appendix 5.2.

The posterior mean of uninformed investors, x̃t, is given by

dx̃t = b (x̄− x̃t) dt+
q̂ (t) + q̃ (t)

σD
dB̃D,t + ν (t)σξ (t) dB̃ξ,t, (15)

where dB̃D,t = 1
σD

(
dDt − Ẽt [dDt]

)
and dB̃ξ,t = 1

σξ(t)

(
dξt − Ẽt [dξt]

)
are innovations in the div-

idend flow and the information content of price under the uninformed investor’s information set,

respectively. The function ν (t) is defined in equation (58) and the volatility of ξt, σξ (t) is defined

in (57) in Appendix 5.2. The law of motion for the posterior variance q̃ (t) is given in equation

(61) in the appendix.

Proof. See Appendix 5.2 for the proof.

Using the above formula, I can derive the optimal forecasts of the informed and uninformed

investors. Suppose the true value of xT is announced at time T . The consensus forecast at t, as in
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the data, is defined as the average of the informed and the uninformed investors’ beliefs:

Ēt [xT ] = (1− ω) Êt [xT ] + ωẼt [xT ] . (16)

Since both Êt [xT ] and Ẽt [xT ] are derived from the optimal Kalman filter with respect to the

informed and the uninformed investors’ information set, rationality implies that forecast revisions

of informed and uninformed investors cannot predict their own forecast errors, that is,

Cov
(
Êt [xT ]− Ê0 [xT ] , xT − Êt [xT ]

)
= 0, (17)

and Cov
(
Ẽt [xT ]− Ẽ0 [xT ] , xT − Ẽt [xT ]

)
= 0, (18)

where Êt [xT ]−Ê0 [xT ] (or Ẽt [xT ]−Ẽ0 [xT ]) is the revision of the informed (or uninformed) investor’s

forecast from time 0 to t, and xT − Êt [xT ] (or xT − Ẽt [xT ]) is the error of the informed (or

uninformed) investor’s forecast realized at the announcement T . The revision of the consensus

forecast could be represented as

Frevt = (1− ω)
(
Êt [xT ]− Ê0 [xT ]

)
+ ω

(
Ẽt [xT ]− Ẽ0 [xT ]

)
, (19)

and the error of the consensus forecast can be written as

Ferrt+1 = (1− ω)
(
xT − Êt [xT ]

)
+ ω

(
xT − Ẽt [xT ]

)
. (20)

In this model, the consensus forecast revision predicts the consensus forecast error because

the forecast revision of the informed investors contains their private information and therefore

predicts the forecast error of the uninformed. This is intuitive, as informed investors know all that

uninformed investors know, whereas the uninformed do not observe the informed investors’ private

information. Hence, the consensus forecast puts less weight on the informed investor’s private

signals and more weight on the priors, apparently deviating from the Bayesian optimality. Relative

to the Bayesian belief, it assigns too much weight to prior information because the uninformed

do not take informed investors’ information into account when updating their own beliefs. This

creates the positive predictability of the consensus forecast errors. I summarize this result in the

following proposition.

Proposition 1. Let the optimal filtering equations be given in Lemma 1, then

Cov
(

Êt [xT ]− Ê0 [xT ]︸ ︷︷ ︸
informed’s forecast revision

, xT − Ẽt [xT ]︸ ︷︷ ︸
uninformed’s forecast error

)
> 0, (21)

and

Cov (Frevt, F errt+1) > 0. (22)

Proof. See Appendix 5.2 for the proof.
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It is also important to notice that the consensus belief cannot be captured by any representative

agent’s belief, since a Bayesian investor’s belief is a martingale. Consequently, heterogeneity, in this

context arising from asymmetric information, is crucial under this rational framework to generate

the observed empirics.

Difference in Beliefs The dynamics of belief differences, ∆t ≡ Êt [xt] − Ẽt [xt] = x̂t − x̃t, are

important in understanding the key results of the model. From equations (14) and (15), we have,

on non-announcement days,

d∆t = −a∆ (t) ∆tdt− σ∆D (t) dB̂D,t + σ∆s (t) dB̂s,t + σ∆θ (t) dBθ,t, (23)

where all coefficients, a∆ (t), σ∆D (t), σ∆s (t), and σ∆θ (t), which are given in Appendix 5.2, are

strictly positive. At the announcements, the true value of xt is revealed, and ∆t is set to zero.

After the announcements, the uninformed investor observes less information than the informed,

and their disagreement ∆t evolves according to (23). Differences in beliefs are driven by several

sources of information. First, ∆t has a negative loading on dividend innovations: the uninformed

investor responds more to dB̂D,t than the informed. By comparing (15) with (14), we can see

that the uninformed investor has a larger loading on dDt. Both types of investors observe the

dividend process and try to extract information about xt from it. The informed investor has

additional information st, whereas the uninformed has to guess at what the informed knows from

observing the changes in dividends. Because the uninformed knows the informed has more precise

information, his or her sensitivity to dB̂D,t has an additional term, coming from his or her estimation

of the informed investor’s belief x̂t. Second, σ∆s (t) > 0, the uninformed investor’s belief responds

less to innovations in the informed investor’s private signal st. The intuition is as follows. Since

the uninformed investors do not observe st directly, they can only infer information about it by

observing the stock price. Because the stock price is merely a noisy signal of st, the informed

investor’s private signal has a smaller impact on the belief of the uninformed. Finally, σ∆θ (t) > 0.

Seeing that the informed investor perfectly knows θt, a positive shock to dBθ,t lowers the equilibrium

price, and therefore the uninformed investor’s belief x̃t, without affecting the informed investor’s

belief x̂t.

Using equation (13), one can represent the difference in investors’ beliefs about θt as a function

of ∆t:

θt − θ̃t =
φx (t)

φθ (t)
∆t. (24)

Intuitively, after a sequence of positive shocks increases the level of noisy supply θt, the market price

declines. Because uninformed investors do not observe x̂t and θt separately, but only a combination

of them, they rationally interpret the decline in price as partly reflecting increases in θt and partly

deteriorations in x̂t. As a result, they downwardly revise their beliefs about x̂t so that x̃t drops.

And θ̃t does not rise as fast as θt. The difference in beliefs about x̂t therefore translates into a

difference in beliefs about θt.
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3.3 Equilibrium

Let’s now turn to the model solution. I follow the standard approach in the NREE literature. First,

given the conjectured functional form for the stock price, (10), solve the optimal learning problem of

both informed and uninformed investors. Second, given investors’ beliefs, solve their optimization

problems. Finally, impose market clearing conditions to determine the conjectured coefficients

φθ (t) , φx (t), and φ∆ (t) in the pricing function and investors’ value functions. In contrast to

previous dynamic NREE papers in the literature, here the coefficients in the pricing function and

the value functions are assumed to be time varying. The time variation in the price sensitivity

to information is the key for my model to account for the predictability of price corrections upon

announcements.

For simplicity, I focus on an equilibrium in which all announcement cycles are identical. That

is, the coefficients on the pricing function depend only on the timing of the announcements. For

example, φθ (t) = φθ (t mod T ) for all t, where mod is the modulo operator that returns the remain-

der after division of t by T . Under this assumption, I only need to characterize the time-varying

coefficients on one representative announcement cycle, [0, T ]. In addition, although announcements

are made at both time 0 and time T , I will use the convention that 0 (or T+) denotes the time

right after announcements and T (or T−) refers to the moment right before announcements.

Equilibrium Pricing Figure 2 plots the pricing function coefficients φθ (t), φx (t), and φ∆ (t) for

one announcement cycle (recall equations (10) and (11)). The price sensitivity to noise, φθ (t), is

positive and increasing over time. The function φθ (t) is positive because increases in the aggregate

equity supply θt lower the price. It is monotonically increasing over time because the asymmetric

information amplifies the sensitivity of price with respect to noisy supply, and this effect is stronger

as uncertainty builds up over time.

Figure 2: Time-Varying Price Sensitivities
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This figure plots the time-varying pricing function coefficients φθ (t), φx (t), and φ∆ (t) for one announcement cycle
under the benchmark parameter values in Table 2. Here, t = 0 stands for the time right after the announcements
and t = T refers to the moment right before the announcements.

In my model, increases in θt lower price for two reasons. First, increases in supply lower the

equilibrium price due to a downward sloping demand curve as in standard equilibrium models. This

effect does not depend on the uncertainty or the asymmetric information. Second, the information
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asymmetry and learning amplify the responses of prices to supply shocks, therefore an increase

in θt further lowers the price. Because the uninformed investors cannot infer the true value of θt

and xt from prices, they attribute part of the price drop as deteriorations in fundamentals and

downwardly revise their beliefs about xt. The uninformed investors reduce their holdings of the

stock because of their pessimistic beliefs. This lowers the demand of the asset and price has to drop

further to clear the market. Clearly, the second effect is stronger when uninformed investors are

more uncertain about xt. At time t = 0, right after an announcement, uninformed investors know

the true value of x0 and the information asymmetry is temporarily eliminated. As t increases, xt

is evolving, the uninformed investors are less certain about it and start to learn from prices. As

the uncertainty and information asymmetry about xt build up over time, changes in prices have

stronger impacts on the beliefs of the uninformed investors. Therefore, prices become more sensitive

to supply shocks. In another word, the price sensitivity to noise, φθ (t) increases. At time T when

the next announcement approaches, the uncertainty about xT instantaneously resolves, the price

sensitivity to noise jumps down discontinuously from φθ (T ) to φθ (0), and a new announcement

cycle starts.As I will prove formally below, the monotonicity and discontinuity of the φθ (t) function

in my model is the key to explain the patterns of the predictability of announcement returns.

The function φx (t) is positive and increasing, and φ∆ (t) is positive and decreasing, whereas

the sum of the two, φx (t) + φ∆ (t) = φ̄x, is a constant. First, naturally, φ̄x is positive because a

more optimistic outlook about dividend flow raises the price. Moreover, the value of φ̄x must be

constant over time. Because the aggregate risky asset supply is θt, market clearing implies that

the total asset demand cannot depend on beliefs about xt. Although beliefs about xt affect stock

prices, they cannot change expected returns. In other words, it cannot introduce a predictable

component in stock prices. This requirement alone implies that φ̄x must be a constant. Second,

the term φx (t), representing the price impact from the informed investor, is increasing over time;

this is intuitive. Informed investors observe additional signals. If, for example, news has been

favorable, they increase holdings of the stock and benefit from the superior information. This

drives up the price. As t increases, this information advantage builds up as uncertainty increases.

Immediately upon the announcement, information becomes symmetric, and φx (t) drops from φx (T )

to φx (0). Third, φ∆ (t), reflecting the price sensitivity to the uninformed investor’s belief, peaks

right after the announcement and decreases later on. Again, the intuition is straightforward. As

a result of the announcement, uninformed investors suddenly become informed and information

becomes symmetric. Hence, they correct for their beliefs of the mistaken accumulated noise that

was previously perceived as profitable fundamentals. Afterward, they become less and less willing

to trade against informed investors’ private information, as uncertainty slowly rises following the

announcement.

Expected Returns To understand investors’ portfolio allocations, it is useful to first compute

expected stock returns for the informed and uninformed investors. Using the conjectured equilib-

rium price in (10) and (11), expected excess returns under the informed and uninformed investors’
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beliefs can be written respectively as

Êt [dPt +Dtdt− rPtdt] = [eθ (t) θt + e∆ (t) ∆t] dt, (25)

Ẽt [dPt +Dtdt− rPtdt] =
[
eθ (t) θ̃t

]
dt, (26)

where the coefficients eθ (t) and e∆ (t) are given in Appendix 5.2.

Figure 3: Time-Varying Expected Return Coefficients
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This figure plots the coefficients eθ (t) and e∆ (t) in expected returns, as well as the volatility of the excess return√
σP (t) over one announcement cycle from the calibrated parameter values in Table 2.

Figure 3 plots the coefficients eθ (t) and e∆ (t), as well as the variance of the excess return,

denoting σP (t) from the calibrated model. The term eθ (t) is positive and increasing. To understand

the pattern of eθ (t), note that the equilibrium price in (10) depends negatively on the total asset

supply, θt. Because the process θt is mean reverting, higher values of θt are associated with higher

levels of price in the future, and this effect is stronger when the price sensitivity to noise φθ (t) is

larger.4 Note that the pattern of eθ (t) mimics the pattern of φθ (t) in Figure 2 very well. The fact

that eθ (t) is positive and increasing is also important in market clearing. Because in equilibrium

θt equals the total portfolio holdings of informed and uninformed investors, expected returns must

be increasing in θt in order to induce investors to hold the existing stock of the asset. Intuitively,

since investors are risk averse, as t increases and both types of investors become more uncertain

about xt, expected returns must become more sensitive to θt to clear the market.

The coefficient e∆ (t) is positive and increasing over time. As ∆t = x̂t − x̃t is only within the

informed investor’s information set, equation (10) can be rewritten as Pt = φ+ φDDt − φθ (t) θt +

φ̄xx̂t − φ∆ (t) ∆t. Ceteris paribus, the equilibrium price is a decreasing function of ∆t. Lower

values of x̃t indicate that the uninformed are less optimistic about the fundamentals and would

like to reduce their stock holdings. As a result, the price must drop to clear the market. However,

informed investors observe additional information and understand that the lower price is not due

to deteriorations of fundamentals but rather to a sequence of negative shocks in the price signals

that produce the undue pessimism of uninformed investors. Therefore, from the perspective of the

informed, expected returns are high when ∆t is large. They increase their holdings of the stock and

take advantage of the difference in beliefs. As t increases from 0 to T , the information advantage

4In fact, as shown in equation (70) in Appendix 5.2, eθ (t) = (a+ r)φθ (t) − φ′θ (t). However, the second term is
quantitatively small, and eθ (t) is mainly determined by φθ (t).
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of the informed investor rises and the difference in beliefs, ∆t, has an increasingly strong impact

on expected returns. As a result, e∆ (t) is strictly increasing in t.

The variance of return, σP (t), is also increasing over time. Recall that with the exception of

φθ (t), all coefficients are constants from the equilibrium price in equation (11), which is increasing

over time, as shown in Figure 3. Intuitively, as uncertainty about xt builds up over time, the

equilibrium price becomes more sensitive to asset supply, and stock returns become more volatile.

Expected returns at time T , right before announcements, however, are different from (25) and

(26) because prices are expected to jump discontinuously upon announcements. Using the pricing

function (11), the return upon announcements can be computed as

P+
T − P

−
T = φ̄x (xT − x̂T ) + φ∆ (T ) ∆T + [φθ (T )− φθ (0)] θT . (27)

Here P+
T is the stock price right after the announcement at time T , and P−T stands for the stock

price right before the announcement. Therefore, the expected return at announcements from the

informed and uninformed investors’ perspective can be written as

Êt
[
P+
T − P

−
T

]
= φ∆ (T ) ∆T + [φθ (T )− φθ (0)] θT , (28)

Ẽt
[
P+
T − P

−
T

]
= [φθ (T )− φθ (0)] θ̃T , (29)

respectively.5 Note that the expected returns at the announcements are positively correlated with

both types of investors’ beliefs about θT . This is because at announcements, this correlation is

completely determined by the jump of φθ (T ) to φθ (T+) = φθ (0), which is positive as φθ (T ) −
φθ (0) > 0. When the supply shock at the announcement is unfavorable, θT > 0, for example,

expected returns are high since investors face higher risks and require positive risk compensation.

For the same reason as in the non-announcement days, for informed investors, expected returns are

positively correlated with differences in beliefs, ∆T , and this is the source of profit for informed

investors.

Optimal Portfolio Holdings I guess and verify in Appendix 5.3 that the informed investor’s

value function J (t,Wt, θt,∆t) takes a quadratic form, where Wt denotes the financial wealth. In

the interior of (0, T ), the informed investor’s optimization problem is

J (t,Wt, θt,∆t) = max
{αt,Ct}

Êt
[ˆ T−t

0
−e−ρz−Ct+zdz + J

(
T,W−T , θT ,∆T

)]
, (30)

subject to the following budget constraint,

dWt = (Wtr − Ct) dt+ αt [dPt + (Dt − rPt) dt] , (31)

5Although I use the terminology of expected returns for both the interior case (equations (25) and (26)) and the
boundary case (equations (28) and (29)), it is important to note that (25) and (26) are expected returns per unit of
time, and (25) and (26) are expected returns at the instant of announcements.
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where r is the exogenous risk-free rate, Ct denotes the consumption, and αt is the portfolio holding

of the risky asset. In the above problem, the law of motion for the state variables is defined in (8)

and (23). Accordingly, my timing convention, J
(
T,W−T , θT ,∆T

)
, is the value function at time T

right before the announcements.

At time T , however, the portfolio choice problem is different. Because the stock price jumps

from P−T to P+
T , wealth jumps from W−T to W+

T accordingly. The optimization problem of the

informed investor at the instant of the announcement is

J
(
T,W−T , θT ,∆T

)
= max

α−T

{
ÊT
[
J
(
0,W+

T , θT , 0
)]}

(32)

s.t. W+
T = W−T + α−T

(
P+
T − P

−
T

)
.

Because θt is a continuous process, it has the same value before and after announcements. The

belief difference, ∆t, is set to 0 upon the announcement because the true value of xT is revealed so

that investors’ beliefs converge.

The uninformed investor’s optimization problem takes a similar form, except the state variable

is θ̃t. Denote βt as the uninformed investor’s risky asset holdings. In Appendix 5.3, I conjecture

and prove the form of the uninformed investor’s value function V
(
t,Wt, θ̃t

)
. The following lemma

summarizes the investors’ optimal portfolio decisions.

Lemma 2. The informed and uninformed investors’ optimal risky asset holdings are

αt = αθ (t) θt + α∆ (t) ∆t, (33)

βt = βθ (t) θ̃t, (34)

where αθ (t), α∆ (t), and βθ (t) are defined in Appendix 5.3, with the boundary values αθ (T ), α∆ (T ),

and βθ (T ) defined in Appendix 5.4.

Proof. See Appendix 5.3 and 5.4 for the derivations.

Note that the market clearing condition requires that the total risky asset demand equals the

aggregate supply θt, that is, (1− ω)αt + ωβt = θt. Using (13) to replace θ̃t, this can be written as

[(1− ω)αθ (t) + ωβθ (t)] θt +

[
(1− ω)α∆ (t)− ωβθ (t)

φx (t)

φθ (t)

]
∆t = θt. (35)

The above equation implies two conditions,

(1− ω)αθ (t) + ωβθ (t) = 1, (36)

α∆ (t) =
ω

1− ω
βθ (t)

φx (t)

φθ (t)
. (37)

The first equation shows that informed and uninformed investors must hold the total supply of the

stock θt together. In fact, both αθ (t) and βθ (t) are close to one, that is, the demand of the asset
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in a model with symmetric information. The term α∆ (t) reflects the informed investors’ portfolio

holding owing to their information advantage. The term α∆ (t) > 0 because whenever the in-

formed investors are more optimistic about the fundamental xt because of the private information,

they increase their positions in the stock and trade more aggressively. Over time, this information

advantage increases as uncertainty builds up on non-announcement days; therefore, informed in-

vestors trade more against the difference in beliefs. At the announcements, α∆ (t) jumps downward

because information becomes symmetric and beliefs converge among investors.

Predictability of Pricing Errors While the predictability of forecast errors is a property of

rational beliefs and does not depend on the detailed functional form of equilibrium prices, the

predictability of pricing errors is a unique implication of my model that depends crucially on the

time variation in pricing coefficients due to periodic announcements. In my model, price innovations

on non-announcement days negatively predict price reactions to announcements. The key to this

result is the time variation in the price reactions to noise, captured by the φθ (t) function.

Note that in my model, the equilibrium price can be written as a linear function of posterior

beliefs with respect to publicly available information: Pt = φ + φDDt − φθ (t) θ̃t + φ̄xx̃t. If all

pricing functions are continuous functions of time, then innovations in price at the announcement

must come from innovations in the uninformed investors’ posterior beliefs, θ̃t and x̃t. Because

innovations in rational beliefs cannot be predictable, neither announcement returns. I summarize

this observation in the following lemma.

Lemma 3. Suppose φθ (t) is continuous over time, then

Cov
(
Pt+δ − Pt, P+

T − P
−
T

)
= 0. (38)

Proof. See Appendix 5.5 for the proof.

In standard NREE models, such as Wang (1993, 1994), returns may be predictable over longer

horizons because dividends or the noisy supply or both are mean-reverting processes. These models

can potentially generate predictability of returns over longer horizons. However, as shown in Lemma

3, as long as the pricing coefficient is continuous over time, pricing errors realized at a high frequency,

for examples, in minutes around macroeconomic announcements, are not predictable. The key

implication of Lemma 3 is that to understand the pricing error predictability in the model, I need

to focus on the time variation in the price coefficient φθ (t) and, in particular, its discontinuity at

announcements.

In Figure 4, I plot the posterior variances of the informed and uninformed investors, respectively,

and the φθ (t) function over multiple announcement cycles.6 Posterior variances are zeros upon

the announcements because announcements reveal the true value of xt. After announcements,

6Note that q̂ (t) is the informed investor’s posterior variance of xt, and q̃ (t) is the uninformed investor’s posterior
variance of x̂t. Equation (63) in Appendix 5.2 shows that the uninformed investor’s posterior variance of xt equals
q̂ (t) + q̃ (t). This is intuitive because uninformed investors face higher estimation errors about xt than the informed
because of the lack of private information.
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Figure 4: Posterior Variances and φθ (t) over Announcement Cycles
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This figure plots the model-implied posterior variances of the informed investor q̂ (t) (top panel) and uninformed
investor q̃ (t) (middle panel) and the price sensitivity to noise φθ (t) (bottom panel) over three quarterly announcement
cycles. The benchmark parameter values are given in Table 2.

uncertainties slowly build up because xt is time varying and neither group observes the true value

of xt. Until the next announcement, estimation errors drop to zero again after announcements

resolve the uncertainties. In my model, a negative shock to the total asset supply increases the

stock price. When information is imprecise, there is a feedback mechanism from learning: this

price increase triggers more purchases from the uninformed investors because they interpret it as

good news for fundamentals xt and upwardly revise their beliefs x̃t. As a result, the equilibrium

price has to rise further to clear the market. After an announcement, as uncertainty builds up, the

feedback mechanism is stronger, and the uninformed investors rely more and more on the market

price to learn about xt. Therefore, as plotted in the bottom panel of Figure 4, the price sensitivity

to noise as captured by the pricing function φθ (t) is increasing between announcements.

The predictability of the pricing error in my model comes from the pattern of the φθ (t) function

over announcement cycles, in particular, the monotonicity of φθ (t) in the interior of (0, T ) and its

discontinuity at T . To see this, I can write the pricing error realized on announcement days as

P+
T − P

−
T = φ̄x (xT − x̃T )− φθ

(
T+
) [
θT − θ̃T

]
(39)

−
[
φθ
(
T+
)
− φθ

(
T−
)]︸ ︷︷ ︸

<0

θ̃T , (40)

where the last term reflects the adjustment for the changes in φθ (T−) to φθ (T+) upon announce-

ments. Note that all terms in (39) are errors of rational beliefs relative to true information. There-

fore, these innovations cannot be predicted by functions of histories of public information. Because

the function φθ (t) is monotonically increasing in (0, T ), and φθ (T+) − φθ (T−) < 0 at T , the last

term in (40) is predictable, as θ̃T is. The proposition below provides a sufficient condition for the

predictability of pricing errors in my model.

21



Proposition 2. Under the condition (*) in Appendix 5.5, for all t and δ > 0,

Cov
(
Pt+δ − Pt, P+

T − P
−
T

)
< 0. (41)

Proof. See Appendix 5.5 for the proof.

To understand the above proposition, consider an econometrician who tries to predict price

changes on announcement days P+
T −P

−
T by regressing them on reactions of price to news between

t to t+ δ before the announcement, Pt+δ − Pt. One can represent the price revision as

Pt+δ − Pt = φD [Dt+δ −Dt] + φ̄x [x̃t+δ − x̃t]− φθ (t+ δ)
[
θ̃t+δ − θ̃t

]
− [φθ (t+ δ)− φθ (t)]︸ ︷︷ ︸

>0

θ̃t. (42)

The first line of equation (42) shows the price adjustment if regarding the price sensitivity to noise,

φθ (t), as constant over time. The second line reflects the adjustment due to the changes in φθ (t).

Since φθ (t+ δ)−φθ (t) > 0, the term [φθ (t+ δ)− φθ (t)] θ̃t can be interpreted as the accumulation

of noise in price due to the accumulation of uncertainties over time. Clearly, the last terms in (42)

and (40) are negatively correlated, Cov
(

[φθ (t+ δ)− φθ (t)] θ̃t, [φθ (0)− φθ (T )] θ̃T

)
< 0, because

the belief of θt is persistent and mean reverts to zero in the long run. Therefore, the predictability

of pricing errors in my model comes from the property of the φθ (t) function, which reflects the

time-varying changes in the information structure. In general, the terms in the first line of (42) can

also be correlated with [φθ (0)− φθ (T )] θ̃T . The condition (*) in Proposition 2 is sufficient but not

necessary to guarantee that the correlation between other terms will be dominated by the sign of

Cov
(

[φθ (t+ δ)− φθ (t)] θ̃t, [φθ (0)− φθ (T )] θ̃T

)
.

Intuitively, the term [φθ (t+ δ)− φθ (t)] θ̃t captures noise accumulations in price before an-

nouncements, which is corrected upon announcements. As explained above, on non-announcement

days, the uninformed investor relies on prices to learn about the private information of informed

investors. As uncertainty builds up, both q̂t and q̃t rise, and stock prices become increasingly more

sensitive to noise. As a result, φθ (t) increases and the noise component of stock price accumulates

over time. At announcements, the true value of xt is revealed and the accumulated noise in the

stock price must be corrected. As a result, positive realizations of noise on non-announcement days

must predict a negative correction on announcement days, which accounts for the announcement

return predictability in my model.7,8

In my model, the monotonicity of the φθ (t) function is due to the effect of learning and asym-

7Note that the predictability of pricing errors in my model is an equilibrium compensation for risk. Announce-
ment returns are predictable, as shown in equations (25) and (26), but they are risk premiums and not arbitrage
opportunities.

8The mechanism here is similar to the “wisdom after the fact” models of Romer (1993) and Caplin and Leahy
(1994). The key difference is that in those models, fixed costs or externalities prevent fundamental information from
getting revealed to the market until a critical threshold is reached. In contrast, here it is the noise that accumulates,
and the threshold is exogenously determined by data announcement dates.
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metric information. Without the time-varying information structure, φθ (t) will be a constant,

and announcement returns will not be predictable. Naturally, a higher uncertainty in my model

should amplify the impact of asymmetric information and result in a steeper slope of the pricing

function φθ (t). As I show in the quantitative exercise in the following section, as in the data, the

predictability of announcement return in my model is stronger in periods of high uncertainty due

to the amplification effect of learning.

The mechanism for the negative predictability in my model is in contrast with He and Wang

(1995), who study a finite horizon model in which investors learn the value of the asset which

will be revealed at the terminal date T . As t → T , the posterior variance about the asset value

decreases towards zero and reaches the minimum before T , whereas in my model, the underlying

state variable is time-varying. As a result, the posterior variance increases as t approaches the

announcement time and drops right after the announcement. This pattern is consistent with the

empirical facts documenting the dynamics of implied volatility at the aggregate level (Hu, Pan,

Wang, and Zhu, 2020) and those at the firm level (Ai, Han, Pan, and Xu, 2019). The increasing

pattern of uncertainty before the announcement is the key reason for the monotonicity and jump

of φθ (t) in my model. In addition, the incentive for trading here is also very different from finite

horizon models in which the only uncertainty is the value of the asset at the terminal date. In

these setups, trading gradually increases before the announcement because of the reduction in

remaining trading opportunities towards the terminal date and peaks before the announcement.

This is inconsistent with the data I document in Figure 6 in Section 4, where trading only jumps

after the announcement. My model is designed to capture the cyclical dynamics of returns and

trading around macroeconomic announcements. In my model, trading moves slowly before the

announcement but sharply spikes right after the announcement because both groups of investors

unwind their positions right after the announcement resolves the uncertainty. Therefore, my model

not only has predictions on belief errors and announcement returns, but also on the patterns of

trading volume before and after announcements. In the next section, I calibrate my model and

evaluate the ability of the model to quantitatively account for the predictabilities of belief errors

and announcement returns as well as trading volumes around announcements.

An Unexpected Shock to Volatility In the data, the negative predictability of announcement

day returns is strongest in periods where macroeconomic volatility is high and insignificant or even

positive in periods with low volatility. In fact, from Table 1, the point estimate for the predictability

regression is slightly positive in low volatility periods. This feature of the data is also consistent with

my model. The key implication of my model is that noisy supply has a higher impact on equilibrium

price when investors are more uncertain about the underlying state of the economy. In periods with

high volatility, uncertainty builds up over time during the revision days, and the equilibrium price

becomes increasingly sensitive to noisy supply. This pattern generates the negative predictability

of announcement day returns, because the accumulated noise is partially eliminated from price at

the announcements.
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However, when an economy switches from high volatility to low volatility, uncertainty accumu-

lated in high volatility periods starts to reduce over time, and can result in a lower sensitivity of

price to noisy supply. In Figure 5, I assume that there is an unexpected reduction in volatility

at time τ and plot the posterior variance for informed investors (top panel), that for uninformed

investors (middle panel) and the pricing coefficient on noisy supply, φθ (t) (bottom panel) as func-

tions of time. After the previous announcement at time 0, both q̂t and q̃t increase quickly until

time τ , when the economy suddenly transits into a low volatility state. As a result, the posterior

variance of informed investors starts to reduce. It takes some time for the posterior variance for

the uninformed to drop, but q̃t eventually drops. From 0 to τ, φθ (t) increases as uncertainty builds

up, but drops afterwards until the next announcement due to reductions in uncertainty q̂t and q̃t.

Because φθ (t) reduces over time, the same argument as in the the last section implies that the

returns during the forecast revision period positively predicts announcement returns. I confirm

this implication of the model in the next section.

Figure 5: Posterior Variances and φθ (t) over Announcement Cycles

0 T 2T 3T

0 T 2T 3T

0 T 2T 3T

This figure plots the model-implied posterior variances of the informed investor q̂ (t) (top panel) and uninformed
investor q̃ (t) (middle panel) and the price sensitivity to noise φθ (t) (bottom panel) over three quarterly announcement
cycles. At time τ , there is an expected MIT shock. The benchmark parameter values are given in Table 2.

4 Quantitative Results

This section presents a quantitative analysis and demonstrates that my model can account for the

stylized empirical facts documented in Section 2.

Numerical solution In my model, the equilibrium is characterized by a set of pricing functions

{φθ (t) , φx (t) , φ∆ (t)}, the portfolio demand functions {αθ (t) , α∆ (t) , βθ (t)}, and the value func-

tions of informed and uninformed investors. These functions must be jointly determined by the

optimality and market clearing conditions. In Appendix 5.3 and 5.4, I show that these conditions

boil down to a system of ODEs subject to boundary conditions at the announcements. I describe a
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recursive method that simultaneously solves the system of ODEs that characterize the equilibrium.

Using these solutions, I simulate my model, compute relevant moments to calibrate my model,

and replicate the regressions I conducted using the actual data. The model is simulated at a daily

frequency, and announcements are made at the end of each quarter. In total, there are four an-

nouncements every year as in the data. I assume that investors start to revise their beliefs after

each announcement until the survey is submitted at the middle of each quarter. The numerical

method is discussed in details in Appendix 5.7. Below, I first report my calibration procedure and

then evaluate the quantitative implications of the model.

Estimates Table 2 contains calibrated and estimated benchmark parameter values. First, prefer-

ence parameters are chosen to be consistent with the literature: ρ = 0.03. I choose the steady-state

level of dividend, x̄ = 10 so that together with the choice of the volatility parameters of the model,

it implies a volatility of the aggregate consumption growth, i.e., that of the informed and unin-

formed investors of 3% per year. Under this choice, the implied relative risk aversion of both groups

of investors is about 10 in steady state. I set ω = 1
2 so that half of the investors are informed and

half are uninformed. Second, several parameters are calibrated to match outside data. The annual

risk-free interest rate r = 2.8% and the dividend persistence b = 0.1 are set to match the mean

and autocorrelation of the price-to-dividend ratio, respectively.9 The model produces a mean of

36.16 and a first-order autocorrelation of 0.96 for the price-to-dividend ratio, compared to 35.51

and 0.93 in the data. The price-to-dividend ratio and dividend growth data are formulated from

CRSP value-weighted NYSE/Amex index annual returns for the period 1968-2019.

To capture the impact of the time-varying uncertainty, I allow the volatility of the hidden state

variable xt, σx to be a two-state Markov chain with state space {σH , σL}, where σH = 0.65 and

σL = 0.05. I assume that the the volatility shocks are unexpected. The transition matrix for σx is[
1− κδ κδ

κδ 1− κδ

]
during an infinitesimal time interval δ. I choose κ = 0.20 so that together with

σH = 0.65 and σL = 0.05, the three parameters jointly match the mean, the standard deviation, and

the first-order autocorrelation of the daily VIX index for the period 2003-2019. The model produces

15%, 7.8%, and 0.95 for the above three moments, with the data counterparts of 18.44%, 8.47%,

and 0.98. As an un-targeted moment, my model generates a volatility of the log price-to-dividend

ratio of 30% per year, close to its empirical counterpart of 35%.

I choose σd = 1 to match the volatility of the dividend growth rate, which is 6.46% from the

model and 6.26% from the data. The parameter σθ is chosen to match the annual realized return

volatility of S&P 500 index. The model gives a return volatility of 14.95%, which is close to 16.25%

in the data. Third, the remaining parameters a = 0.01 and σs = 0.7 are calibrated to match

the regression coefficient βP of −0.013 and βF of 0.390 in the data (their model counterparts are

−0.014 and 0.343, respectively). Proposition 1 demonstrates that, the informed investor’s forecast

revision could predict the uninformed investor’s forecast error because of the private information

9In the model, the stationary price-to-dividend ratio can be directly calculated as follows: P̄
D̄

=
φ+φ+(φD+φ̄x)x̄

x̄
=

1
1+r

(
1
r

+ 1
)
, which is uniquely determined by the risk-free rate.
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from the additional signals. Therefore, 1/σs, the signal precision of the informed investor, mainly

drives the predictability of the consensus forecast error. Furthermore, a captures the persistence of

the aggregate equity supply, which is important in generating the negative predictability of pricing

errors, as implied by Proposition 2.

Table 2: Parameters

Para. Value Description Para. Value Description

r 0.028 risk-free rate σs 0.7 inverse of signal precision

ρ 0.03 time discount factor σH 0.65 high volatility of hidden state

x̄ 10 mean level of dividend flow σL 0.05 low volatility of hidden state

b 0.1 persistence of hidden state σθ 0.68 volatility of total equity supply

a 0.01 persistence of total equity supply κ 0.2 transition rate from high to low state

σd 1 dividend flow volatility ω 0.5 fraction of uninformed investor

This table displays annualized parameter values used in the simulations. Appendix 5.7 summarizes the details of the
numerical and calibration procedures.

Quantitative Results I first construct the consensus forecast revision and consensus forecast

error from my model. Note that announcements are made periodically at nT , where n is an integer

and T = 1
4 indicates quarterly announcements. For any announcement scheduled at (n+ 1)T , I

assume that the first forecast is made right after the previous announcement at nT and a revision

of the forecast is made at nT + δ, and I set δ = 1
2T so that revisions are made in the middle of two

consecutive announcements as in the actual data. Let x be the forecast variable announced at time

(n+ 1)T , using definition (19), the consensus forecast revision made at time nT + δ is defined as:

FrevnT+δ (x) = ĒnT+δ[x]− ĒnT [x], (43)

where Ēt[x] = (1− ω) Êt[x] + ωẼt[x] is the average belief of informed and uninformed investors.

Similarly, applying equation (20), forecast error of x is defined as

Ferr(n+1)T (x) = x− ĒnT+δ[x]. (44)

My definitions of consensus forecast revision and error are therefore identical to those in the em-

pirical exercise I presented in Section 2, as equations (1) and (2).

As in the data, I define the return responses to forecast revisions as RrevnT+δ =
PnT+δ−PnT

PnT
and

the return reactions to forecast errors upon the announcements as Rerr(n+1)T =
P+

(n+1)T
−P−

(n+1)T

P−
(n+1)T

.

I regress the consensus forecast errors on consensus forecast revisions and regress announcement

returns on returns during the revision periods as specified in equations (3) and (4) using the

model simulated data. I report these regression results in Table 3. As model generated moments
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are estimated from long samples, they are all statistically significant and I do not report their

corresponding t-statistics. Consensus forecast revisions positively predict forecast errors in my

model with a slope coefficient of βF = 0.343, close to its empirical counterpart. As I explained

in Section 3, in my model, the private information of informed investors is not observed by the

uninformed therefore accounts for the forecast errors made by uninformed investors. As a result,

the revision of informed investors, based on their private information, positively predicts the error

of the uninformed. Because the consensus forecast is the average of the forecasts of both groups

of investors, revisions of the consensus forecast positively predict the errors of the forecast so that

βF > 0.

Table 3: Goodness of Fit
Panel A: Regression Coefficients

Data Model

βF 0.390** 0.343***

βP -0.013*** -0.014***

βH -0.018*** -0.019***

βDif 0.018* 0.018***

This table presents regression coefficients based on equations (3), (4) and (5) from the data and model, respectively.
I simulate the model for 20,000 years with quarterly macroeconomic announcements and daily stock prices. I discard
the first 2,000 years and keep the remaining 18,000 years to ensure stationarity and then run OLS regressions. The
maximum ODE convergence tolerance is 1.6e-13 for the simulation. Note: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01. Appendix
5.7 summarizes the details for the numerical exercise.

It is clear from Table 3 that returns over forecast revision days negatively predict returns

on announcement days with βP = −0.013. This negative predictability comes from the cyclical

patterns of the announcements. On non-announcement days, for example, an increase in the noisy

supply θt lowers the stock price and learning amplifies this impact because the estimation-error-

induced uncertainty builds up over time and the information becomes more asymmetric due to

the increased information gap from the private information. Upon announcements, however, this

asymmetric information-induced price reductions reverse itself as the true value of xnT is revealed

and the uncertainty is resolved, generating a negative predictability of the announcement returns.

From the above discussion, higher uncertainty will be associated with stronger impacts from

learning and asymmetric information hence a stronger negative predictability of announcement-day

returns. To test this unique implication of my model, I construct a forward looking measure of

stock return volatility, which is the counterpart of the VIX index. This allows me to define periods

of high uncertainty and low uncertainty as in the data, and replicate the regression specification (5)

presented in Section 2. I provide details of the calculation of model implied volatility in Appendix

5.6 and report the regression results in the last two rows of Table 3. Evidently, the predictability

is stronger in periods of higher uncertainty, and the difference between the predictability in high

uncertainty and low uncertainty periods, βDif is positive and significant.
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To further confirm the basic intuition in my model, I decompose the pricing error upon the

announcement into three components as in equation (40), and regress them separately on price

changes over revision days as follows:

φ̄x
[
x(n+1)T − x̃(n+1)T

]
= αP1 + βP1 (PnT+δ − PnT ) + ε, (45)

−φθ (0)
[
θ(n+1)T − θ̃(n+1)T

]
= αP2 + βP2 (PnT+δ − PnT ) + ε, (46)

− [φθ (0)− φθ (T )] θ̃(n+1)T = αP3 + βP3 (PnT+δ − PnT ) + ε. (47)

My model predicts that the only component of the announcement return that is predicable comes

from [φθ (0)− φθ (T )] θ̃(n+1)T . My simulation confirms this result: βP1 and βP2 are essentially zero

and insignificant in long sample regressions while βP3 = −0.010 and is highly significant.

Implications for Trading Volume Given the investors’ optimal trading strategies in equations

(33) and (34), I can characterize the equilibrium trading volume implied by the model. Since the

two types of investors trade against each other, the trading volume can be calculated as changes in

the portfolio holdings of either group of investors. Define the trading volume from t to t+ δ as the

uninformed investor’s turnover rate (see Wang, 1994):

M (t, t+ δ) = ω |βt+δ − βt| = ω
∣∣∣βθ (t+ δ) θ̃t+δ − βθ (t) θ̃t

∣∣∣ . (48)

At the announcement, the trading volume between T− and T+ can be calculated as

M
(
T−, T+

)
= ω

∣∣β+
T − β

−
T

∣∣ = ω
∣∣∣βθ (0) θT − βθ (T ) θ̃T

∣∣∣ . (49)

On non-announcement days, trading evolves slowly, as both βθ (t) and θ̃t are continuous func-

tions of time in equation (48). At the announcement, however, both βθ (t) and θ̃t have discontinuous

jumps so that a large trading volume is realized. The fact that trading peaks right upon the an-

nouncement in my model is consistent with the empirical evidence. In Figure 6, I plot the turnover

rate for SPY over a 30-minute interval on announcement days for three types of announcements,

GDP, unemployment, and CPI. For comparison purpose, the solid line plots the trading volume dif-

ference between the announcement day and one day before, M (t, t+ δ)−M
(
t− 1

360 , t+ δ − 1
360

)
,

where t is a time on the announcement day, δ is 30 minutes, and t− 1
360 is the same time on the day

before the announcement. Similarly, the dashed line plots the trading volume difference between

the announcement day and one day afterwards, M (t, t+ δ) −M
(
t+ 1

360 , t+ δ + 1
360

)
. Evidently,

relative to non-announcement days, the announcement triggers a spike in trading as implied by my

model.

To formally evaluate the quantitative implications of my model, in Table 4, I compute the

average changes in trading volume one day before and after the announcement and compare my

model implications with the data. Here M
(
T, T + 1

360

)
is the announcement day turnover rate,

and M
(
T − 1

360 , T
)

and M
(
T + 1

360 , T + 2
360

)
are the turnover rate on the day before and after the
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Figure 6: Trading Volume around Announcement Days
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This figure plots the SPY turnover rate in the 30-minutes window, 8:15 am to 8:45 am, of the GDP, unemployment
and CPI announcement at 8:30 am, respectively. The high frequency trading uses CRSP Millisecond Trade and
Quote (TAQ) dataset, averaged over all the respective announcements from 2003Q1 to 2019Q4. The turnover rate
is calculated as the total number of shares traded divided by the total number of shares outstanding, as in Lo and
Wang (2000). The solid (dashed) line depicts the turnover rate difference between the announcement day and one
day before (after) the announcement.

announcement, respectively. In the data, the difference in trading volume is statistically significant,

and the point estimates are fairly close to the same moments implied by my model.

Table 4: Trading Volume Change around Announcement Days

Data Model

GDP Unemployment CPI

lnM
(
T, T + 1

360

)
− lnM

(
T − 1

360
, T
)

13.71% 12.21% 8.70% 10.65%

(2.58) (2.44) (1.68)

lnM
(
T, T + 1

360

)
− lnM

(
T + 1

360
, T + 2

360

)
−10.43% −20.74% −11.66% −10.27%

(−2.47) (−3.87) (−3.42)

This table reports changes in log trading volume one day before and after the advance (first) GDP estimates,
unemployment and CPI announcement days and their time-series Newey-West t-statistics (in parenthesis) when
testing whether the change is significantly different from zero. I also report the model-implied log change in volume
around announcement days. The sample period is from 1993Q1 to 2019Q4. The trading volume is defined as the
turnover rate and calculated as the total number of shares traded divided by the total number of shares outstanding,
as in Lo and Wang (2000).

5 Conclusion

In this paper, I develop a noisy rational expectations model to jointly account for the positive

predictability of consensus forecast errors and the negative predictability of pricing errors real-

ized upon macroeconomic announcements. The announcement return predictability is particularly
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strong in high economic uncertainty periods. The key new ingredients in my model are asymmet-

ric information and periodic macroeconomic announcements. I provide a full characterization of

equilibrium prices and quantities. They are shown to be the solution to a system of ODEs subject

to boundaries conditions at the announcement. I calibrate the model, and demonstrate its ability

to quantitatively account for the predictabilities that I document in the data.

To simplify the computation of the equilibrium, this paper relies on exponential preferences,

which deliver a convenient linear pricing function (albeit with time-varying coefficients). It may

be possible to extend the current model to allow for generalized risk-sensitive preferences (Ai and

Bansal (2018)) to account for the macroeconomic announcement premium as well as the belief and

return dynamics documented in this paper in a unified setup. Another possible extension would

be to exploit other data sources on survey expectations. For example, rather than focus on the

aggregate stock market using macroeconomic surveys, the analysis here could be replicated using

I/B/E/S data on analyst forecasts of the earnings of individual firms. I leave these interesting

directions for future research.
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Appendix

5.1 Data and Measurements

Forecasts Following most of the literature on measuring expectations formation, I use historical

survey data from the Survey of Professional Forecasters (SPF) and Consensus Economics (CE)

forecasts for the United States. I focus on forecasts of real GDP, the unemployment rate and

Consumer Price Index (CPI).10 SPF is a quarterly survey containing approximately 40 professional

forecasters, beginning in 1968Q4. Since 1990 it has been run by the Federal Reserve Bank of

Philadelphia. Panelists are largely from the business world and Wall Street, spanning different

sectors (e.g., banks, consulting firms, universities, private firms). Each forecaster is asked to forecast

at horizons from the current quarter to four quarters later. The data are reported at both the

individual level and the consensus level, computed as the cross-sectional mean from the individual

level forecasts at a point in time.11 The SPF survey is distributed after the release of last quarter’s

first GDP estimates, and roughly one or two weeks later, the panelists are asked to submit the

survey before the submission deadline. Since 1990Q2, the survey has been conducted in the second

month of the quarter, and the deadline for submitting forecasts is around the middle of the survey

month.12,13 Similarly, CE conduct quarterly survey for many countries including the United States

since 1989Q4 and the panelists are also professional forecasters. However, the survey submission

dates are different from SPF, typically at the end of each quarter on March, June, September and

December.

Announcements I collect GDP announcement dates from the Bureau of Economic Analysis

(BEA)’s website, which reports quarterly GDP, inflation, and consumption at the end of each

month.14 GDP announcements are made monthly, so each quarter contains three announcements:

advance (first), second, and third estimate. For example, in April the advance estimate for the

Q1 GDP growth rate is released, followed by a second estimate of the same Q1 GDP growth rate

in May, and a third estimate given in June. I focus on the advance estimates for three reasons.

First, the advance estimates are believed to reveal the most information, thus resolving most of the

uncertainty. Second, the subsequent revisions may not reflect the initial reactions to the surprises

10Coibion and Gorodnichenko (2015) show that the predictability of consensus forecast errors holds for both dataset
and for many other macroeconomic variables, including the inflation rate (GDP/GNP deflator) and real consumption
expenditures. I focus on the GDP announcement because the inflation rate and disposable personal income are
announced together with GDP by the BEA at the same time. However, unemployment/non-farm payrolls and CPI
are announced at different dates by the BLS.

11The cross-sectional mean could change because of a change in forecaster composition. Coibion and Gorodnichenko
(2015) only include forecasters that participate in two consecutive surveys and find robust results. The results are
also robust for cross-sectional median forecasts.

12The detailed deadline dates can be found at: https://www.philadelphiafed.org/-/media/research-and-data/real-
time-center/survey-of-professional-forecasters/spf-release-dates.txt?la=en.

13The survey first gets published (open to the public) around one week later than the submission day. Since this
paper mainly focuses on stock market reactions to market participants’ forecast revisions, the information those
panelists use to update their beliefs has been updated until the day they submit the survey. Therefore, the data
publication day does not matter because it could not represent the right timing for panelists’ belief revisions.

14https://www.bea.gov/data/gdp/gross-domestic-product.
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in GDP growth rate announcements. Third, Gilbert (2011) and Gilbert, Scotti, Strasser, and Vega

(2017) show that only the advance release has the significant impact on asset prices, whereas the

final release almost has no price impact. Therefore, in this paper, the forecast revision at quarter

t is associated with the realization of the quarter-t GDP growth rate announced at t + 1, and

forecast errors are calculated using advance estimates. I further collect quarterly unemployment

rate and CPI announcement dates from the Bureau of Labor Statistics (BLS).15 While monthly

unemployment situation/non-farm payrolls and CPI are released in the following month, quarterly

realizations are released around January, April, July, and October, about one month after each

quarter.

Stock Market Returns First, I use realized close-to-close returns on adjacent survey submission

days to measure the cumulative returns over the time panelists revise their beliefs, i.e., Rrevt (x)

defined in the main text. This is because information arrives continuously, and beliefs are accord-

ingly being continuously revised. I assume that revisions start right after the last survey submission

day until the current submission day, so forecast revisions defined in equation (3) should reflect

the cumulative revisions in response to newly obtained information between two adjacent forecast

quarters. Therefore, the cumulative returns over the forecast revision periods reflect the stock mar-

ket reactions to forecast revisions. Second, I use returns over the 30-minutes interval, 8:15 am to

8:45 am, because GDP, the employment situation, and CPI are all released at 8:30 am. before the

stock market opens. This high-frequency window provides a fairly clean way to measure the stock

market reactions to forecast errors realized upon macroeconomic announcements. Third, instead

of using the S&P 500 index, I calculate returns on revision days based on the SPDR S&P 500 ETF

(SPY) dataset, which is available starting from January 1993. The high frequency SPY is from

CRSP Millisecond Trade and Quote (TAQ) dataset, dating back to 2003.16

Table 5 summarizes the data used in the empirical analysis. Several things are worth noting.

First, no abnormal returns are observed on survey submission days. As the average return is

about 1 bps from SPF and 4 bps from CE, both statistically insignificant different from zero, it is

reasonable to believe that on average no special news announcements or events happen on forecast

submission days. Second, the announcement returns earned in the 30-minutes window are −0.75,

3.98, and 6.81 bps for GDP, unemployment, and CPI, respectively, while only CPI announcement

return is significantly different from zero. Third, one can see that professional forecasters do not

have significant forecasting biases, at least at one-quarter-ahead horizons. Therefore, I assume they

are marginal investors who can generally represent the stock market participants.17

15https://www.bls.gov/schedule/news release/empsit.htm.
16I do this because the S&P 500 calculates its opening price at 9:31 a.m. when many stocks are not open. As a

result, the opening price for the S&P 500 is often the same as the previous trading day’s closing price, which produces
many zero overnight returns when using S&P 500 data. In contrast, the SPY is calculated based on S&P 500 futures,
which is always open by 9:31 a.m. and traded overnight. See Lou, Polk, and Skouras (2019) and Hendershott, Livdan,
and Rösch (2020) for how returns behave differently between daytime and overnight.

17Adam, Matveev, and Nagel (2018) use various surveys of return forecasts and find that investors’ aggregate
return expectations are unconditionally unbiased. Stark (2010) analyzes the accuracy of forecasts and find that
the SPF forecasts outperform benchmark projections from univariate autoregressive time-series models at short
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Table 5: Summary Statistics

Panel A: Return reaction to forecast revisions

Variable Mean (%) s.d.(%) Obs. Time Variable Mean (%) s.d.(%) Obs. Time

Data Source: SPF CE

Rrevt 1.895 0.796 77 1993Q1-2019Q4 Rrevt 2.215 0.792 105 1993Q1-2019Q4

Rvt 0.011 0.131 88 1993Q1-2019Q4 Rvt 0.041 0.098 107 1993Q1-2019Q4

Panel B: Announcement returns, forecast revisions and forecast errors

Variable Mean (%) s.d.(%) Obs. Time Variable Mean (%) s.d.(%) Obs. Time

Real GDP Growth Rate UE

Rerrt+1 -0.0075 0.032 65 2003Q1-2019Q4 Rerrt+1 0.0398 0.057 62 2003Q1-2019Q4

Frevt -0.277 0.085 204 1969Q1-2019Q4 Frevt -0.014 0.019 204 1969Q1-2019Q4

Ferrt+1 0.091 0.126 204 1969Q1-2019Q4 Ferrt+1 -0.033 0.018 204 1969Q1-2019Q4

CPI

Rerrt+1 0.0681 0.034 64 2003Q1-2019Q4

Frevt -0.112 0.079 153 1981Q4-2019Q4

Ferrt+1 -0.016 0.093 153 1981Q4-2019Q4

This table reports summary statistics for the main variables used in the empirical tests. Panels A reports Rrevt
(the close-to-close cumulative returns between adjacent SPF submission deadline days) and Rvt (the daily returns
of survey submission deadline days) from Survey of Professional Forecasters (SPF) and Consensus Economics (CE),
respectively. Both Rrevt and Rvt are calculated based on the SPDR S&P 500 ETF (SPY) dataset. Panels B
displays the summary statistics for real GDP growth rate, unemployment rate (UE), and Consumer Price Index
(CPI) respectively. Rerrt+1 represents the announcement return, which is the cumulative return earned in the 30-
minutes window, 8:15 am to 8:45 am, of the announcement at 8:30 am. The forecast error (Ferrt+1) equals initial
released values minus the most recent forecasts. The forecast revision (Frevt) is defined as the difference between the
forecast of a variable at this quarter and the forecast of the same variable made at last quarter. All returns exclude
observations on non-trading days.

Robustness Check In this section, I conduct robustness tests for empirical results in the main

text. Panel A in Table 6 presents the regression coefficients from equation (5) using SPF and

CE dataset, respectively. The magnitudes for GDP, unemployment and CPI are similar from

both dataset. Unemployment and CPI have low t-statistics in SPF. This is likely due to the fact

that there are several SPF surveys conducted on non-trading days, which results in a smaller and

discontinuous sample compared to CE. Panel B displays the regression results of equation (4) using

daily news-based U.S. economic policy uncertainty indices (EPU) from Baker, Bloom, and Davis

(2016) as an alternative measure of uncertainty. In order to show the results are not driven by

extreme events during the financial crisis, in Table 7 I show the results are robust after excluding

the 2007-2008 financial crisis period.

horizons. The special survey of analyzing the panelists’ forecasting methods shows that “20 of 25 respondents said
they use a combination of mathematical/computer models plus subjective adjustments to that model in reporting
their projections.”
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Table 6: Announcement Return Predictability (Robustness Check)

SPF CE

GDP UE CPI GDP UE CPI

Panel A. Rerrt+1 (x) = α+ βPRrevt (x) + εt+1.

βP -0.0133*** -0.0115 -0.00429 -0.0105*** -0.00889* -0.00501**

(-3.12) (-1.33) (-1.20) (-2.71) (-1.90) (-2.16)

Panel B. Rerrt+1 (x) = α+ βHRrevt (x) + βDifIL (t) ×Rrevt (x) + βDummyIL (t) + εt+1.

βH -0.0172*** -0.0192*** -0.000153 -0.0162*** -0.0126** -0.00282

(-5.37) (-2.65) (-0.04) (-3.64) (-2.03) (-0.98)

βDif 0.0137* 0.0297* -0.0192 0.0225*** 0.0146 -0.00842**

(1.67) (1.66) (-0.72) (3.97) (1.17) (-2.04)

obs. 57 54 56 62 60 61

Panel A and B report the coefficient estimates of equation (5) and (4) for real GDP growth rate, unemployment
rate (UE) and Consumer Price Index (CPI) using data from Survey of Professional Forecasters (SPF) and Consensus
Economics (CE), respectively. Panel B uses U.S. economic policy uncertainty (EPU) from Baker, Bloom, and Davis
(2016) to measure uncertainty. The full sample period is from 2003Q1 to 2019Q4. Newey-West t-statistics (with 5
lags) are in parentheses. Note: *p < 0.1, ** p < 0.05, *** p < 0.01.

Table 7: Excluding 2007-2008 Financial Crisis

SPF CE

GDP UE CPI GDP UE CPI

Panel A. Using VIX to measure uncertainty

βH -0.0103*** -0.0275*** -0.00629** -0.00837** -0.0102** -0.00465***

(-3.29) (-3.63) (-2.22) (-2.47) (-2.42) (-3.91)

βDif 0.0103 0.0531** 0.0119 0.0112** 0.00642 -0.00215

(1.10) (2.29) (1.30) (2.14) (0.34) (-0.52)

Panel B. Using EPU to measure uncertainty

βH -0.0107*** -0.0302*** -0.00923** -0.00993* -0.0178*** -0.00164*

(-3.17) (-4.17) (-2.35) (-1.68) (-2.81) (-1.68)

βDif 0.0114 0.0489*** 0.0163** 0.0131** 0.0245** -0.00945***

(1.51) (3.51) (2.45) (2.01) (2.16) (-3.34)

obs. 49 46 48 55 52 54

This table reports the robustness check for the regression specified in equation (4) for real GDP growth rate, un-
employment rate (UE) and Consumer Price Index (CPI) using data from Survey of Professional Forecasters (SPF)
and Consensus Economics (CE), respectively. Panel A and B use VIX index and U.S. economic policy uncertainty
(EPU) to measure uncertainty, respectively. The full sample period is from 2003Q1 to 2019Q4, excluding 2007-2008
financial crisis. Newey-West t-statistics (with 6 lags) are in parentheses. Note: *p < 0.1, ** p < 0.05, *** p < 0.01.

5.2 Investors’ Learning Problems

In this section, I compute the both types of investors’ optimal learning problems. I first prove

Lemma 1. Then I prove Proposition 1, which summarizes one main result that the informed

investor’s forecast revision could positively predict the forecast error of the uninformed.
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Proof for Lemma 1 The optimal learning for the informed investor is a standard Kalman-Bucy

filter problem with the unobserved state variable given in (7) and the observed processes (6), (8),

and (9). Applying Theorem 10.3 from Liptser and Shiryaev (2001), it is straightforward to show

that the law of motion of the posterior mean satisfies (14) where the innovation processes for (6)

and (9) are given by

dB̂D,t =
1

σD
[dDt − (x̂t −Dt) dt] , and dB̂s,t =

1

σs
(dst − x̂tdt) . (50)

The law of motion of the conditional variance q̂t must satisfy the Riccati equation

dq̂ (t) =

[
σ2
x − 2bq̂ (t)−

(
1

σ2
D

+
1

σ2
s

)
q̂2 (t)

]
dt. (51)

Because the stock price is a function of x̂t and θt (see equation (10)), whereas both of which

are unobserved, the uninformed investors need to compute the posterior distributions for both.

Equation (13) implies that the posterior distribution of θt can be inferred from that of x̂t. Therefore,

I focus on the learning problem for x̂t, whose law of motion is given by (14). Informed investors

observe two sources of information for x̂t, the dividend process and the equilibrium price. Rewrite

equation (50) in terms of the innovation process dB̂D,t as

dDt = (x̂t −Dt) dt+ σDdB̂D,t. (52)

Note that observing the price is equivalent to observing ζt = φx (t) x̂t − φθ (t) θt, because all other

variables in (10) are known to the uninformed investors. Applying Ito’s lemma, ζt can be represented

as a Markov process given the state variables x̂t and ζt itself:

dζt =

[
bx̄φx (t) +

((
a− b− φ′θ (t)

φθ (t)

)
φx (t) + φ′x (t)

)
x̂t +

(
φ′θ (t)

φθ (t)
− a
)
ζt

]
dt

+
q̂ (t)

σD
φx (t) dB̂D,t +

q̂ (t)

σs
φx (t) dB̂s,t − σθφθ (t) dBθ,t. (53)

It is useful to define ξt = ζt − q̂(t)
σ2
D
φx (t)Dt so that (x̂t, Dt, ξt) has a state space representation and

the innovations of dDt and dξt are mutually independent. The dynamics of ξt is

dξt =

[
bx̄φx (t) +mx (t) x̂t +

(
φ′θ (t)

φθ (t)
− a

)
ξt +mD (t)Dt

]
dt+

q̂ (t)

σs
φx (t) dB̂s,t − σθφθ (t) dBθ,t, (54)

where the coefficients mx (t) and mD (t) are defined as

mx (t) =

(
a− b− φ′θ (t)

φθ (t)
− q̂ (t)

σ2
D

)
φx (t) + φ′x (t) , (55)

mD (t) =
1

σ2
D

[
q̂ (t)φx (t)

(
1− a+

φ′θ (t)

φθ (t)

)
− q̂′ (t)φx (t)− q̂ (t)φ′x (t)

]
. (56)

It is convenient to define

σξ (t) =

√
q̂2 (t)

σ2
s

φ2
x (t) + σ2

θφ
2
θ (t), (57)
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as the volatility of ξt, and define

ν (t) =
1

σ2
ξ (t)

[
φx (t)

σ2
s

q̂2 (t) +mx (t) q̃ (t)

]
. (58)

I will call ξt the information content of price, as observing price is equivalent to observing ξt. To

apply the Kalman-Bucy filter, I will treat (14) as the unobserved state variable and (52) and (54)

as the observations. The filtering equation in (15) can therefore be derived by applying Theorem

10.3 in Liptser and Shiryaev (2001), where the innovation processes are standard Brownian motions

with respect to the uninformed investor’s information set which are defined as

dB̃D,t =
1

σD
[dDt − (x̃t −Dt) dt] , (59)

dB̃ξ,t =
1

σξ (t)

[
dξt −

[
bx̄φx (t) +mx (t) x̃t +

(
φ′θ (t)

φθ (t)
− a
)
ξt +mD (t)Dt

]
dt

]
. (60)

The posterior variance, q̃ (t) satisfies the following Riccati equation

dq̃t =

[(
1

σ2
D

+
1

σ2
s

)
q̂2
t − 2bq̃t −

(
q̂t + q̃t
σD

)2

− ν2 (t)σ2
ξ (t)

]
dt. (61)

Applying Ito’s lemma to equation (13), the law of motion for θ̃t is therefore derived as

dθ̃t = −aθ̃tdt+
φx (t)

φθ (t)

q̃ (t)

σD
dB̃D,t +

1

φθ (t)
σξ (t) [ν (t)φx (t)− 1] dB̃ξ,t. (62)

The following variances and covariances can be computed from the law of total covariance:

Ṽar (xt) = Ẽ[V̂ar(xt)] + Ṽar(Ê[xt]) = q̂t + q̃t, C̃ov (xt, x̂t) = Ẽ[Ĉov(xt, x̂t)] + C̃ov(Ê[xt], Ê[x̂t]) = q̃t,

C̃ov (xt, θt) = C̃ov[xt,
1

φθ,t
(φx,tx̂t − ζt)] =

φx,t
φθ,t

q̃t, C̃ov(x̂t, θt) =
φx,t
φθ,t

q̃t, and Ṽar(θt) =
φ2
x,t

φ2
θ,t

q̃t. (63)

Difference in Beliefs Next, I characterize the dynamics of difference in beliefs between informed

and uninformed investors, ∆ ≡ x̂t − x̃t. The stochastic process for ∆t can be derived directly from

equations (14) and (15). Equations (52) and (54) allow me to replace dDt and dξt in the definition of

the innovation processes, (59) and (60), respectively to write d∆t in terms of Brownian motions with

respect to the informed investors’ information set, B̂D,t, B̂s,t, and Bθ,t as in (23). The coefficients

are: a∆ (t) = b + q̂(t)+q̃(t)
σ2
D

+ mx (t) ν (t), σ∆D (t) = q̃(t)
σD

> 0, σ∆s (t) = q̂(t)
σs

[1− φx (t) ν (t)], and

σ∆θ (t) = σθφθ (t) ν (t), where σξ (t) and ν (t) are defined in (57) and (58), respectively. In the

calibrated example, a∆ (t) > 0, σ∆s (t) > 0 and σ∆θ (t) > 0.

Proof for Proposition 1 Now I provide a proof for Proposition 1. The forecast error of

the uninformed could be decomposed as: xT − x̃T = (xT − x̂T ) + (x̂T − x̃T ). The standard

optimal filtering implies that the optimal forecast revision of informed investors could not pre-
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dict their own forecast error, i.e., Cov
(
xT − x̂T , Êt [xT ]− Ê0 [xT ]

)
= 0. Therefore, to establish

Cov
(
xT − x̃T , Êt [xT ]− Ê0 [xT ]

)
> 0, it is sufficient to show Cov

(
x̂T − x̃T , Êt [xT ]− Ê0 [xT ]

)
> 0.

Note that Êt [xT ] = Êt [x̂T ] and Ê0 [xT ] = Ê0 [x̂T ] . Therefore,

Cov
(
x̂T − x̃T , Êt [xT ]− Ê0 [xT ]

)
= Cov

(
x̂T − x̃T , Êt [x̂T ]− Ê0 [x̂T ]

)
(64)

= Cov
(
x̂T − x̃T , Êt [x̂T ]− Ẽt [x̂T ] + Ẽt [x̂T ]− Ẽ0 [x̂T ]

)
= Cov

(
x̂T − x̃T , Êt [x̂T ]− Ẽt [x̂T ]

)
, (65)

where the second equality is true because at time 0, both groups of investors have the same belief

about xT after the announcement, Ẽ0 [xT ] = Ê0 [xT ]. The last equality holds because the belief revi-

sion of the uninformed should not predict his or her belief error: Cov
(
x̂T − x̃T , Ẽt [x̂T ]− Ẽ0 [x̂T ]

)
=

0. Hence, it is equivalent to show Cov
(

∆T , Êt [∆T ]
)
> 0.

Further, equation (23) yields,

∆T = e−
´ T−t
t a∆(z)dz∆t + e−

´ T−t
0 a∆(z)dz

ˆ T

t
e
´ u
0 a∆(z)dzσ̂ (u) dB∆,u, (66)

whereB∆,t =
[
B̂D,t, B̂s,t, Bθ,t

]
is a vector Brownian motion, and σ̂ (t) = [−σ∆D (t) , σ∆s (t) , σ∆θ (t)]>.

Clearly Êt [∆T ] = e−
´ T−t
t a∆(z)dz∆t is positively correlated with ∆T .

Excess Returns In this subsection, I use the results from the filtering problem derived above

to derive the excess return of the stock as diffusion processes under both types of investors’ beliefs.

The equilibrium pricing function (10) can be written as:

Pt = φ+ φDDt − φθ (t) θt + φ̄xx̂t − φ∆ (t) ∆t, (67)

= φ+ φDDt − φθ (t) θ̃t + φ̄xx̃t, (68)

where φ̄x = φx (t) + φ∆ (t). In equation (67), all variables are observable to informed investors,

whereas equation (68) represents the price as a function of the state variables measurable within

the uninformed investors’ information set.

Define the instantaneous excess return as dQt = dPt+Dtdt−rPtdt. Consider first the informed

investors. Equations (52), (8), (14), and (23) represent the variables Dt, θt, x̂t, and ∆t in terms of

Brownian motions with respect to their information set. These give

dQt =
{[
−rφ+ bx̄φ̄x

]
+ [1− (1 + r)φD (t)]Dt + eθ (t) θt + [φD − (b+ r)φx] x̂t + e∆ (t) ∆t

}
dt

+%D (t) dB̂D,t + %s (t) dB̂s,t + %θ (t) dBθ,t, (69)

where e∆ (t) =
[
r + b+ q̂(t)+q̃(t)

σ2
D

+mx (t) ν (t)
]
φ∆ (t)− φ′∆ (t) , and

eθ (t) = (a+ r)φθ (t)− φ′θ (t) , (70)

40



and the diffusion coefficients are given by %D (t) = 1
σD

[
φDσ

2
D + φ̄xq̂ (t) + φ∆ (t) q̃ (t)

]
, %s (t) =

[1 + φ∆ (t) ν (t)]φx (t) q̂(t)σs
, and %θ (t) = − [1 + φ∆ (t) ν (t)]φθ (t)σθ. Further define the variance of

excess return as

σP (t) = %2
D (t) + %2

s (t) + %2
θ (t) . (71)

The market clearing condition implies that the expected return of the stock cannot depend on

Dt, x̂t and the constant. As a result, the coefficients them must be 0, implying

φD =
1

1 + r
, φ̄x =

1

r (b+ r)
, and φ =

bx̄φ̄x
r

. (72)

Similarly, I can use equations (59), (62), and (15) to write the excess return in terms of Brownian

motions with respect to the uninformed investor’s information set. This gives dQt =
[
eθ (t) θ̃t

]
dt+

%D (t) dB̃D,t + σξ (t) [1 + φ∆ (t) ν (t)] dB̃ξ,t.

5.3 Solving for Optimization Problems in the Interior

For illustration purpose, in this appendix I use the superscript i to indicate variables of the informed

investor and u of the uninformed. For example, W i stands for the informed investor’s wealth and

W u is the uninformed’s. The following lemma summarizes the solutions to both types of investors’

optimization problems. I drop the time scripts for simplicity.

Lemma 4. In the interior (0, T ), the informed and uninformed investor’s value function takes the

form of

J
(
t,W i, θ,∆

)
= −e−ρt−rW i−g(t,θ,∆), (73)

V
(
t,W u, θ̃

)
= −e−ρt−rWu−f(t,θ̃), (74)

respectively, where g (t, θ,∆) and f(t, θ̃) are quadratic forms of

g (t, θ,∆) = g (t) +
1

2
gθθ (t) θ2

t +
1

2
g∆∆ (t) ∆2

t + gθ∆ (t) θt∆t, (75)

f
(
t, θ̃
)

= f (t) +
1

2
fθθ (t) θ̃2

t , (76)
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where the coefficients are time varying and satisfy the ODEs system defined as follows:

g′ (t) = r − ρ− r ln r + rg (t)− 1

2
σ2
θgθθ (t)− 1

2
σ∆ (t) g∆∆ (t)− σθσ∆θ (t) gθ∆ (t) ,

g′θθ (t) = rgθθ (t)− r2σP (t)α2
θ (t) + 2agθθ (t) + σ2

θg
2
θθ (t) + σ2

∆ (t) g2
θ∆ (t) + 2σθσ∆θ (t) gθθ (t) gθ∆ (t) ,

g′∆∆ (t) = rg∆∆ (t)− r2σP (t)α2
∆ (t) + 2a∆ (t) g∆∆ (t) + σ2

θg
2
θ∆ (t) + σ∆ (t) g2

∆∆ (t)

+2σθσ∆θ (t) gθ∆ (t) g∆∆ (t) ,

g′θ∆ (t) = rgθ∆ (t)− r2σP (t)αθ (t)α∆ (t) + agθ∆ (t) + a∆ (t) gθ∆ (t) + σ2
θgθθ (t) gθ∆ (t)

+σ∆ (t) g∆∆ (t) gθ∆ (t) + σθσ∆θ (t)
[
gθθ (t) g∆∆ (t) + g2

θ∆ (t)
]

; (77)

f ′ (t) = r − ρ− rlnr + rf (t)− 1

2
σθθ (t) fθθ (t) ,

f ′θθ (t) = rfθθ (t)− r2σP (t)β2
θ (t) + 2afθθ (t) + σθθ (t) f2

θθ (t) . (78)

Proof. Conjecture the informed investor’s value function takes the form of equation (73), where

g (t, θ,∆) is of the form (75). Using Ito’s Lemma, the HJB equation is

ρJ = −e−ρt−Ci + Jt + JW
[
rW i − Ci + α (eθ (t) θ + e∆ (t) ∆)

]
+

1

2
JWWα

2σP (t) + αJWθσθ%θ (t)

+αJW∆σQ∆ (t)− Jθaθ − J∆a∆ (t) ∆ +
1

2
Jθθσ

2
θ +

1

2
J∆∆σ∆ (t) + Jθ∆σθσ∆θ (t) , (79)

where σ∆ (t) = σ2
∆D (t) + σ2

∆s (t) + σ2
∆θ (t) and

σQ∆ (t) = −%D (t)σ∆D (t) + %s (t)σ∆s (t) + %θ (t)σ∆θ (t) , (80)

The first order condition (FOC) with respect to Ci is: rW i − Ci = ln r − g (t, θ,∆) . Under the
guessed value function form, HJB can be rewritten as

0 = r − 2ρ− ∂g

∂t
− r [ln r − g + α (eθ (t) θ + e∆ (t) ∆)] +

1

2
r2α2σP (t) + αr

∂g

∂θ
σθ%θ (t) + αr

∂g

∂∆
σQ∆ (t)

+
∂g

∂θ
aθ +

∂g

∂∆
a∆ (t) ∆ +

1

2

[(
∂g

∂θ

)2

− ∂2g

∂θ2

]
σ2
θ +

1

2

[(
∂g

∂∆

)2

− ∂2g

∂∆2

]
σ∆ (t) +

(
∂g

∂θ

∂g

∂∆
− ∂2g

∂θ∂∆

)
σθσ∆θ (t) .(81)

The FOC with respect to α gives α =
eθ(t)θ+e∆(t)∆− ∂g

∂θ
%θ(t)σθ− ∂g

∂∆
σQ∆(t)

rσP (t) . Under the guessed form of

g (t, θ,∆), substituting expressions in (80) yields: αt = αθ (t) θt + α∆ (t) ∆t, where

αθ (t) =
1

rσP (t)
[eθ (t)− %θ (t)σθgθθ (t)− σQ∆ (t) gθ∆ (t)] , (82)

α∆ (t) =
1

rσP (t)
[e∆ (t)− %θ (t)σθgθ∆ (t)− σQ∆ (t) g∆∆ (t)] . (83)

Similar to informed investor’s problems defined in (30), the uninformed investor’s optimization
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problem is characterized as

V
(
t,Wu

t , θ̃t

)
= max

βt,Cut
Ẽ

[ˆ T−t

0

−e−ρs−C
u
t+sds+ V

(
T,Wu

T , θ̃T

)]
, (84)

s.t. dWu
t = (Wu

t r − Cut ) dt+ βt

{[
eθ (t) θ̃t

]
dt+ %D (t) dB̃D,t + σξ (t) [1 + φ∆ (t) ν (t)] dB̃ξ,t

}
,

and the state variable θ̃t satisfies (62). The HJB equation is

ρV = −e−C
u

+Vt+VW

[
rWu − Cu + βeθ (t) θ̃

]
+

1

2
VWWβ

2σP (t)+βVWθσQθ (t)−Vθaθ̃+
1

2
Vθθσθθ (t) , (85)

where σQθ (t) = φx(t)
φθ(t)

q̃(t)
σD
%D (t)+ 1

φθ(t)σ
2
ξ (t) (ν (t)φx (t)− 1) [1 + φ∆ (t) ν (t)] and σθθ (t) =

[
φx(t)
φθ(t)

q̃(t)
σD

]2
+[

1
φθ(t)σξ (t) (ν (t)φx (t)− 1)

]2
. Furthermore, conjecture the uninformed investor’s value function

would be of the form (74) , where f
(
t, θ̃
)

satisfies (76). Substituting the guessed forms into HJB,

the FOC with respect to Cu is: rW u − Cu = ln r − f
(
t, θ̃
)
, and βt gives: βt = βθ (t) θ̃t, where

βθ (t) =
1

rσP (t)
[eθ (t)− σQθ (t) fθθ (t)] . (86)

Finally, substituting the optimal policy functions back into the HJB equations, and matching

coefficients of the value functions would give the ODEs system of two types of investors’ value

function coefficients stated in Lemma 4.

After obtaining the optimal portfolio holdings and solved value functions, one could finally pin

down the solutions to the postulated pricing function coefficients. By substituting equations (82),

(83) and (86) back into the market clearing conditions (36) and (37), one would obtain the ODEs

for pricing coefficients φθ (t) and φ∆ (t). The following lemma summarizes the result.

Lemma 5. The ODEs for φθ (t) and φ∆ (t) can be characterized as follows

φ′θ (t) = (a+ r)φθ (t)− rσP (t)− (1− ω) [%θ (t)σθgθθ (t) + σQ∆ (t) gθ∆ (t)]− ωσQθ (t) fθθ (t) , (87)

φ′∆ (t) = (a∆ (t) + r)φ∆ (t)− %θ (t)σθgθ∆ (t)− σQ∆ (t) g∆∆ (t)

−
[

ω

1− ω
rσP (t) + ω [%θ (t)σθgθθ (t) + σQ∆ (t) gθ∆ (t)− σQθ (t) fθθ (t)]

]
φx (t)

φθ (t)
. (88)

5.4 Proof for Equilibrium Conditions on the Boundary

Solving for Boundary Conditions for Value Function Coefficients The boundary condi-

tions for value functions coefficients and price sensitivities can be summarized as follows:

Lemma 6. At the pre-determined announcement T , the boundary conditions for the informed

43



investor’s value function coefficients could be characterized by

g (T )− g (0) = 0, gθθ (T )− gθθ (0) =
[φθ (T )− φθ (0)]2

q̂T φ̄2
x

,

g∆∆ (T ) =
φ2

∆ (T )

q̂T φ̄2
x

, gθ∆ (T ) =
φ∆ (T ) [φθ (T )− φθ (0)]

q̂T φ̄2
x

, (89)

and the boundary conditions for the uninformed investor’s value function coefficients could be char-

acterized by

f (T )− f (0) =
1

2
ln
(
φ2
θ (T ) + fθθ,0φ

2
x (T ) q̃T

)
− lnφθ (T ) ,

fθθ (T ) =
φ2
θ,T

[
fθθ, 0

(
q̃T
(
φx,T − φ̄x

)
2 + q̂T φ̄

2
x

)
+ (φθ,0 − φθ,T ) 2

]
q̃T

[
fθθ, 0q̂Tφ

2
x,T φ̄

2
x +

(
φθ,0φx,T − φθ,T φ̄x

)
2
]

+ q̂Tφ2
θ,T φ̄

2
x

. (90)

Proof. First, I derive boundary conditions for the informed investor’s value function coefficients.

The informed investor’s optimization problem at the boundary can be written as

−e−rW i−−g(T,θT ,∆T ) = max
αT

{
−ÊT

[
e−rW

i+−g(0,θT ,0)
]}

= e−rW
i−

max
αT

{
−ÊT

[
e−rαT (P+

T −P
−
T )−g(0,θT ,0)

]}
, (91)

where xT ∼ N (x̂T , q̂T ). Solving the exponent part within the expectation operator yields: −rαT
(
P+
T − P

−
T

)
−

g (0, θT , 0) = −Φ0 − Φ1xT , where Φ0 = rαT {− [φθ (0)− φθ (T )] θT − φ̄xx̂T + φ∆ (t) ∆T } + g (0) +
1
2gθθ (0) θ2

T , Φ1 = rαT φ̄x. Then

ÊT
[
e
−rαT (P+

T
−P−

T )−g(0,θT ,0)
]

= e−Φ0−(Φ1x̂T− 1
2

Φ2
1q̂T ) = eTerm

i
,

where Termi = −rαT {− [φθ (0)− φθ (T )] θT + φ∆ (t) ∆T } − g (0) − 1
2gθθ (0) θ2

T + 1
2r

2α2
T φ̄

2
xq̂T . Op-

timization implies

αT = αθ (T ) θT + α∆ (T ) ∆T , (92)

where

αθ (T ) =
φθ (T )− φθ (0)

rφ̄2
xq̂T

, and α∆ (T ) =
φ∆ (T )

rφ̄2
xq̂T

. (93)

Therefore, g (T, θT ,∆T ) = −Termi gives

g (T ) +
1

2
gθθ (T ) θ2

T +
1

2
g∆∆ (T ) ∆2

T + gθ∆ (T ) θT∆T

=
[φ∆ (T ) ∆T + (φθ (T )− φθ (0)) θT ] 2

q̂T φ̄2
x

+
1

2
gθθ (0) θ2

T + g (0) . (94)

Matching the coefficients yields the boundary conditions for the uninformed investors’ value func-
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tions summarized in Lemma 6.

Second, I derive boundary conditions for the uninformed investor’s value function coefficients.

The uninformed investor’s optimization problem at the boundary is

−e−rWu−−f(T,θ̃T ) = max
βT

{
ẼT
[
−e−rW

u+
T −f(0,θT )

]}
= e−rW

u−
max
βT

ẼT
[
−e−rβT (P+

T −P
−
T )−f(0,θT )

]
, (95)

where

(
xT

θT

)
∼ N

( x̃T

θ̃T

)
,

 q̂T + q̃T
φx(t)
φθ(T ) q̃T

φx(t)
φθ(T ) q̃T

φ2
x(T )
φ2
θ(T )

q̃T

, in which I use the variance-covariance

relationship derived in equation (63). Solving the exponent part within the expectation operator

gives: −rβT
(
P+
T − P

−
T

)
−f (0, θT ) = Ψ0+Ψ1xT+Ψ2θT−1

2fθθ (0) θ2
T , where Ψ0 = rβT

[
φ̄xx̃T − φθ (T ) θ̃T

]
−

f (0), Ψ1 = −rβT φ̄x, Ψ2 = rβTφθ (0). Given φθ (t) > 0, log multivariate normal distribution implies

ẼT
[
e−rβT (P+

T −P
−
T )−f(0,θT )

]
=

φθ,T√
φ2
θ,T + fθθ,0φ

2
x,T q̃T

e
Ψ0+ Ψ̄

2(φ2
θ,T

+fθθ,0φ
2
x,T

q̃T ) = eTerm
u
, (96)

where Termu = lnφθ (T )− 1
2 ln
(
φ2
θ (T ) + fθθ,0φ

2
x (T ) q̃T

)
+ Ψ0 + Ψ̄

2(φ2
θ,T+fθθ,0φ

2
x,T q̃T )

, and

Ψ̄ = r2β2
T

[
q̃T
(
fθθ, 0q̂Tφ

2
x,T φ̄

2
x +

(
φθ, 0φx,T − φθ, T φ̄x

)
2
)

+ φ2
θ, T q̂T φ̄

2
x

]
− fθθ, 0φ2

θ, T θ̃
2
T

+2rβT

[
φθ, T θ̃T

(
fθθ, 0φx,T φ̄xq̃T + φθ, 0φθ, T

)
− φ̄xx̃T

(
fθθ, 0φ

2
x,T q̃T + φ2

θ, T

)]
. (97)

The FOC with respect to βT gives

βT = βθ (T ) θ̃T = βθ (T ) θT − βθ (T )
φx,T
φθ,T

∆T , (98)

where the second equality uses equation (13) to replace θ̃T , and

βθ (T ) =
φθ,T

[
fθθ, 0φx,T q̃T

(
φx,T − φ̄x

)
+ φθ,T (φθ,T − φθ,0)

]
rq̃T

[
fθθ, 0q̂Tφ

2
x,T φ̄

2
x +

(
φθ,0φx,T − φθ,T φ̄x

)
2
]

+ rq̂Tφ2
θ,T φ̄

2
x

. (99)

Substituting this into f
(
T, θ̃T

)
= −Termu and matching the coefficients completes the proof for

Lemma 6. In addition, combining the ODEs system in Lemma 5, Figure 7 in Internet Appendix B

displays the calibrated time-varying value functions coefficients.

Solving for boundary conditions for Time-Varying Price Sensitivities Note that market

clearing requires: (1− ω)αT + ωβT = θT . This implies

(1− ω)α∆ (T )− ωβθ (T )
φx,T
φθ,T

= 0, (100)

(1− ω)αθ (T ) + ωβθ (T ) = 1. (101)
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Substituting expressions in equations (93) and (99) eventually pins down the boundary conditions

for the pricing function coefficients. The following lemma summarizes the result.

Lemma 7. At the pre-determined announcement T , the equilibrium pricing function coefficients

satisfy18

φ∆ (T ) = φ̄x −
(1− ω)φ̄xφθ, T

(1− ω)φθ, 0 + rφ̄2
xq̂T

, (102)

φθ (T ) =
1

2
q̃T
(
φ∆, T − φ̄x

)
2

{
rωφ̄2

xq̂T

(1− ω)φ∆, T

(
φ̄x − φ∆, T

)
q̃T

+

√
r2ω2q̂2

T φ̄
4
x − 4(1− ω)φ2

∆, T

[
r2q̂T φ̄2

x + (1− ω)fθθ, 0
]
q̃T

(1− ω)φ∆, T

(
φ̄x − φ∆, T

)
q̃T

}
. (103)

Note that the above boundary conditions imply: φθ (T )− φθ (0) = rφ̄2
x

1−ω q̂T −
φ∆, Tφθ, T
φ̄x−φ∆, T

.

5.5 Proof for Pricing Error Predictability

Proof for Lemma 3 When φθ (t) is continuous, at the announcement T , φθ (0) = φθ (T ) = φθ.

Using (11), pricing errors realized on announcement can be written as P+
T − P

−
T = φ̄x (xT − x̃T )−

φθ

(
θT − θ̃T

)
. Note that both xT − x̃T and θT − θ̃T are errors of rational Bayesian beliefs, there-

fore, they cannot be predicted by price reactions to revisions, Pt+δ − Pt = φD (Dt+δ −Dt) −
φθ

(
θ̃t+δ − θ̃t

)
+ φ̄x (x̃t+δ − x̃t), which is adapted to the uninformed investor’s information set (i.e.,

Covt(Pt+δ − Pt, xT − x̃T ) = 0 and Covt(Pt+δ − Pt, θT − θ̃T ) = 0).

Proof for Proposition 2 When φθ (t) is time-varying, from equation (42), P+
T −P

−
T has an extra

term [φθ (T )− φθ (0)] θ̃T . In order to show Proposition 2, one needs to show Covt

(
Pt+δ − Pt, θ̃T

)
<

0, which is equivalent as showing Covt

(
Pt+δ − Et [Pt+δ] , θ̃t+δ − Et

[
θ̃t+δ

])
< 0. First, x̃t, θ̃t and Dt

can be written as integrals of Brownian motions by applying stochastic integration using equations

(15), (62) and (52)

x̃t+δ = e−bδx̃t +
(

1− e−bδ
)
x̄+

ˆ δ

0
e−b(δ−z)

(
q̂t+z + q̃t+z

σD
dB̃D,t+z + νt+zσξ,t+zdB̃ξ,t+z

)
,(104)

θ̃t+δ = e−aδ θ̃t +

ˆ δ

0
e−a(δ−z)

(
φx,t+z
φθ,t+z

q̃t+z
σD

dB̃D,t+z +
1

φθ,t+z
σξ,t+z (νt+zφx,t+z − 1) dB̃ξ,t+z

)
,(105)

Dt+δ = e−δ
[
Dt +

ˆ δ

0
ezx̃t+zdz +

ˆ δ

0
ezσDdB̃D,t+z

]
. (106)

18Note that the solution to the market clearing condition is fθθ (0) =
rq̂T φ̄

2
x

1−ω

[
ωφθ(T )

q̃T (φ̄x−φ∆(T ))φ∆(T )
− r

]
−

φ2
θ(T )

q̃T (φ̄x−φ∆(T ))2
, where φθ (T ) has two roots. Imposing the condition that φθ (0) < φθ (T ), one could exclude one

root and obtain the unique solution.
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Then substitute the expression of x̃t+δ into
´ δ

0 e
zx̃t+zdz gives

ˆ δ

0

ezx̃t+zdz = X+

ˆ δ

0

es
ˆ s

0

e−b(s−z)
q̂t+z + q̃t+z

σD
dB̃D,t+zds+

ˆ δ

0

es
ˆ s

0

e−b(s−z)νt+zσξ,t+zdB̃ξ,t+zds, (107)

where X =
´ δ

0 e
z
(
e−bzx̃z +

(
1− e−bz

)
x̄
)
dz. Note here, one only needs to focus on the Brownian

motion terms, as Pt+δ − Et [Pt+δ] only has the Brownian motion terms. Apply Fubini’s Theorem,

ˆ δ

0
es
(ˆ s

0
e−b(s−z)

q̂t+z + q̃t+z
σD

dB̃D,t+z

)
ds =

ˆ δ

0
ebz
(ˆ δ

z
e(1−b)s q̂t+z + q̃t+z

σD
ds

)
dB̃D,t+z,(108)

ˆ δ

0
es
(ˆ s

0
e−b(s−z)νt+zσξ,t+zdB̃ξ,t+z

)
ds =

ˆ δ

0
ebz
(ˆ δ

z
e(1−b)sνt+zσξ,t+zds

)
dB̃ξ,t+z. (109)

Therefore, denote τD (z) =
´ δ
z e

(1−b)s q̂t+z+q̃t+z
σD

ds > 0,

Dt+δ = Et [Dt+δ] + e−δ
ˆ δ

0
[ezσD + τD (z)] dB̃D,t+z + e−δ

ˆ δ

0
τξ (z) dB̃ξ,t+z, (110)

where τξ (z) = ebz
´ δ
z e

(1−b)sνt+zσξ,t+zds = ebz 1
1−bνt+zσξ,t+z

(
e(1−b)δ − e(1−b)z).

Second, one can write

Pt+δ − Et [Pt+δ] =

ˆ δ

0
σP,D (t+ z) dB̃D,t+z +

ˆ δ

0
σP,ξ (t+ z) dB̃ξ,t+z, (111)

θ̃t+δ − Et
[
θ̃t+δ

]
=

ˆ δ

0
σθ,D (t+ z) dB̃D,t+z +

ˆ δ

0
σθ,ξ (t+ z) dB̃ξ,t+z, (112)

where σθ,D (t+ z) = e−a(δ−z) φx,t+z
φθ,t+z

q̃t+z
σD

> 0, σθ,ξ (t+ z) = e−a(δ−z) 1
φθ,t+z

σξ,t+z (νt+zφx,t+z − 1),

σP,D (t+ z) = φDe
−δ (ezσD + τD (z))+φ̄xe

−b(δ−z) q̂t+z+q̃t+z
σD

−φθ (t+ δ)σθ,D (t+ z) , and σP,ξ (t+ z) =

φDe
−δτξ (z) + φ̄xe

−b(δ−z)νt+zσξ,t+z − φθ (t+ δ)σθ,ξ (t+ z) . Finally, compute:

Covt

[
Pt+δ, θ̃t+δ

]
= Covt

(
Pt+δ − Et [Pt+δ] , θ̃t+δ − Et

[
θ̃t+δ

])
=

ˆ δ

0
σP,D (t+ z)σθ,D (t+ z) dz +

ˆ δ

0
σP,ξ (t+ z)σθ,ξ (t+ z) dz. (113)

Denote Φ (δ) = Covt

[
Pt+δ, θ̃t+δ

]
, then Φ (0) = 0, and Φ′ (δ) = σP,D (t+ δ)σθ,D (t+ δ)+σP,ξ (t+ δ)σθ,ξ (t+ δ).

Then obviously a sufficient condition for Covt

[
Pt+δ, θ̃t+δ

]
< 0 is

σP,D (t)σθ,D (t) + σP,ξ (t)σθ,ξ (t) < 0 (*)

for all t.
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5.6 Implied Volatility

In order to compute the forward looking implied variance V ar0 [Pt − P0] = V ar0 [Pt], I first consider

the case in which t < T and solve the three components in the pricing function separately. From

equation (104), x̃t can be written as

x̃t =
(

1− e−bt
)
x̄+ e−bt

ˆ t

0
ebz
(
q̂z + q̃z
σD

dB̃D,z + ν (z)σξ (z) dB̃ξ,z

)
. (114)

Therefore, with an abuse of notation, I use DF [X] to denote the diffusion part of X,

DF
[
φ̄xx̃t

]
= φ̄x

ˆ t

0
eb(z−t)

q̂z + q̃z
σD

dB̃D,z + φ̄x

ˆ t

0
eb(z−t)ν (z)σξ (z) dB̃ξ,z. (115)

Secondly, from equation (106), Dt can be solved as

Dt = e−t
(
D0 +

ˆ t

0
ezx̃zdz +

ˆ t

0
ezσDdB̃D,z

)
. (116)

wherein the term

ˆ t

0
eux̃udu =

ˆ t

0
e(1−b)u

ˆ u

0

{
ebz (bx̄) dz +

ˆ u

0
ebz

q̂z + q̃z
σD

dB̃D,z +

ˆ u

0
ebzν (z)σξ (z) dB̃ξ,z

}
du.

(117)

so that the diffusion part

ˆ t

0

ˆ u

0
ebz+(1−b)u q̂z + q̃z

σD
dB̃D,zdu =

ˆ t

0

ˆ t

z
ebz+(1−b)u q̂z + q̃z

σD
dudB̃D,z

=
1

(1− b)σD

ˆ t

0

[
e(1−b)t+bz − ez

]
(q̂z + q̃z) dB̃D,z. (118)

Similarly,

ˆ t

0

ˆ u

0
ebz+(1−b)uν (z)σξ (z) dB̃ξ,zdu =

1

(1− b)

ˆ t

0

[
e(1−b)t+bz − ez

]
ν (z)σξ (z) dB̃ξ,z. (119)

Therefore, the diffusion part of Dt is

DF [φDDt] = φD

ˆ t

0

[(
eb(z−t) − ez−t

) q̂z + q̃z
(1− b)σD

+ ez−tσD

]
dB̃D,z + φD

ˆ t

0

[
eb(z−t) − ez−t

] ν (z)σξ (z)

1− b
dB̃ξ,z

(120)

Finally, from equation (105),

DF
[
−φθ (t) θ̃t

]
= −φθ (t)

{ˆ t

0
ea(z−t)φx (z)

φθ (z)

q̃ (z)

σD
dB̃D,z +

ˆ t

0
ea(z−t) [φx (z) ν (z)− 1]

σξ (z)

φθ (z)
dB̃ξ,z

}
.

(121)
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Summing up (115), (120), and (121), I can represent price in the form of

DF [Pt] =

ˆ t

0
TermD (z) dB̃D,z +

ˆ t

0
Termξ (z) dB̃ξ,z, (122)

where TermD (z) = φD

[(
eb(z−t) − ez−t

) q̂z+q̃z
(1−b)σD + ez−tσD

]
− φθ (t) ea(z−t) φx(z)

φθ(z)
q̃z
σD

+ φ̄xe
b(z−t) q̂z+q̃z

σD

and Termξ (z) = φD
[
eb(z−t) − ez−t

] ν(z)σξ(z)
1−b −φθ (t) ea(z−t) [φx (z) ν (z)− 1]

σξ(z)
φθ(z)+φ̄xe

b(z−t)ν (z)σξ (z).

The variance can be computed as:

V ar0 [Pt] =

ˆ t

0
Term2

D (z) dz +

ˆ t

0
Term2

ξ (z) dz. (123)

Next, consider the general case of V art [Pt+τ ]. If t+τ < T, that is, if computing implied variance

within an announcement cycle, use the above formula. If t+ τ > T , first compute V art [PT− ] using

the above formula and then compute V arT+ [Pt+τ ]:

V art [Pt+τ ] =

ˆ t+τ

t
Term2

D (z) dz +

ˆ t+τ

t
Term2

ξ (z) dz. (124)

Because the different components are independent, I can compute V arT− [PT+ − PT− ] simply by

adding up the two components together:

V arT− [PT+ − PT− ] = φ̄2
x (q̂T + q̃T ) + φ2

θ (0)
φ2
x (T )

φ2
θ (T )

q̃T − 2φ̄xφθ (0)
φx (T )

φθ (T )
q̃T , (125)

where PT+ − PT− comes from equation (39). Therefore, the total implied variance is obtained by

V art [PT− ] + V arT− [PT+ − PT− ] + V arT+ [Pt+τ ]

=

ˆ T−

t
Term2

D (z) dz +

ˆ T−

t
Term2

ξ (z) dz +

ˆ t+τ

T+

Term2
D (z) dz +

ˆ t+τ

T+

Term2
ξ (z) dz

+φ̄2
x (q̂T + q̃T ) + φ2

θ (0)
φ2
x (T )

φ2
θ (T )

q̃T − 2φ̄xφθ (0)
φx (T )

φθ (T )
q̃T (126)

5.7 Numerical Solutions

The numerical challenge is to solve the ten ordinary differential equations (ODEs) system subject

to the boundary conditions defined as a combination of initial conditions, terminal conditions and

the distance between the initial and terminal values. The ODEs are defined in equations (51),

(61), (77), and (78), with the boundary conditions q̂ (0) = 0, q̃ (0) = 0, and the rest given in

(89), (90), (102) and (103). First, it is important to specify the initial guessed values close enough

to the true values so that the system would converge by itself to the stationary values. In order

to determine the initial guess, I first solve a time-invariant stationary model to obtain the initial

conditions for those ten coefficients. Based on those initializations, I use Matlab build-in solver

‘ode45’ to solve an initial value problem. From the model intuitions, I have established that φθ (t)
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and fθθ (t) are positive and increasing functions, and φ∆ (t) is positive and decreasing with t. Using

these conditions, I update the critical initial guess for φθ (0), φ∆ (0) and fθθ (0) whenever these

conditions are violated. Then I use Matlab ‘bvp4c’ solver to solve the ODEs system with the

requested convergence accuracy of 1e-10. Finally, if the convergence accuracy is too high, I update

the initial guess again until it satisfies.

It is easy to generate simulated time paths using the dynamic general equilibrium model. I

use the simulation-based estimation methodology of indirect inference to calibrate the parameter

values. Basically, I calculate the model implied unconditional moments based on simulated sample

paths. The model is then evaluated based on how close the averaged estimated moments are

from the actual data. The minimum distance/weighting matrix is used to test the null that the

structural model is correctly specified. In this paper, the distance is simply defined as: distance =∑n
i=1

(
zi,simulated−zi,data

zi,data

)2
, where zi,simulated denotes the simulated moment and zi,data is the actual

data. The calibrated parameters and their targets are illustrated in Section 4.

For each candidate parameter set I simulate 20,000 years, and use the final 18,000 years to

compute population moments and the regression coefficients. The simulation results are robust if

I vary the simulation years or seeds in generating random variables. Then I compute the distance

based on the time path and update the parameters based on the distance. Finally, the calibrated

values in Table 2 gives the minimum distance.

Figure 7 displays the calibrated time-varying value function coefficients.

Figure 7: Time Varying Value Function Coefficients
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