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Abstract

Although typically overlooked, many purchase datasets exhibit a high incidence of prod-

ucts with zero sales. We propose a new estimator for the Random-Coe�cients Logit demand

system for purchase datasets with zero-valued market shares. The identi�cation of the de-

mand parameters is based on a pairwise-di�erencing approach that constructs moment condi-

tions based on di�erences in demand between pairs of products. The corresponding estimator

corrects non-parametrically for the potential selection of the incidence of zeros on unobserved

aspects of demand. The estimator also corrects for the potential endogeneity of marketing vari-

ables both in demand and in the selection propensities. Monte Carlo simulations show that our

proposed estimator provides reliable small-sample inference both with and without selection-on-

unobservables. In an empirical case study, the proposed estimator not only generates di�erent

demand estimates than approaches that ignore selection in the incidence of zero shares, it also

generates better out-of-sample �t of observed retail contribution margins.
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1 Introduction

The seminal work by Berry (1994) and Berry et al. (1995) has generated a surge in empirical case

studies that estimate discrete choice demand in the presence of endogenous marketing variables.1 To

obtain a viable aggregate demand prediction, the underlying model assumes that a market comprises

a mass of consumers making discrete choices with non-zero choice probabilities for each of the

available products. The combination of a continuum of consumers and non-zero choice probabilities

is central to the estimation methodology. In turn, it also implies that each available product has a

strictly positive market share.

In practice, many markets have products that fail to generate sales and exhibit zero market

shares, even in the presence of a very large underlying consumer population. Conceptually, the

observation of any products with a zero-valued market share rejects Berry et al. (1995)'s underlying

model of demand. In practice researchers impose ad hoc modi�cations of the data themselves

to force-�t them to exhibit strictly positive shares through product aggregation, time aggregation

and/or selective trimming of the data sample to eliminate problematic observations. Such ad hoc

procedures are often even unbeknownst to the researcher. For instance, retail scanner data from

IRI and Nielsen typically only report sales and marketing data for products that sold at least

one unit in a given market. Force-�tting the model to these manipulated data potentially biases

demand estimation, with adverse e�ects on estimated preferences and policy simulations based on the

demand estimates. Of particular concern is the potential selection bias associated with a systematic

modi�cation or truncation of observations with zero shares.

To resolve the zero-market-share problem, we propose a new model of discrete choice demand

that addresses the potential selection process determining whether a product generates a zero versus

a positive market share. Our model includes a regime-switching process through which products are

included or excluded from the choice set. This switching propensity serves as a selection correction

procedure that allows each available product's predicted demand to switch between a zero share and

the strictly positive predicted share from the usual discrete choice model. While the paper focuses

primarily on discrete-choice demand, we show that it is straightforward to apply the identi�cation

and estimation below to the CES demand model that is popular in the trade literature (e.g., Adao

et al., 2017; Helpman et al., 2008).

The identi�cation of our model primitives � the distribution of consumer preferences � relies on a

novel modi�cation of the moment conditions proposed in Berry et al. (1995). In addition to the usual

concerns about the potential endogeneity of prices in consumers' choices, we also account for the

selection of market shares on unobserved shocks and we allow endogenous variables such as prices to

enter into the selection equation. We rely on two sets of instruments. The �rst set comprises the usual

instruments to correct for price endogeneity: instruments for prices that are excluded from both the

consideration and purchase decisions. The second set contains new �consideration instruments� that

1See for instance the survey by Nevo (2011), in economics, and Chintagunta et al. (2006), in marketing.
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a�ect which products are e�ectively considered by consumers when they make their choices; but are

excluded from the consumption utilities. These instruments could re�ect consumer attention and

the in-store search process, on the demand side, or availability and stock-outs, on the supply side.

Following the literature on pairwise-di�erence estimation (e.g., Ahn and Powell, 1993; Blundell and

Powell, 2004; Powell, 2001; Honoré and Powell, 2005; Aradillas-Lopez et al., 2007; Aradillas-Lopez,

2012), we then construct pairwise-di�erence moments that resolve the selection of product market

shares on unobserved aspects of demand. To the best of our knowledge, this is the �rst application

of pairwise-di�erence estimation in the context of demand estimation.

We then propose a three-step estimation procedure that allows for a fully non-parametric se-

lection stage. In the �rst step, we estimate the reduced-form of prices, which we use to construct

a control function (Blundell and Powell, 2004). Unlike Petrin and Train (2010), we only use the

control function to address price endogeneity in the selection-stage, not in the consumers' discrete

choice stage. In the second stage, we nonparametrically estimate the product selection process using

the control function to account for potential price endogeneity. Our nonparametric selection stage

allows us to be agnostic about the exact mechanism determining which of the available products

enter consumers' choice sets and generate positive shares. In our third stage, we estimate the de-

mand primitives of interest using a pairwise-di�erenced, weighted GMM estimator (PDWGMM)

with nonparametric selection propensities as weights to resolve the selection problem.

The
√
n-consistency of our PDWGMM estimator follows from Aradillas-Lopez et al. (2007). We

propose a bootstrap algorithm to conduct inference on the PDWGMM estimates. A series of Monte

Carlo experiments verify the �nite-sample performance of our estimator and the biases that arise

from usual ad hoc data �xes to implement Berry et al. (1995)'s GMM estimator when it is subject

to selection concerns. Conventional estimators that ignore selection exhibit biases that would lead

to incorrect inferences about demand and preferences. They also con�rm that PDWGMM produces

consistent estimates comparable to conventional approaches when the data generating process does

not exhibit selection on unobservables or when the data generating process does not produce zero

market shares at all.

We apply our PDWGMM estimator to an empirical case study of the ice cream category using 18

months of daily, store-level point-of-sale data from a midwestern supermarket chain. A distinctive

feature of these data is that we observe daily prices, unit costs, and feature advertising information

even when a product does not sell.2 A typical store carries around 400-500 unique ice cream UPCs

on a given day; but over 60% of these products fail to sell at least one unit that day. Collapsing the

time dimension to the monthly or quarterly level does not eliminate the zeros and could introduce an

unintended aggregation bias due to time-varying marketing conditions (e.g., Gupta et al., 1996) In

sum, weekly or even monthly frequency data do not resolve the zeros problem. Combining products

into �items� by aggregating across pack sizes and �avors for a given brand would also eliminate some

2Most point-of-sale databases from providers like IRI and Nielsen have missing observations for products that do
not sell in a given market and are typically aggregated to the weekly level.
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of the zero-share issues. However, such aggregation would be impractical for the analysis of optimal

product variety and consumer value creation.

We estimate the Random-Coe�cients Logit demand for ice cream using our PDWGMM esti-

mator. We compare these results to those obtained from the conventional GMM estimator of the

Random-Coe�cients Logit demand model �t to data that either drop observations with zero mar-

ket share or impute a numerically small value. We �nd that PDWGMM generates considerably

more price elastic estimates of demand than alternative, ad hoc solutions to the zero-market-share

problem.

Finally, we exploit product margin data to construct a speci�cation test of our PDWGMM

estimator that accounts for the potential selection bias associated with products generating a zero-

valued market share. Our test consists of predicting the retailer's product-speci�c margins using our

demand and elasticity estimates under various assumptions about pricing conduct. For each of the

conduct assumptions, we �nd that PDWGMM generates a much better �t of the observed margins

than ad hoc approaches.

The model and estimation procedure contribute to the vast extant literature on aggregate

discrete-choice demand estimation by accommodating zero shares. In related work, Gandhi et al.

(2020) propose a di�erent modeling solution that treats the average purchase probabilities as a miss-

ing data problem and market shares as an imperfect proxy. In their model, zero market shares arise

from sampling error due to a small consumer population. They formulate a moment inequalities

estimator that generates bounds for the preference parameters of interest. However, zero shares are

often observed even in very large markets with tens of thousands of underlying consumers, such as

large chain-store supermarkets and mass merchandisers. We propose an approach that allows for

zero-valued market shares even with a very large underlying consumer population. We also use the

product margin data to construct a model speci�cation test.

An advantage of our nonparametric selection stage is that we remain agnostic about the mech-

anism causing some products to generate zero share of sales. This mechanism could be limited

consideration by consumers, or stock-outs/unavailability of the product on the shelf. Our consider-

ation instruments connect our approach to the literature on consumer consideration sets whereby

consumers often consider only a small portion of the available products when making purchase de-

cisions (e.g., Hauser, 1978; Ratchford, 1980; Shugan, 1980; Hauser and Wernerfelt, 1990; Moorthy

et al., 1997; Kim et al., 2010; Honka, 2014; Bronnenberg et al., 2016). Integrating the additional

structure through which consumers search for products and form consideration sets typically requires

individual-level data on consumers' heterogeneous consideration sets (e.g., Honka, 2014) or at least

additional moments on the search ranks in addition to market shares conditional on search Kim

et al. (2017). In addition to data, these approaches require additional conduct assumptions about

consumer search and attention. A recent exception is Abaluck and Adams (2018) which exploits

the Slutsky symmetry property of full-information discrete choice demand models to identify a test

for limited consideration. However, their approach cannot account for the zero market shares en-
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countered in aggregate data sets and their estimator would not accommodate endogenous regressors.

Since our selection process is agnostic, our work also relates to demand estimation with data that

aggregates market shares across stores and time periods with di�erent �choice sets� due, for instance,

to di�ering promotional conditions or product availabilities (e.g., Tenn, 2006; Bruno and Vilcassim,

2008) and stock-outs (e.g., Conlon and Mortimer, 2013).

Our work is also related to Helpman et al. (2008)'s CES demand estimation framework for bilat-

eral trades when zero trade shares are observed, albeit with a fully parametric selection stage that

does not allow for endogenous covariates during the selection stage and without random coe�cients.

We add to this work by developing a nonparametric selection stage that potentially exhibits price

endogeneity, and by allowing for random coe�cients in the demand model.

The remainder of this paper is organized as follows. Section 2 derives the model of demand,

consideration and pricing. Sections 3 and 4 present the identi�cation and estimation of the model,

respectively. Section 5 presents the results from a Monte Carlo study. Empirical results are presented

in section 6. Section 7 shows the extension of our framework to the CES demand system.

2 Model

2.1 The Random-Coe�cients Logit Demand System

We brie�y discuss the derivation of the Random-Coe�cients Logit demand system used extensively

in the aggregate demand estimation literature. Consumers make purchases from the set of available

substitute products J = {1, ..., J + 1} with corresponding prices p = (p1, ..., pJ+1)′ and where the

J + 1 product is a �no purchase� or �outside� option with price pJ+1 = 0. Consumer h spends

her budget y to maximize a utility function U
(
q, y;θh

)
de�ned over her consumption choices,

q = (q1, ..., qJ+1)′, and expenditure on an essential numeraire good, q0:

U
(
q, y;θh

)
=

J+1∑
j=1

(
χhj qj

)
exp

(
αhq0

)

where χhj is household h's perceived quality of product j and αh is the preference for the essential

numeraire good. Assume perceived quality consists of a deterministic and a stochastic component:

χhj = exp
(
x′jβ

h + ξj + εhj

)
and χhJ+1 = exp

(
εhJ+1

)
, where εhj ∼ i.i.d. EV(0, 1) ∀j, xj is a vector of

exogenous product attributes, ξj is a scalar vertical characteristic that is unobserved by the researcher

and βh are taste parameters for the characteristics. When consumption is discrete, qj ∈ {0, 1} ∀j,
consumer h faces the following choice-speci�c indirect utilities (in logs):

uhj = αh (y − pj) + x′jβ
h + ξj + εhj

...

uhJ+1 = αhy + εhJ+1.

(2.1)
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We assume household h's preferences θh :=

(
αh

βh

)
follows a distribution Fθ

(
θh; Θ

)
parameterized

by Θ.

The household-speci�c mean utility of alternative j becomes:

ūhj ≡ ūhj
(
αh,βh

)
= αh (y − pj) + x′jβ

h + ξj . (2.2)

The predicted market share for product j is then

πj (p,x, ξ; Θ) =
∫ ∫

{θh,εhj |uhj≥uhk ,∀k 6=j}
dFε

(
εh
)
dFθ

(
θh; Θ

)
=

∫ exp(αhpj+x′jβ
h+ξj)

1+
J∑
k=1

exp(αhpk+x′kβ
h+ξk)

dFθ

(
θh; Θ

)
.

(2.3)

An important feature of this model is that the predicted market shares must be strictly positive:

πj (p,x, ξ; Θ) > 0,∀j.

2.2 Product Selection

We assume that the �no purchase� option J + 1 always enters consumers' choice sets. However, for

each of the j = 1, ..., J products, we let dj ∈ {0, 1} indicate whether product j enters the choice sets
or not. Let C = {j ∈ J |dj = 1 or j = J + 1} denote those products that enter consumers' choice

sets. To model the selection process through which products enter consumers' choice sets, let

dj = 1 (φ (pj ,xj , w̃j) + ηj > 0) , j = 1, ..., J (2.4)

where w̃j is a vector of observed (to the researcher) selection-generating factors that are excluded

from the consumer's choice-speci�c utility (2.1) and the �rm's pricing decision process (2.6). In

a retail setting like the one we consider in section 6, w̃j could include stock-outs or promotional

factors, such as feature advertising and in-store displays, which are known to shift a product's

choice propensity but are unlikely to generate consumption value (e.g., Mehta et al., 2003). Finally,

ηj ∼ Gη (·) is a random selection shock with continuous and strictly increasing distribution Gη (·).
We focus on the case where the regime-switching process selects a product out of the choice set,

dj = 0:

πj (p,x, ξ; Θ) =


∫ exp(αhpj+x′jβ

h+ξj)
1+

∑
k∈C

exp(αhpk+x′kβ
h+ξk)

dFθ

(
θh; Θ

)
, dj = 1

0, dj = 0

. (2.5)

As we discuss in section 3 below, product selection complicates the estimation of the demand sys-

tem (2.3), especially when demand shocks are correlated with selection shocks: cov (ξj , ηj) 6= 0.

This additional concern is novel to this paper. For instance, suppose locally-sourced products are
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perceived by consumers as higher quality, but are given less prominent shelf space by the retailer

making them less likely to be noticed. Or alternatively, if the retailer maintains a lower inventory of

locally-sourced products, they are more likely to stock out. If the researcher does not observe either

the shelf space (or inventory) or the local sourcing status of products, then cov (ξj , ηj) 6= 0.

2.3 Pricing

A long extant literature on demand estimation has analyzed the role of �rms that strategically

condition their prices on aspects of demand that are unobserved to the researcher (e.g., Berry,

1994; Berry et al., 1995; Besanko et al., 1998). Suppose that the reduced-form of equilibrium prices

in the market can be written as:

pj = Π (rj ;%) + νj (2.6)

where rj = (xj , r̃j) includes both the product characteristics, xj , and supply-side variables that shift

prices but are excluded from the choice-speci�c utilities (2.1), r̃j . We also include a random supply

shock νj ∼ Fν (·). We assume additivity of νj in the reduced form of prices (2.6). Additivity would

likely be violated for many economic models of static price optimization (Kim and Petrin, 2019).

However, retailers routinely use cost-plus pricing rules that would satisfy the additivity assumption

(e.g., Guilding et al., 2005; Phillips, 2005), especially in the grocery industry context we study below

where price optimization for thousands of products is di�cult to implement (e.g., Simon et al., 2010).

The additivity assumption will facilitate our control function solution to the endogeneity of prices

below when cov (νj , ξj) 6= 0, or cov (νj , ηj) 6= 0, or both.

3 Identi�cation

3.1 BLP's Moment Conditions and Zero Shares

We now discuss the estimation of the demand system (2.3) from section (2.1). At least since Berry

(1994) and Berry et al. (1995), the extant literature has focused on demand estimation in the presence

of endogenous prices: cov (pj , ξj) 6= 0.

From the model section, we can construct moment conditions:

E [ξj |zj ] = 0 (3.1)

where zj includes the product attributes, xj , and potentially some of the excluded price-shifting

variables, r̃j . We can then construct the empirical analog of these moment conditions. Let s =

(s1, ..., sJ+1) be the vector of observed market shares. Using the demand model (2.3), we can de�ne

the following mapping between the demand shocks ξ and the observed market shares:

sj = πj (p,x, ξ; Θ) . (3.2)
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Berry (1994) proves that the market share equations in (3.2) are invertible in the demand shocks:

ξ (Θ) = π−1 (x, s; Θ). Berry et al. (1995) propose a GMM estimator using the empirical moments:

E [ξj (Θ) |zj ] = 0. (3.3)

If sj = 0 even for only one product, we reject the demand model in section 2.1 and the inversion

procedure used to construct empirical moments is no longer valid. In practice, many micro datasets

contain observations with zero market shares even when a product was available for sale, leading to

the alternative formulation of demand in (2.5). The incidence of zero shares is not a new problem.

As discussed in Cooper and Nakanishi (1988), most researchers manually alter the observed data ad

hoc to force all the shares to be strictly positive. Two ad hoc data modi�cations are typically used

in practice: (i) impute an arbitrarily small value whenever dj = 0 (e.g., sj = 1.e−12 if dj = 0); or

(ii) drop all observations with dj = 0 (i.e., assume j /∈ J ).3 We expect approach (i) to su�er from

a bias that is sensitive to the speci�c �small number� used for the imputation.

Recently, Gandhi et al. (2020) proposed a modi�ed version of the imputation procedure. They

start with the assumption that zero-valued market shares arise from small markets with too few con-

sumers for the market shares, sj , to provide a reliable approximation of the expected unconditional

choice probabilities, πj , from the discrete choice model. They derive lower and upper bounds for

πj using sj . These bounds can accommodate observations where sj = 0 by introducing a Laplace

�correction factor� that forces sj ∈ (0, 1). Standard bounds estimation techniques are then applied

to construct an estimator (e.g., Manski and Tamer, 2002; Imbens and Manski, 2004; Chernozhukov

et al., 2007; Ciliberto and Tamer, 2009).

We are more concerned with approach (ii), which is much more commonly used in practice.4

Using the selection model in section 2.2, approach (ii) consists of using the following moment con-

dition:

E [ξj |zj , dj = 1] = 0. (3.4)

Moment condition (3.4) may hold if there is no selection on unobservable product characteristics,

cov (ξj , ηj) = 0, implying that the dropped observations with dj = 0 are �missing at random.�

However, if cov (ξj , ηj) 6= 0, we are concerned with the potential for selection bias associated with

dropping observations with zero shares: E [ξj |zj , dj = 1] 6= 0. In this case, GMM estimation using

(3.4) will not produce consistent estimates of Θ.

3Researchers frequently use yet another approach whereby each of the products is aggregated up to the brand
level, often combining dozens of di�erent products (e.g., di�erent pack sizes, �avors etc) into a composite �brand�
alternative (e.g., Nevo, 2001).

4Most CPG datasets only report market shares for products in a given market that had a positive quantity sold.
For instance, data suppliers like Nielsen and IRI Marketing receive quantity and revenue data from retail partners and,
therefore, cannot determine the average price for a product that did not have any sales. Consequently, researchers
using such scanner data implicitly use assumption (ii).
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3.2 Accommodating Zero-Valued Shares

We now derive a new set of moment conditions that can be used to obtain consistent GMM esti-

mates of Θ with zero market shares and cov (ξj , ηj) 6= 0. The estimator also accommodates the

endogeneity bias that arises when prices are correlated with both demand shocks and selection

shocks: cov (pj , ξj) 6= 0 and cov (pj , ηj) 6= 0. Our solution consists of using moment conditions

based on di�erences, as in the pairwise-di�erence estimation literature (e.g., Ahn and Powell, 1993;

Blundell and Powell, 2004; Powell, 2001; Honoré and Powell, 2005; Aradillas-Lopez et al., 2007;

Aradillas-Lopez, 2012).

3.2.1 Pairwise-Di�erence Moment Condition

Let µj denote the propensity score for alternative j not being selected into the choice set. We assume

that µj is continuously distributed and that there exists an unknown, smooth, strictly increasing

function ι (·) such that we can re-write the demand shocks as follows:

ξj = ι (µj) + ζj , (3.5)

with E [ζj |µj , zj ] = 0. Even if E [ξj |zj , dj = 1] 6= 0, we can construct an alternative moment condition

based on di�erences between the demand shocks of two goods i and j:

E [ξi − ξj |zi, zj , µi = µj , di = dj = 1] = 0. (3.6)

The use of a moment based on di�erences follows from the pairwise-di�erence estimation literature

(e.g., Ahn and Powell, 1993; Blundell and Powell, 2004; Powell, 2001; Honoré and Powell, 2005;

Aradillas-Lopez et al., 2007; Aradillas-Lopez, 2012).

To illustrate, consider the Homogeneous Logit model of demand which has a degenerate distri-

bution of random coe�cients. Using (3.5), we can invert the demand model as follows:

ln

(
sj
s0

)
= αpj + x′jβ + ι (µj) + ζj .

Now consider a pair of products i and j with the same non-selection propensities, µi = µj , and

hence ι (µi) = ι (µj):

ln

(
si
s0

)
= αpi + x′iβ + ι (µi) + ζi

ln

(
sj
s0

)
= αpj + x′jβ + ι (µj) + ζj .
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Taking di�erences yields:

ln

(
si
s0

)
− ln

(
sj
s0

)
= α (pi − pj) + (xi − xj)

′ β + (ζi − ζj) .

We can then construct the following conditional moment for estimation purposes:

0 = E [ζi − ζj |zi, zj , µi = µj , di = dj = 1]

= E [ξi − ξj |zi, zj , µi = µj , di = dj = 1] . (3.7)

An obvious limitation of the pairwise-di�erence formulation is that the intercept term of the

indirect utility function is not identi�ed. Since the intercept term is typically a nuisance term in

most applications, this will not prevent the researcher from predicting market shares and conducting

policy experiments with the estimated model. In sum, the levels of ξ̂j contain both the absorbed

intercept term and the factors driving selection on unobservables. It is not possible to disentangle

these two components separately.

In the next section, we discuss instruments that vary the propensities, µi and µj , independently

of preferences.

3.2.2 Non-Selection Propensities

The identi�cation of the propensities µj addresses the potential for price endogeneity in the con-

sideration, an issue that has not yet been addressed in the extant literature on demand estimation:

cov (pj , ηj) 6= 0. From the product selection process (2.4), we de�ne the non-selection propensity

score µj as the expectation of the selection variable 1− dj :

µj = 1− E [dj |νj , r̃j ,xj , w̃j ] (3.8)

where we have expressed the price, pj , in terms of its underlying components, as in section 2.3. We

now describe the nonparametric identi�cation of µj and its estimation.

We start with Blundell and Powell (2004)'s distributional exclusion restriction on the conditional

distribution of ηj :

Pr (ηj < η|pj , rj , w̃j) = Pr (ηj < η|νj , w̃j) ≡ Gη (−ϕ (wj)) ∀η ∈ R (3.9)

where wj = (νj , w̃j) and ϕ (·) is an unknown function. The assumption requires any dependence of ηj
on prices pj , exogenous product attributes, xj , and/or price-shifting variables, r̃j , to be characterized

by νj , the error term of the pricing equation (2.6). We can then use the assumption E [νj |rj ] = 0

from section 2.3 to construct a control variable, νj , from the pricing equation (2.6). Using the

distributional exclusion restriction and the control variable, we can re-write the (reduced-form)
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consideration propensity for product j as follows:

µ (wj) := 1− E [dj |wj ] = 1− E [1 (ϕ (wj) + ηj > 0) |wj ] = 1−Gη (−ϕ (wj)) . (3.10)

The key bene�t of the distributional exclusion restriction assumption is that, with moderate

regularity conditions, we can identify Gη (·) and ϕ (·) in (3.10), and thus, the non-selection propensity
µ (wj) nonparametrically (see Matzkin (1992) for a proof). The nonparametric approach allows

Gη (·) and ϕ (·) to be very �exible as they do not need to depend on a �nite-dimensional parameter

vector, such as γ in ϕ (wj) = w′jγ, if one adopts a parametric or semiparametric speci�cation of the

selection equation. Our approach is similar to a conventional control function approach (e.g., Petrin

and Train, 2010) except that the distributional exclusion restriction applies to the full distribution

of ηj and not only to its �rst moment. In the next section, we propose a three-step estimator of the

Random-Coe�cients Logit model that is robust to zero shares (selection) and endogenous prices.

4 A Three-Step Estimator with a Nonparametric Selection Stage

We now propose a three-step estimator using the pairwise-di�erence moment conditions in equation

(3.6). The �rst step estimates the reduced form of prices. We use the reduced form to construct

a control function that is then used in a second step to obtain a nonparametric estimate of our

binary selection process. Finally, the third step estimates the structural parameters of interest,

Θ, using a constrained optimization procedure that �ts our �di�erences� moments subject to the

selection process. The approach is related to pairwise-di�erencing estimation of selection models

with a nonparametric �rst-stage (see for instance Ahn and Powell, 1993, who use a linear second

stage). We apply the estimator in Aradillas-Lopez et al. (2007), which extends the estimators in Ahn

and Powell (1993) and Honoré and Powell (2005) to allow for a non-parametric �rst-stage propensity

score and a non-linear second stage.

4.1 Stage 1: Pricing Equation

Assume that the pricing equation has the following structure:

pj = Π (rj ;%) + νj , (4.1)

where the functional form of Π (rj ;%) is known to the researcher. Suppose %̂ is a
√
n-consistent

estimator of %̂. The residual, which will be used as the control variable in the second stage of

estimation, is de�ned as follows5:

ν̂j = pj −Π (rj ; %̂) . (4.2)

5In theory, one could estimate Π (rj ;%) nonparametrically. However, a nonparametric estimator will typically
converge at a slower rate than

√
n. The slower rate of convergence could, in turn, a�ect the asymptotic properties of

the second and third stage estimators which might adversely a�ect our bootstrap procedure for inference.

11



As in section 3.2.2, we construct an instrument matrix W with jth row w′j :=
(
ν̂j w̃′j

)
. As

explained above in section 2.2, the selection process could be in�uenced by prices and product

characteristics. However, under our distributional exclusion restriction assumption (3.9), we do not

include pj or xj in wj because Gη (η|pj , rj , w̃j) = Gη (η|νj , w̃j), ∀η ∈ R. Blundell and Powell (2004)

show that, under this distributional exclusion restriction, the residual ν̂j ≡ pj−Π (rj ; %̂) can be used

as a control variable in estimating (2.4). Recall that the control function is used only to allow for

potential price endogeneity in the estimation of the consideration selection probabilities.6 When we

estimate the market share functions, we will use instrumental variables to correct for the endogeneity

of prices.

4.2 Stage 2: Selection Stage � Nonparametric Estimation of the Control Func-

tion

Recall that our selection model for product j is given by:

µ (wj) = 1− E [1 (ϕ (wj) + ηj > 0) |wj ] . (4.3)

In practice, researchers using aggregate market share data observe very little about the selection

process other than the incidence of zero shares. Consequently, the functional form of ϕ (·) is unknown.
If we assume that ηj has an everywhere-increasing continuous distribution, we can estimate µj

nonparametrically for each observation j using the Nadaraya-Watson kernel regression estimator:

µ̂j ≡ µ̂ (wj) = 1−

∑
k djH

(
wk−wj

bn

)
∑

kH
(

wk−wj

bn

) , (4.4)

where H (·) is a multivariate kernel function, and bn is a bandwidth sequence for a sample of size

n.7 In principle, one could impose more structure on (4.3) if more data was available about the

speci�c selection mechanism, such as moments regarding consumers' consideration sets or moments

regarding stock-outs and changes in availability.

4.3 Stage 3: Random-Coe�cients Estimator with Nonparametric Selection Cor-

rection

The third stage of the estimator adapts the pairwise-di�erencing estimation procedure with nonpara-

metric selection correction by Ahn and Powell (1993); Aradillas-Lopez et al. (2007); Aradillas-Lopez

6Our application of a control function is di�erent from Petrin and Train (2010). A crucial di�erence is that Petrin
and Train (2010) include the control function from the pricing equation directly into the choice-speci�c utility. In
contrast, the control function νj in our framework enters only the selection stage to correct for the endogeneity in the
selection stage, not the choice-speci�c utility directly. In addition, unlike Petrin and Train (2010), we do not specify
the parametric functional form of the unobservables.

7This bandwidth sequence bn can di�er for each element of wj if one chooses to use a product kernel.
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(2012) to random-coe�cient demand estimation. We refer the interested reader to Ahn and Powell

(1993); Aradillas-Lopez et al. (2007); Aradillas-Lopez (2012) for a detailed discussion of alterna-

tive estimation procedures (using bias-reducing higher-order kernel, trimming sequences or jackknife

procedures) and for the proof of the
√
n-consistency and asymptotic normality of the estimator.

We �rst de�ne a di�erencing operator ∆. If ∆ is applied to a pair of indexed vectors or scalars, it

denotes the di�erence of two (column) vectors/scalars. For example, ∆zi,j := zi−zj . If ∆ is applied

to a (column) vector or matrix without an index, it is a (column) vector/matrix of a collection of

pairwise-di�erenced rows. For example, suppose Z is an n × p matrix. Then, ∆Z is the

(
n

2

)
× p

matrix where the �rst row of ∆Z is ∆z′1,2, second row is ∆z′1,3, and so on.

Our proposed pairwise-di�erencing estimator uses the sample analogue of the following moment

condition:

E [∆zi,j∆ξi,j |µi = µj , di = dj = 1] = 0 (4.5)

which is implied by (3.6).8 This moment condition resolves the selection problem, as illustrated for

the case of Homogeneous Logit demand in equation (3.7) of section 3.2.2.

Unfortunately, as is common in the pairwise-di�erencing estimators, the empirical analog of

the population moment condition (4.5) is complicated by the fact that µi exactly equals µj with

probability 0 because µi is assumed to be continuously distributed. In addition, we only observe µ̂i,

the consistent estimate of µi from the previous stage. Therefore, we replace µi with its prediction

µ̂i, and use kernel weights that assign more weight to pairs of observations i and j when µ̂i and µ̂j

are close. De�ne the kernel weights ω̂i,j by:

ω̂i,j =
1

hnd
κ

(
µ̂i − µ̂j
hnd

)
, (4.6)

where κ (·) is a kernel function and hnd is a bandwidth sequence for a sample of size nd, where

hnd → 0 as nd → ∞. The estimator corresponding to the moment condition (4.5) is a weighted

GMM estimator with weights ω̂i,j .

Our third-stage estimator is similar to the usual GMM estimator for the usual Random-Coe�cients

Logit demand model. Let Φ be a GMM weighting matrix constructed from the pairwise-di�erenced

8A su�cient condition for
E [(zi − zj) (ξi − ξj) |µi = µj , di = dj = 1] = 0

is that E [ziξi − ziξj |µi = µj , di = dj = 1] = 0 and E [zjξj − zjξi|µi = µj , di = dj = 1] = 0. Recalling (3.6), we can
integrate over zi to obtain

E [ξi − ξj |zi, zj , µi = µj , di = dj = 1] = 0

which yields
E [ξi − ξj |zj , µi = µj , di = dj = 1] = 0,

and, in turn, implies
E [(ξi − ξj) zj |µi = µj , di = dj = 1] = 0.

Showing E [(ξi − ξj) zi|, µi = µj , di = dj = 1] = 0 is similar.
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instrument matrix ∆Z. Also let gi,j (Θ) = ∆zi,j∆ξi,j (Θ) be the sample analog of our moment

conditions (4.5). Then, with a slight modi�cation of Ahn and Powell (1993), the pairwise-di�erence

weighted GMM estimator is de�ned as the solution to the following constrained optimization prob-

lem:

ΘPDWGMM =arg min
(Θ,ξ)

2

n (n− 1)

n−1∑
i=1

n∑
j=i+1

ω̂i,jgi,j (Θ)′Φgi,j (Θ) (4.7)

s.t. s = π (p,x, ξ; Θ) (4.8)

where ω̂i,j are the weights, pre-computed from the second stage according to (4.6). (4.8) is the market

share equations for the observations with sj > 0, as in equation (2.3). In addition to the standard

instruments, we also include the Gandhi and Houde (2020)'s product di�erentiation instruments.

Gandhi and Houde (2020) show that the inclusion of these additional instruments improves both

the precision and numerical stability of the variance terms for the random coe�cients. Appendix

A provides speci�c details on the MPEC formulation (Dubé et al., 2012) of the estimation problem

de�ned by (4.7)-(4.8). The appendix also describes the exact instrument matrix, Z, and GMM

weighting matrix, Φ, used during estimation.

The following proposition, which we adapt from Aradillas-Lopez et al. (2007), establishes the
√
n-consistency and asymptotic normality of the estimator proposed in (4.7)-(4.8). In addition to the

usual regularity conditions for a nonparametric estimator such as on the kernel choice or bandwidth

sequence stated in Aradillas-Lopez et al. (2007), the proposition requires the following assumptions:

(i) νj follows a continuous distribution;

(ii) the distributional exclusion restriction: Gη (η|pj , rj , w̃j) = Gη (η|νj , w̃j), ∀η ∈ R, as in (3.9);

and

(iii) the functional form of the pricing equation Π (rj ;%) in (2.6) is known to the researcher and

the estimator %̂ for % is
√
n-consistent.

Proposition. If assumptions (i)-(iii) hold along with several regularity conditions (Assumptions

1-17 of Aradillas-Lopez et al. (2007)), then, the estimator ΘPDWGMM de�ned in (4.7)-(4.8) is
√
n-consistent and asymptotically normal.

Proof. See Aradillas-Lopez et al. (2007).

The proposition follows from Aradillas-Lopez et al. (2007) general result for non-linear models

with sample selectivity, with the notation modi�ed to �t our demand estimation context. We already

explained assumption (ii) above in section 3.2.2. Assumption (i) imposes a standard condition in the

literature on semi- and non-parametric identi�cation of binary choice models (e.g., Ahn and Powell,

1993; Powell, 2001) to ensure that we can map the distribution of wj = (νj , w̃j) to the non-selection

propensity scores µj .
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Appendix A.2 provides speci�c details on our implementation of the MPEC estimation problem.

Using the MPEC estimator in (4.7) for inference is complicated because it conditions on predictions

from Stages 1 and 2. Appendix A.3 describes a bootstrap procedure for conducting inference using

ΘPDWGMM . Since bootstrapped Random-Coe�cients Logit demand estimation is new in the lit-

erature, the appendix also derives a bootstrap approach for the case when all the observed market

shares are strictly positive. This scenario could be of interest if, for example, some of the observed

product characteristics or instruments are predictions from a pre-estimation stage.

5 A Monte Carlo Study

5.1 Data Generating Process

We now study the �nite-sample performance of our PDWGMM estimator both in sampling exper-

iments with selection bias on zero shares and without. In each of our Monte Carlo experiments,

we compare PDWGMM to the commonly-used Drop-Zero estimator, and Impute-Zero estimator.

We consider three di�erent data-generating processes: (a) the incidence of zero shares is selected

on unobserved aspects of demand, (b) the incidence of zero shares is not selected on unobserved

aspects of demand, and (c) strictly positive market shares. Scenarios (a) and (b) mimic typical,

real-world consumer goods datasets where we observe many products that fail to sell any units. Of

interest is whether our PDWGMM estimator provides reliable estimates regardless of whether the

incidence of zero shares is selected on unobserved aspects of demand. Scenario (c) represents the

data-generating process implied by the model in Berry et al. (1995) with a continuum of consumers

generating strictly positive market shares. In this scenario, the PDWGMM estimator should be

consistent and we anticipate it to provide comparable estimates to the Drop-Zero estimator (i.e.,

Berry et al. (1995)'s GMM estimator).

Each of our Monte Carlo experiments consists of T = 100 markets, each with J = 100 available

products. We assume a linear choice-speci�c utility for each product:

uhjt = βh0 + αhpjt +

3∑
k=1

xjktβ
h
k + ξjt + εhjt

where xjkt ∼ i.i.d. U[0, 1] and εhjt ∼ i.i.d. EV(0, 1). For the taste parameters, we assume αh ∼
N (−2, 1) , βh0 ∼ N (2, 0.25), βh1 ∼ N (1, 1), βh2 ∼ N (2, 4), and βh3 ∼ N (2, 4). As explained above,

the intercept βh0 is not separately identi�ed for our pairwise-di�erencing estimator from the levels of

ξjt.

We also assume a linear selection equation:

djt = 1 (18 + wjt − 5pjt + ηjt > 0)
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where wjt ∼ i.i.d. U[0, 1]. Similarly, we assume linear prices:

pjt = γ0 +
∑
l

xjltγl + (r̃j1t + r̃j2t) + νjt

where γ =
(
1, 1

2 , 1, 1
)′
, r̃jkt ∼ i.i.d. U[0, 1] for k ∈ {1, 2}, νjt =

ξjt
2 + ν̃jt with ν̃jt ∼ N (0, 0.41). Note

that this design always includes price endogeneity in demand due to the dependence of a product

j′s price on its unobserved demand shock, ξjt.

We use Monte Carlo simulation to generate the market shares:

sjt =
1

Ns

Ns∑
h=1

djt exp
(
βh0 + αhpjt +

∑3
k=1 xjktβ

h
k + ξjt

)
1+

J∑
i=1

dit exp
(
βh0 + αhpit +

∑3
k=1 xiktβ

h
k + ξit

)
where Ns = 50, 000. We conduct 100 replications of the sampling experiment. Each simulated

dataset has 10, 000 product-market combinations.

In scenario (a), we introduce selection-on-unobservables into the demand process by assuming:[
ξjt

ηjt

]
∼ N

([
0

0

]
,

[
4.56 3

3 4.56

])
. The typical dataset has approximately 5, 800 non-zero

market shares (
∑
j

∑
t
djt ≈ 5800) and, hence, 42% of the observations involve a zero-valued market

share.

In scenario (b), we allow for zero market shares but eliminate the selection-on-unobservables

by assuming: djt ∼ i.i.d. Bernoulli (0.58). That is, we randomly select around 58 products out of

J = 100 to match the number of non-zero market share products in scenario (a). In this data-

generating process, djt does not depend on either ηjt or ξjt and hence zero shares are missing at

random.

In scenario (c), we use the standard data-generating process assumed in the literature where djt =

1, ∀j, t. Since all products have strictly positive shares, it mechanically provides more information

than scenarios (a) and (b). We therefore reduce the number of products in each market to J = 58

to replicate the 5, 800 non-zero shares we observe in scenarios (a) and (b).

5.2 Results

We now summarize the results across the 100 replications of the data-generating processes described

in section 5.1. For each replication we estimate 6 versions of the model, two of them are Random-

Coe�cients Logit and the rest are Homogeneous Logit models (i.e., with no random coe�cients).

We report two di�erent Random-Coe�cients Logit estimators here: (1) PDWGMM, and (2) Drop-

Zero. We use Nh = 2, 000 random draws to compute the expected shares for each of these random

coe�cients estimators.

Table 1 reports the average coe�cient estimates across the 100 replications for our two random
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coe�cients estimators. In scenario (a) of Table 1, the PDWGMM estimator recovers the mean pa-

rameters quite accurately while, as expected, the Drop-Zero estimator exhibits considerable selection

bias. PDWGMM also recovers the standard deviation parameters quite accurately except for the

standard deviation on the price coe�cient, which is estimated imprecisely. In contrast, each of the

standard deviation parameters is estimated imprecisely under Drop-Zero. Most striking, the Drop-

Zero estimator overestimates the price coe�cient by around 150%. However, our results con�rm

that the Drop-Zero estimator fails to recover the true coe�cient values when the incidence of zero

shares is selected on observed aspects of demand. The reason we only �nd bias in the price coe�-

cient is likely due to the fact that prices are uncorrelated with observed product attributes in the

data-generating process. As we will see in the empirical case study in section 6 below, the Drop-Zero

estimator can lead to substantively di�erent (biased) estimates for all the model parameters.

Table 1: Monte Carlo Data Estimation Results

DGP (a) With Selection-on-Unobservables (b) Without Selection-on-Unobservables (c) No Zero Shares

Random-Coe�cients Logit

PDWGMM Drop 0 PDWGMM Drop 0 PDWGMM Drop 0

ᾱ [�2] �2.045 �5.019 �2.098 �2.116 �1.989 �2.053

(0.112) (0.810) (0.350) (0.363) (0.325) (0.306)

β̄1 [1] 0.941 1.085 0.959 0.992 0.961 1.024

(0.093) (0.340) (0.114) (0.139) (0.127) (0.159)

β̄2 [2] 1.957 2.332 1.991 2.085 1.968 2.126

(0.124) (0.498) (0.169) (0.199) (0.200) (0.287)

β̄3 [2] 1.944 2.357 1.984 2.065 1.943 2.094

(0.125) (0.495) (0.166) (0.231) (0.175) (0.285)

σα [1] 0.335 3.803 1.081 1.188 0.810 1.004

(0.613) (5.693) (0.854) (0.994) (0.796) (0.910)

σβ1 [1] 0.941 0.945 0.868 0.822 0.840 0.839

(0.215) (0.820) (0.489) (0.534) (0.553) (0.568)

σβ2 [2] 1.859 1.366 1.886 1.829 1.891 1.797

(0.132) (0.888) (0.344) (0.447) (0.365) (0.483)

σβ3 [2] 1.926 1.408 1.977 1.886 2.036 1.966

(0.112) (0.848) (0.335) (0.509) (0.445) (0.504)

No. Conv. 99 97 97 97 99 97

Notes. Column names indicate how the zero shares are handled during the estimation. True parameter values are
reported in square brackets. The reported estimates are the means of each parameter across the converged trials
of 100 replications of the data generating process. Standard deviations across converged trials are reported in the
parentheses. No. Conv. row is the number of converged estimates out of 100 Monte Carlo replications.

In scenario (b), Table 1 reports the estimation results when the observed zero market shares are

missing at random. As expected, both estimators generate accurate and comparable estimates of
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the true model parameters. Importantly, PDWGMM does not appear to lose precision or accuracy

relative to Drop-Zero (i.e., the standard Random-Coe�cients Logit GMM estimator) when there is

no selection on unobservables.

In scenario (c), Table 1 reports the estimation results when there are no observed zero market

shares in the data. In this scenario, the PDWGMM estimator does not require the �rst two stages

since ω̂i,j = 1 in stage 3 for all the observation pairs. The estimates in scenario (c) are very similar

to those of scenario (b), with comparable results for both PDWGMM and Drop-Zero.

Appendix C reports the results from the Homogeneous Logit models which are computationally

easier to implement. There too we �nd that the PDWGMM estimator provides relatively accurate

and precise estimates of the mean taste parameters
(
ᾱ, β̄

)
, while the conventional methods return

biased results in the presence of selection on unobservables in the incidence of zero market shares.

For this particular data-generating process, we �nd that the Homogeneous and Random-Coe�cients

versions of the Drop-Zero estimator exhibit the same direction and comparable magnitudes of bias

in the price coe�cient estimates. We explore the direction of bias in more detail below, in section

5.3.9 Although not reported herein, we also con�rmed our �ndings hold for PDWGMM and Drop-

zero when the continuous attributes have relatively few support points. We re-ran the Monte Carlo

experiment using a smaller number of observed values of xj to ensure the estimator works in a small

sample with a small number of observed support points for the continuous covariates.10

We next investigate the pattern of the relationship between the true ξj and estimated ξ̂j for our

PDWGMM estimator and Drop-Zero estimator, respectively. In our Monte Carlo exercises, we can

net out the true value of the intercept term β0
h from the composite residual ξ̂j to obtain the pure

unobserved vertical product attribute term
(
ξ̂j − β0

h

)
for our PDWGMM estimator.11 Figures 5.1a

to 5.1c each overlay two scatterplots using one of our Monte Carlo datasets for the observations with

strictly positive shares, respectively for scenarios (a) to (c). The horizontal axes report the true ξj

values and the vertical axes report the estimated vertical product attribute values from di�erent

estimators.

The value of
(
ξ̂j − β0

h

)
from our PDWGMM estimator appears to estimate the true ξj very

accurately and precisely. In Figure 5.1a, when selection on unobservables matters, the true ξj

value and
(
ξ̂j − β0

h

)
from our PDWGMM estimation lie almost exactly on the 45° line through

the origin. In contrast, ξ̂DZj from the Drop-Zero estimator is much more dispersed, with the slope

9For the Homogeneous Logit model with an imputed share value, we also examined the sensitivity of the price
coe�cient estimates to the imputation value. Regardless of whether the incidence of zero market shares is selected on
unobservables or not, the estimated price coe�cient is very sensitive to the choice of imputation. For instance, in the
presence of selection, the price coe�cient estimates range from �3.605 (impute 10−5) to �695.990 (impute 10−300), and
without the presence of selection, the price coe�cient estimates range from �0.934 (impute 10−5) to +1.926 (impute
10−300). See Appendix B for our full sensitivity analysis. We also explore this sensitivity in our empirical case study
in section 6.2.

10We use the observed values of the calories-per-cup variable in our case study of ice cream described in section 6.
11As explained in section 3.2.1, it would be infeasible to net out the intercept term from the composite residuals

when implementing our PDWGMM estimator using real-world data.
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Figure 5.1: Scatterplot of True ξj and ξ̂j from Our PDWGMM Estimator and Drop-Zero Estimator,
Monte Carlo Data

(a) DGP With Selection-on-
Unobservables

(b) DGP Without Selection-on-
Unobservables (c) DGP Without Zero Shares

quite di�erent from one. Second, the distribution of the true ξj for the observations with sj > 0

is centered around the mean of �1.048 due to the selection on unobservables, and the distribution

of
(
ξ̂PDWGMM
j − β0

h

)
from our PDWGMM estimator is centered around the mean of �1.119, which

is very close to the true value. In contrast, the distribution of ξ̂j from the Drop-Zero estimator is

mechanically centered around zero because of one of the sample moment condition being imposed

during estimation, ignoring the selection on unobservables. In Figures 5.1b and 5.1c when selection

on unobservables does not matter, both
(
ξ̂PDWGMM
j − β0

h

)
from our PDWGMM estimator and

ξ̂DZj from the Drop-Zero estimator lie almost exactly on the 45° line passing through the origin.

As we demonstrate below, the direction of the bias in the Drop-Zero estimator depends in part on

the strength of price endogeneity, and not just on selection. For other data-generating processes,

E
(
ξ̂j − β0

h

)
> 0 and the Drop-Zero estimator can over-estimate the parameters.

5.3 Additional Monte Carlo Analysis on the Direction of Bias in Price-Coe�cient

Estimates

For the data-generating process explored in the previous section, selection-on-unobservables gener-

ated the same direction of bias and comparable magnitude of bias in the mean price coe�cient for

our Drop-Zero estimators. We now conduct additional sampling experiments to explore the direction

of bias.

In practice, it is not possible to determine the direction of bias for the Drop-Zero estimator due to

the simultaneous roles of price endogeneity and selection on unobservables. Under price endogeneity

and selection, the sign of the bias in the price coe�cient estimate for the Drop-Zero estimator depends

on E [ξjt|zjt, djt = 1]. If the non-selection propensity is decreasing in the unobserved demand shock,
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ξjt, then E [ξjt|zjt, djt = 1] > 0. However, if the non-selection propensity is increasing in prices, then

E [ξjt|zjt, djt = 1] < 0, exacerbating the negative bias already induced when prices are positively

correlated with unobserved demand shocks. The fact that there is no systematic direction of bias

is important for applied work since it means that the popular Drop-Zero estimators are not only

biased, they do not provide a systematic bound on the parameters of interest.

To explore this concern about an ambiguous direction of bias, we conduct two additional Monte

Carlo experiments with selection on unobservables: (d) E [ξjt|zjt, djt = 1] < 0 and (e) E [ξjt|zjt, djt = 1] >

0. We focus on the Homogeneous Logit case to simplify the computational burden.

The data-generating process for scenario (d) is identical to the scenario (a) of section 5.1, except

that we set all the standard deviations of the random coe�cients to zero: αh = −2 , βh0 = 2,

βh1 = 1, and βh2 = 2 ∀h. Scenario (d) generates around 56% of nonzero share observations with

E [ξjt|zjt, djt = 1] = −1.1, which is negative.

The data generating processes for scenario (e) makes the following three modi�cation on scenario

(a) of section 5.1. First, αh = −2 ,βh0 = 2, βh1 = 1, and βh2 = 2 ∀h, as in scenario (d). Second,

we increase the variance in the non-selection outcomes as well as the covariance with the demand

shock:

[
ξjt

ηjt

]
∼ N

([
0

0

]
,

[
2 6

6 26

])
. Third, we weaken the dependence of consideration on

prices: djt = 1
(
wjt − pjt

5 + ηjt > 0
)
. Consequently, scenario (e) generates around 42% of nonzero

share observations with E [ξjt|zjt, djt = 1] = 2.9, which is positive.

We estimate Homogeneous Logit PDWGMM and Homogeneous Logit Drop-Zero estimators for

scenarios (d) and (e), respectively. The results are reported in Table 2. The price coe�cient estimate

of the Drop-Zero estimator is biased upward (towards more negative) in scenario (d), whereas it is

biased downward (towards more positive) in scenario (e). In contrast, our PDWGMM estimator

recovers the target parameter accurately in both scenarios (d) and (e). In sum, the price coe�cient

estimates of the Drop-Zero estimator cannot be taken as either a lower or upper bound of the true

parameter.
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Table 2: Monte Carlo Data Estimation Results on the Direction of Bias of Price Coe�cients

DGP (d) E [ξjt|zjt, djt = 1] < 0 (e) E [ξjt|zjt, djt = 1] > 0

Homogeneous Logit

PDWGMM Drop 0 PDWGMM Drop 0

ᾱ [�2] �2.044 �4.551 �1.962 �1.628

(0.060) (0.312) (0.144) (0.110)

β̄1 [1] 0.992 0.986 0.983 0.956

(0.083) (0.181) (0.205) (0.208)

β̄2 [2] 1.985 1.960 1.997 1.953

(0.102) (0.190) (0.238) (0.218)

β̄3 [2] 1.977 1.932 1.989 1.956

(0.102) (0.211) (0.242) (0.236)

Notes. Column names indicate how the zero shares are handled during the estimation. True parameter values are
reported in square brackets. The reported estimates are the means of each parameter across the 100 replications of
the data generating process. Standard deviations across 100 trials are reported in the parentheses.

As one additional robustness check, we look at the performance of the Drop-Zero estimator when

we aggregate the data across time. Using monthly or quarterly market-share data would reduce the

incidence of zero-valued shares. However, due to the high-frequency variation in prices and promo-

tions of consumer goods, we would also expect aggregation bias if the scheme combines di�erent

choice sets (Gupta et al., 1996). We use the data-generating process in (d) and (e), comparing our

base case (daily) to two-day, 5-day and 10-day intervals. For aggregation, we look at the sales share

across the entire time interval and use the share-weighted prices, as is commonly done in practice.12

We then drop any remaining observations that still have a zero-valued share after aggregation.

The results for the Homogeneous Logit are reported in Table 3. The �base� columns reproduce

the Drop-0 columns from Table 2. As expected, the second-last row shows that the incidence of

non-zero shares declines as we lengthen the aggregation interval. However, this aggregation also

appears to attenuate the parameters. Standard deviations naturally increase since the sample size

diminish. In sum, time-aggregation exacerbates the biases by trading o� the zero-share problem

with aggregation bias.

12CPG data from IRI and Nielsen typically report the sales-weighted average price over a time interval (e.g., weekly
or monthly).
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Table 3: Drop-0 Homogeneous Logit Model Estimation Results After Data Aggregation

DGP (d) E [ξjt|zjt, djt = 1] < 0 (e) E [ξjt|zjt, djt = 1] > 0

Drop 0 Homogeneous Logit

Aggregation Base 2-mkt 5-mkt 10-mkt Base 2-mkt 5-mkt 10-mkt

ᾱ [�2] �4.551 �4.902 �4.881 �3.945 �1.628 �1.613 �1.483 �1.223

(0.312) (0.485) (1.004) (1.117) (0.110) (0.176) (0.267) (0.314)

β̄1 [1] 0.986 0.962 0.836 0.591 0.956 0.932 0.818 0.642

(0.181) (0.221) (0.331) (0.356) (0.208) (0.240) (0.259) (0.293)

β̄2 [2] 1.960 1.921 1.674 1.201 1.953 1.889 1.653 1.296

(0.190) (0.260) (0.495) (0.567) (0.218) (0.285) (0.376) (0.411)

β̄3 [2] 1.932 1.889 1.624 1.159 1.956 1.910 1.641 1.279

(0.211) (0.284) (0.497) (0.531) (0.236) (0.296) (0.364) (0.451)

Avg Nonzero obs. 5,754 3,963 1,922 995 4,264 3,348 1,872 996

Total obs. 10,000 5,000 2000 1,000 10,000 5000 2,000 1,000

Notes. Column names indicate the number of markets being aggregated. True parameter values are reported in square
brackets. The reported estimates are the means of each parameter across the 100 replications of the data generating
process. Standard deviations across 100 trials are reported in the parentheses.

6 Application: Scanner Data with Many Zeros

6.1 Data and Evidence of Selection on Zero-Valued Market Shares

We conduct an empirical case study of the ice cream category. The data were provided by a

midwestern chain that tracks daily prices and sales of each of the UPCs sold by store. A distinctive

feature of these data is that they record shelf prices, unit costs, and feature advertisement information

even when a UPC is not sold in a given store-day. The advantage of daily data is that we observe the

exact price charged for each product, in contrast with most weekly-frequency datasets that report

the average price for each product across each of the days in that week. We observe 25 stores during

an 18-month period, generating 2.7 million UPC-store-day observations.

For our empirical case study, we focus on the non-premium segment of ice cream brands. We

include Breyers, Deans, Edy's and the Store Brand, which collectively account for 26.3% of the total

category sales. Since 98.5% of sales for these brands come from the 48oz pack size, we only use 48oz

packs. For estimation, we use 2 stores in the chain, retaining only the Thursdays since we observe

very little within-week variation in prices. We use all the available data for each store between

our sample range, January 2013 to June 2014.13 Our estimation sample therefore includes 14,907

product-store observations, spanning 130 unique products and 131 unique markets (i.e., store-days).

To construct the potential market size, we start with each Thursday's total unique customer

13One store opened before January 2013, the other store opened in June 2013.
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count. Since it is unlikely that every store visit results in a trip to the non-premium section of

the ice cream aisle, we scale the customer count by 1/7 of all trips.14 Accordingly, we de�ne each

product's market share on a store-day as: sj = total packs of j sold
total potential ice cream purchases . We de�ne the outside

good share, s0, as the share of the potential trips during which no non-premium ice cream packs

were sold.

Zero-valued shares are quite common in these retail data: only 30.7% of the store-day-product

observations (e.g., 4,571 out of 14,907) generate at least one unit sale. Table 4 reports the incidence

of zero shares when a store's data are collapsed to the daily, weekly, monthly and tri-monthly fre-

quencies, respectively. When we collapse the data to 90-day intervals, a typical store exhibits around

148,000 unique customer visits (i.e., 21,142 unique potential non-premium ice cream purchases)15

each making discrete choices from approximately 120 unique non-premium ice cream products.16

Even, with this large consumer population, we still observe zero shares for 6.6% of the available

non-premium ice cream products in the store-period.

In theory, with a �nite and discrete number of consumers each making a discrete choice decision,

zero market shares could arise by pure chance. Gandhi et al. (2020) propose a method for addressing

this source of sampling error leading to zero-valued shares. However, our data seem to reject this

theory. Suppose we have a relatively low-appeal �niche� product with only a 0.1% choice probability.

In our data, we typically observe approximately 238 consumers17 purchasing non-premium ice cream

on a given store-day. Our niche item has a (1− 0.001)238 × 100 ' 79% probability of failing to sell

at least one unit on a given store-day. However, if we aggregate the niche product's data to a lower

time frequency, its probability of failing to sell at least one unit falls to 19%, 0.08% and 5×10−8% for

7-day, 30-day and 90-day frequencies, respectively. Therefore, sampling error seems like an unlikely

explanation for the high incidence of zero-valued shares that we observed even after aggregating our

data to a lower time frequency.

As one additional check, we also �nd that for 18.9% of the non-premium ice cream products

exhibiting a zero share in at least one store-day, the minimum non-zero quantity sold is larger than

5 units. This type of discrete jump from zero to a large positive quantity also seems inconsistent

with sampling error. In sum, these patterns indicate systematic non-selection for certain products

on the shelves. Therefore, the sampling error in market shares for large stores like the ones in our

data is insu�cient to explain the high incidence of zero-valued shares. For this reason, we apply our

proposed method from above to estimate demand for this ice cream case study.

14We use Nielsen Homescan data to estimate this scaling using the 271,016 unique household trips to this chain.
Only 6,634 trips resulted in the purchase of a non-premium ice cream. We then set the potential market at 5-6 times
this proportion of trips to account for consumers who considered by buying but ultimately did not, possibly due to
prices or availability in other stores, generating a potential market size of 1/7 of the customer store visits to the chain
in question.

15As in many retail databases, we observe each store's total customer tra�c counts.
16This large number of available product variants is approximately average for a CPG product category. Dubé

(2019) �nds that the average CPG category has about 400 available products, spanning 64 brands.
171664 unique customers scaled by 7 as explained above.
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Table 4: Average Number of Zero Shares of Ice Cream Per Store

Data Total Number Total Unique Number Number of Average Number

Frequency of packs sold of Customer Visits Observations of Products

per Store with Zero Sales Available Per Store

1 day 74 1,664 78 120

7 days 513 11,615 26 120

30 days 2,159 49,594 14 121

90 days 6,203 147,923 8 122

In addition to the brand name, we also observe a set of product attribute dummy variables:

Vanilla, Chocolate, Yogurt, Caramel, Mint, Gelato, and Fruit. For each product, we manually

collected total calories per cup as a continuously-valued nutrient-related attribute.1819

To address the potential endogeneity of shelf prices, we use the unit cost variable and its square

as price instruments, r̃j . As in Chintagunta et al. (2003), we assume the wholesale prices and

temporary discounts of each UPC are independent of a given store's demand shocks.20 As in the

Monte Carlo simulations, we use a linear price speci�cation. A regression of prices on each of the

exogenous product attributes, x̃jt, and the excluded price instrument, r̃jt, generates an incremental

F-statistic of 37.10 for the wholesale price per pack.

To address the potential selection on consideration, we use UPC and brand-level feature adver-

tisement variables as the consideration instruments w̃j . Following Mehta et al. (2004), we assume

these instruments a�ect consideration, but not demand. Intuitively, consumers do not derive con-

sumption bene�ts from viewing a feature ad. However, the ad impression triggers their attention to

the speci�c featured products and brands. Of course, these excluded promotional variables would

also be valid if they a�ect stock-out propensities, another cause of non-consideration. In our daily

data, it is possible that a promoted item stocks-out midway through the promotional period (typ-

ically several days), thereby generating zero sales on a given day. Once again, an advantage of our

non-parametric control for the consideration propensity is the robustness of our approach to di�erent

mechanisms. A regression of the non-zero-share selection indicator, djt, on each of the exogenous

product attributes, x̃jt, and our observed consideration instruments, w̃jt, generates an incremental

F-statistic of 150.49 for the two excluded promotional variables. If we also include the price in-

strument in the regression, the incremental F-statistic on the two excluded promotional variables

increases to 152.55. We report the regression results in Appendix D.

Table 5 presents the key summary statistics of our estimation data. Further details about the

18To ensure all the continuous attributes use a comparable scale for estimation, we normalize the calories per cup

information in the nutrition label by 1/1000.
19We collected the nutrient data from the following websites: www.walmart.com, www.calorieking.com,

www.picknsave.com, www.breyers.com, www.target.com, www.edys.com, www.homemadebrand.com,
www.kemps.com.

20Manufacturers do not target wholesale prices di�erentially across stores in a single chain.
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data being used in this study can be found in section 2 of Bronnenberg et al. (Forthcoming).

Table 5: Summary Statistics of the Estimation Data

Mean Std. Dev Min Max

Price 3.835 0.461 1.895 4.990
Share 0.002 0.004 0 0.062
s0 0.736 0.091 0.433 0.894

Cost/pack 4.164 0.508 0.000 4.530
Featured UPC 0.132 0.338 0 1

Featured Brand 0.190 0.392 0 1

Temporary Discount 0.036 0.186 0 1

Cal./(1000×cup) 0.265 0.043 0.18 0.38
Vanilla 0.198 0.398 0 1

Chocolate 0.195 0.396 0 1

Frozen Yogurt 0.132 0.338 0 1

Mint 0.084 0.278 0 1

Fruit 0.919 0.272 0 1

Breyers 0.205 0.403 0 1

Deans 0.228 0.420 0 1

Edys 0.532 0.499 0 1

Store Brand 0.035 0.184 0 1

Non-zero Observations 4,571

Sample Size 14,907

Notes. This table presents the summary statistics of the estimation data being used.

6.2 Estimation and Results

Table 6 presents the ice cream demand estimation results. We compare 6 alternative estimators

and implementations. The �rst two columns labeled Random Coe�cient Logit are the Random-

Coe�cients Logit model estimates with our PDWGMM selection correction and Drop-Zero esti-

mators, respectively.21 The next four columns labeled Homogeneous Logit are Homogeneous Logit

model estimates of our selection-correction (PDWGMM), classical Heckman correction, Drop-Zero,

and Impute-Zero estimators, respectively. Each estimator uses the same set of instruments for a fair

comparison.

As in the Monte Carlo analysis in section 5, the imputed share correction is found to be highly

unstable and results vary dramatically with the choice of imputation value. For the Homogeneous

Logit, Appendix B indicates that the price coe�cient estimates vary from �0.917 to �143.362 as we

21The Random-Coe�cient Logit models are estimated using Nh = 2, 000 simulation draws, and we did not include
the taste heterogeneity parameters in the brand coe�cients. Our PDWGMM estimator used the bandwidth following
Silverman's rule throughout the estimation. See Appendix A.5 for details on the choice of bandwidth.
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Table 6: Model Parameter Estimation Results

Random-Coe�cients Logit Homogeneous Logit

PDWGMM Drop 0 PDWGMM Heckman Drop 0 Impute 10−12 Drop 0 OLS

θ̄
√

Σ θ̄
√

Σ θ̄ θ̄ θ̄ θ̄ θ̄

Mean Elast. �2.512 �1.489 �2.648 �1.939 �1.394 �17.625 �1.290

Price �0.689 0 �0.411 0.002 �0.716 �0.524 �0.377 �4.767 �0.349

(0.123) (0.002) (0.069) (0.001) (0.147) (0.057) (0.061) (0.702) (0.022)

Cal./(1000×cup) �0.166 0 0.024 0.001 �0.235 �0.116 �0.141 �0.953 �0.131

(0.224) (0.157) (0.253) (0.012) (0.191) (0.214) (0.205) (2.312) (0.204)

Vanilla 0.173 0.002 0.175 0 0.156 0.159 0.146 2.651 0.145

(0.027) (0.012) (0.028) (0.002) (0.020) (0.020) (0.020) (0.248) (0.020)

Chocolate �1.088 1.760 �3.128 3.337 0.044 0.054 0.044 0.741 0.044

(1.098) (1.156) (1.874) (1.688) (0.019) (0.020) (0.020) (0.234) (0.020)

Frozen Yogurt �0.140 0.101 �0.129 0 �0.122 �0.132 �0.129 �2.476 �0.128

(1.408) (0.999) (0.104) (0.187) (0.025) (0.028) (0.028) (0.243) (0.028)

Mint �2.829 2.849 �1.664 2.174 0.018 0.008 0.007 0.806 0.007

(2.275) (1.664) (1.269) (1.239) (0.029) (0.027) (0.027) (0.356) (0.027)

Fruit �0.121 0 �0.085 0 �0.106 �0.071 �0.067 �0.124 �0.066

(0.034) (0.004) (0.033) (0.001) (0.032) (0.031) (0.030) (0.320) (0.030)

Breyers 0.237 0 0.158 0 0.167 0.264 0.159 �1.720 0.138

(0.136) (0.014) (0.068) (0.052) (0.159) (0.062) (0.063) (0.796) (0.046)

Deans 0.230 0.159 0.082 0.007 0.234 0.301 0.100 �4.772 0.074

(0.234) (0.398) (0.109) (0.222) (0.165) (0.064) (0.069) (1.002) (0.045)

Edys 0.243 0 0.105 0 0.172 0.249 0.078 �3.991 0.055

(0.144) (0.099) (0.070) (0.003) (0.158) (0.059) (0.063) (0.884) (0.043)

No. Conv. 482 500 500 500 500 500 500

Notes. The sub-columns θ̄ are the mean parameter estimates,
√

Σ are the standard-deviation parameter estimates.
Bootstrap standard errors are in parentheses based on B = 500 draws. Mean Elast. row indicates the mean price
elasticities across all the products available in our sample, using the usual formula. No. Conv. row indicates the
number of converged bootstrap trials out of 500 bootstrap iterations.
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vary the imputed share value from 10−4 to 10−300. The lack of robustness of this estimator suggests

it does not provide a reliable estimate of demand and we do not discuss it further in this section.

The PDWGMM estimator generates a much smaller mean price coe�cient than the Drop-Zero

estimator, in this case a di�erence of 0.278. We can test the signi�cance of this di�erence formally

using a two-sample bootstrap t-test of the null hypothesis that the price coe�cients are the same:2223

TB =

∣∣α̂PWDGMM − α̂drop0
∣∣√

V ar (α̂PWDGMM ) + V ar (α̂drop0)− 2Cov (α̂PWDGMM , α̂drop0)
.

We compute TB = 2.26 (p-value of 0.023). So at the 5% signi�cance level, we not only reject the

hypothesis of equal mean price coe�cients, we also rule out di�erences in mean price coe�cients

smaller than 0.038.

Our two estimators also generate very di�erent own-price elasticities, with a mean price elasticity

of −1.489 for the Drop-Zero estimator and a mean price elasticity of −2.512 for PDWGMM. We

reject the hypothesis of equal mean elasticities at the 5% signi�cance level, with TB = 2.34 (p-value

of 0.019).

We �nd similar results for the computationally lighter Homogeneous Logit model of demand in

the �nal four columns. Interestingly, we generally �nd similar estimates of mean tastes with and

without random-coe�cients. However, as before, the price coe�cient estimate of PDWGMM is

smaller (more negative) than that of the Drop-Zero estimator. As before, we reject the hypothesis

of equal mean price coe�cients for the PDWGMM and Drop-Zero estimators at the 5% signi�cance

level, with TB = 2.54 (p-value of 0.011). Even the classical Heckman two-step estimator fails to

resolve the selection bias, generating a similar price coe�cient estimates as the Drop-Zero estimator.

In sum, our PDWGMM estimator generates signi�cantly di�erent price coe�cients and price

elasticities than the usual Drop-Zero estimator. These di�erences are consistent with our Monte

Carlo evidence in in section 5. In the next section, we use the observed retail margins in our data

to construct a formal test between the PDWGMM and Drop-Zero estimators.

6.3 Assessing Predictive Model Fit Using Retail Markups

We now use the retail cost information in our data to construct a test between the PDWGMM

estimator and the Drop-Zero estimator based on implied mark-ups under various retail pricing

conduct assumptions. We assume the retailer sets prices to maximize its static pro�ts in the ice

cream category, where Π (p; Θ) = (p− c)′Q (p; Θ) denotes the total category pro�ts andQ (p; Θ) =

Mπ (p, x̃, ξ; Θ) denotes the predicted vector of quantities sold for each UPC. Let m denote the vector

22The covariance term Cov
(
α̂PDWGMM , α̂drop0

)
requires pre-determining the bootstrap resample order nb and the

household-speci�c taste shocks νh to ensure the two estimators use the same bootstrap samples.
23We set the max iteration count to 200. For PDWGMM, 482 of the 500 bootstrap trials converged and all 500

bootstrap trials of the Drop-Zero estimator converged. For the test, we dropped the 18 bootstrap trials for which our
PDWGMM estimator failed to converge within 200 iterations.
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of observed margins, with element mj = pj − cj for product j. The �rst-order necessary conditions

for optimal pricing are:

π (p∗; Θ) + [∇pπ (p∗; Θ) ◦Ξ] (p∗ − c) = 0, (6.1)

where ∇pπ (p; Θ) is the gradient of the demand system with (i, j) element:

∂πj
∂pi

=


∫

(α+ να)πhj (p)
(

1− πhj (p)
)
dFν , if i = j

−
∫

(α+ να)πhi (p)πhj (p) dFν if i 6= j

and Ξ is a matrix of zeros and ones re�ecting various forms of retail conduct. The optimal contri-

bution margin can then be written as:

µ (Θ) = − [∇pπ (p∗; Θ) ◦Ξ]−1 π (p∗; Θ) . (6.2)

Since the retailer's contribution margins are observed, we can construct a minimum distance

estimator of the margins based on the criterion:

q (µ) =
(
m− µModel

)′ (
m− µModel

)
. (6.3)

Of particular interest are the margin estimates µ
(
ΘPDWGMM

)
and µ

(
ΘDrop 0

)
using equation

(6.2). We can then test the relative �t of the di�erent demand estimators based on their ability to

�t the observed contribution margins: q
(
ΘPDWGMM

)
and q

(
ΘDrop 0

)
. We select the model with

a smaller criterion value.

For robustness, we conduct three separate model selection tests, each under a di�erent assumed

form of retail pricing conduct:

(a) Joint Monopoly whereby the retailer sets all the prices jointly to maximize total pro�ts (Ξ

is a matrix of ones for the same market);

(b) Brand-level Pricing whereby the retailer maximizes the joint pro�ts of products sold under

a common brand (the entries of Ξ is 1 if products share a common brand name within the same

market, and 0 otherwise); and

(c) UPC-level Pricing whereby the retailer optimizes each of the products' prices in the category

independently of one-another (Ξ is an identity matrix).

Table 7 presents the model-�t comparison measures for the random-coe�cients speci�cations of

PDWGMM and Drop-Zero under each of the three conduct assumptions. The PDWGMM estimator

of the demand parameter generates a considerably better �t of the retail contribution margins under

all three forms of conduct. For each conduct assumption, the PDWGMM margins are �closer� to

the true margins than the values from the Drop-Zero estimator. Figure 6.1 illustrates the di�erence

between predicted margins and observed margins, respectively under the three retail pricing conduct
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assumption. The vertical line at 0 indicates that the di�erence between the predicted margin and

the observed margin is zero, implying that the model predicts the observed margin perfectly. As a

histogram is more concentrated around the vertical line at 0, the model has a better �t. Although

both our PDWGMM and Drop-Zero estimators overestimates the margins, it turns out that our

PDWGMM estimator performs better than the Drop-Zero estimator under all three conduct as-

sumptions. The �gures also indicate that the UPC-level pricing conduct assumption explains the

observed margin the best among the three conduct assumptions we examined.

Table 7: A Comparison of Predictive Model Fit on Markups

qPDWGMM qDrop 0

(a) Joint Monopoly 36,018 92,021

(297) (824)

(b) Brand-level Pricing 29,210 69,404

(257) (625)

(c) UPC-level Competitive Pricing 20,383 43,049

(172) (301)

Sample Size 4,571

Notes. This table compares the measure of demand model prediction on markups (6.3) for three di�erent conducts.
Bootstrapped standard errors are reported in parentheses.

29



Figure 6.1: Histogram of the Di�erences Between Predicted Margins and Observed Margins

(a) Margin Di�erence Under Joint Monopoly Conduct As-
sumption

(b) Margin Di�erence Under Brand-Level Pricing Conduct
Assumption

(c) Margin Di�erence Under UPC-Level Competitive Pricing
Conduct Assumption

7 Extension: Share-Equation Equivalence of a CES Demand Sys-

tem and a Random-Coe�cients Logit Demand System

In this section, we show that our proposed approach extends to the case of the CES model of demand

which has been used extensively in the trade literature (e.g., Spence 1976; Dixit and Stiglitz 1977;

Krugman 1980; Feenstra 1994; Handbury 2013; Handbury and Weinstein 2014; Bronnenberg 2015).
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We show the equivalence between the Random-Coe�cients Logit demand system derived in section

2.1 and the representative consumer demand system under CES preferences. It then follows that

our PDWGMM estimator can be applied to the CES demand model to accommodate observations

of zero aggregate sales for a product.

We modify the demand model derived in section 2.1. We relax the discrete-choice assumption

and allow qj ∈ R+. We also assume that consumers make purchase decisions to maximize the

following CES preferences utility function

u
(
{qj , x̃j , ξj}j∈J

)
:=

∑
j∈J
{χ (x̃j , ξj)}

1
σ q

σ−1
σ

j

 σ
σ−1

(7.1)

where χ (x̃j , ξj) ≥ 0 is a quality kernel, x̃j is the vector of exogenous product characteristics that is

observable to the econometrician, and ξj is a vertical product characteristics that is unobserved to

the researcher as before.

The representative consumer's budget-constrained utility maximization problem is:

max
{qj}j∈J

∑
j∈J
{χ (x̃j , ξj)}

1
σ q

σ−1
σ

j

 σ
σ−1

s.t.
∑
j∈J

pjqj = y.

The corresponding Marshallian demand system is:

qj = y

{
χ (x̃j , ξj) p

−σ
j∑

k∈J χ (x̃k, ξk) p
1−σ
k

}
∀j ∈ J , (7.2)

which can be re-written in the following market share format:

πj ≡
qj∑
k∈J qk

=
χ (x̃j , ξj) p

−σ
j∑

k∈J χ (x̃k, ξk) p
−σ
k

. (7.3)

Let h = 1, ...,H index households, each with potentially heterogeneous quality kernel χh (·) and

elasticity of substitution σh. The individual quantity share expressions of the CES demand system

(7.3) become:

πhj =
χh (x̃j , ξj) exp

(
−σh ln pj

)∑J
k=0 χ

h (x̃k, ξk) exp (−σh ln pk)

=
exp

(
−σh ln pj + x̃′jβ

h + ξj

)
∑J

k=0 exp
(
−σh ln pk + x̃′kβ

h + ξk
) , (7.4)

where the second equality follows by specifying χh (x̃j , ξj) = exp
(
x̃′jβ

h + ξj

)
. The predicted ag-
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gregate market share equation is obtained by aggregating the individual predicted quantity share

equations over the households h.

The CES market share is almost identical to the Random-Coe�cients Logit demand except for

some subtle di�erences. First, prices enter the demand system in logarithmic form. Second, the

budget-constraint
∑

j∈J pjqj = y must be imposed to infer the vector of quantities demanded, q.

In contrast, for the discrete choice demand model, the �xed market size constraint
∑

j∈J qj = M

is used to infer the vector of quantities demanded, q. Finally, the near mathematical equivalence

only holds for the stylized case of Type I extreme value random utility errors in the discrete choice

formulation.

8 Conclusion

We proposed a new method to handle di�erentiated products demand estimation in the presence of

products capturing zero market share. We incorporate the role of selection on unobservables into

the model to correct for the potential bias when observations with zero market shares are dropped

from the demand estimation. We also propose a new, PDWGMM estimator that accommodates this

selection under a fully non-parametric speci�cation during the selection stage. An empirical case

study shows that the PDWGMM estimator generates more price-elastic estimates of demand and a

better �t of retail contribution margins.

In practice, many consumer sales datasets exhibit a high incidence of zero-valued shares. Our

�ndings suggest that typical, ad hoc �xes will generate inconsistent demand estimates which would

likely have adverse implications for policy experiments using the estimated demand system. In sum,

we document a di�erent form of endogeneity bias, selection on unobservables in product considera-

tion, that can bias demand estimates in addition to the biases from endogenous marketing variables

described in the extant literature.

One potential extension of the proposed framework would be to study the potentially self-selected

manner in which assortments are set across markets, such as cities or even stores. Determining

appropriate exclusion restrictions to determine pro�t instruments for the selection stage would be

an interesting direction for future research pooling demand estimation across markets with di�erent

assortments.

Numerous mechanisms could explain the selection on unobservables associated with zero-valued

shares, including consumer consideration, stock-outs and promotional conditions. For tractability,

our nonparametric approach maintains the assumption that correlations in product consideration

propensities arise only through the observed selection instruments. An interesting direction for future

research would consist of supplementing the market share data with additional moments on factors

such as inventory and/or consumer search and consideration (e.g., browsing behavior) to allow for

a richer model of the selection propensities that ties back to speci�c theories of consideration set

formation. Moreover, data from these alternative mechanisms could provide additional information
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to help with the identi�cation of the deep, consumer preference parameters.
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Appendix

A Implementation Details

A.1 Construction of Instruments

For the GMM problem, we use the unit cost and temporary discount �ag and squared unit cost,

Z̃, to instrument for prices. In addition, we use Gandhi and Houde (2020)'s product di�erentiation

instruments to construct auxiliary moments based on functions of the product attributes, X and

p̂, where p̂ is the vector of predicted prices from the pricing equation (4.2), for the identi�cation

of the standard deviations of the random coe�cients, Σ (see also Joo et al., Forthcoming, for an

application). For continuous product attributes and predicted prices, two products are regarded as

neighbors when they are within 1 standard deviation of the corresponding attribute variable. For

binary product attributes, two products are regarded as neighbors when they have the same value.

For each SKU-level alternative, the di�erentiation variable corresponding to an attribute is de�ned

by counting the number of within-market neighbors. The instrument matrix used for our PDWGMM

estimator is then constructed as follows: Z :=
[
X|Z̃|p̂di� |Xdi�

]
, where the subscript di� denotes the

product di�erentiation instrument. We then take pairwise-di�erences to form ∆Z. Finally, we de�ne

the GMM weight matrix, Φ :=
(
(∆Z)′ (∆Z)

)−1
.

For the drop-zero (BLP) estimator, we use the standard instrument matrix (i.e., undi�erenced):

Z :=
[
X|Z̃|p̂di� |Xdi�

]
. We then de�ne the corresponding GMM weight matrix: Φ := (Z′Z)−1.

A.2 MPEC Formulation for the Random-Coe�cients Logit PDWGMM Esti-

mator

We modify the MPEC formulation given in Dubé et al. (2012) to our selection-correction PDWGMM

estimator of Θ :=
(
θ̄,Σ

)
. Let ω̂i,j := 1

hn
κ
(
µ̂i−µ̂j
hn

)
. Let

(√
Ω
)
be

(
n

2

)
× p matrix such that each

column is
√
ω̂. Let M :=

(√
Ω
)
◦ (∆Z) where ◦ denotes the Hadamard product. We can then write

M′ (∆ξ) = (∆Z)′
(√
ω̂ ◦ (∆ξ)

)
. We can now write the MPEC estimator (4.7) in matrix form:

min
(Θ,ξ,g)

g′Φg

s.t. 0 = π (ξ; Θ)− s

0 = M′ (∆ξ)− g, (A.1)

where π (·) is the system of predicted market shares and Φ is the p× p GMM weighting matrix.
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The Lagrangian is:

L (Θ, ξ,g,λs,λg) = g′Φg + λ′s (π (ξ;θ)− s) + λ′g

(
(∆Z)′

(√
ω̂ ◦ (∆ξ)

)
− g

)
.

The gradient of the objective function is:

∇g′Φg =
(
0′ 0′ 2g′Φ′

)
.

The constraint Jacobian is: (
∂π
∂Θ

∂π
∂ξ O

O ∂M′(∆ξ)
∂ξ −I

)
.

∂π
∂Θ and ∂π

∂ξ part are identical to what is described in the Appendix of Dubé et al. (2012).

To derive ∂M′(∆ξ)
∂ξ , �rst let Ψ =

(
∂M′(∆ξ)

∂ξ

)′
. Recall M :=

(√
Ω
)
◦ (∆Z) and the structure of

∆ξ:

∆ξ :=



ξ1 − ξ2

ξ1 − ξ3

...

ξ1 − ξn
ξ2 − ξ3

ξ2 − ξ4

...

ξ2 − ξn
...

ξn−1 − ξn



.

It can be shown that the kth row of Ψ is given by:

ψ′k = z′k

(
n∑
l=1

√
ω̂k,l

)
−

n∑
l=1

(√
ω̂k,lz

′
l

)
,

where z′k is kth row of the instrument matrix Z.

A.3 Bootstrap Algorithm for the Random-Coe�cients Logit PDWGMM Esti-

mator

Suppose, �rst, that we are estimating the original BLP without selection-correction. Bootstrapping

would require �rst inverting the whole vector ξ out from the original set of market share constraints

0 = π (ξ; Θ)− s
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and then resample ξj with the corresponding row of Z with replacement. This would also require

the weighting matrix Φ to change with the bootstrap resample scheme. Keeping this intuition in

mind, we describe the bootstrapping scheme below step-by-step:

1. Randomly draw n integers out of (1, 2, ..., n). Denote this vector of resample index integers

by nb. Throughout, the subscript b denotes the resampled matrix/vector according to this

resample scheme nb.

2. Take (Zb,pb) from (Z,p) to estimate %̂b in (4.1) of section 4.1.

3. Take ν̂b as the residual from the regression, to form the Wb matrix corresponding to the matrix

W in section 4.1.

4. Find the vector µ̂b in (4.4) where each element of µ̂b is µ̂b,j .

5. Form ∆Zb matrix by pairwise di�erencing Zb.

6. Form Φb :=
(
(∆Zb)

′ (∆Zb)
)−1

.

7. Form Mb :=
(√

Ωb

)
◦ (∆Zb).

8. Solve the following constrained optimization problem. Note that the �rst set of constraints,

0 = π (ξ; Θ)− s, are intact from the original problem.

min
(Θ,ξ,g)

g′Φbg

s.t. 0 = π (ξ; Θ)− s

0 = M′
b (∆ξb)− g, (A.2)

The constraint Jacobian is: (
∂π
∂Θ

∂π
∂ξ O

O
∂M′b(∆ξb)

∂ξ −I

)
.
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The main change of (A.2) from point estimation problem (A.1) is the second part of the constraint

and its Jacobian component. Recall Mb :=
(√

Ωb

)
◦ (∆Zb) and the structure of ∆ξb:

∆ξb :=



ξb1 − ξb2
ξb1 − ξb3

...

ξb1 − ξbn
ξb2 − ξb3
ξb2 − ξb4

...

ξb2 − ξbn
...

ξbn−1 − ξbn



.

The di�erence from point estimation is that the pairwise di�erencing is taken in the order with

respect to the bootstrap shu�e indicator b1, b2, ..., bn. However, Ψb should be �lled with the deriva-

tives of M′
b (∆ξb) with respect to the original order of (ξ1, ξ2, ..., ξn). Furthermore, there can be

some rows of Ψb such that it is a zero vector due to the resampling scheme.

The reshu�ing scheme described above makes the calculation of Ψb slightly more complicated

than the calculation of Ψ. Consider ψ′b,j , j'th row of Ψb =
(
∂M′b(∆ξb)

∂ξ

)′
. If ξb does not contain ξj ,

ψ′b,j = 0. Now suppose ξb contains only one ξj . Then, there is going to be one bk such that bkth

element of nb is j. Now, for such j, k pair, ψ′b,j becomes

ψ′b,j = z′bk

(
n∑
l=1

√
ω̂bk,bl

)
−

n∑
l=1

(√
ω̂bk,blz

′
bl

)
,

where z′bk is kth row of Zb. If there are more than one bk such that bkth element of nb is j,

ψ′b,j =
∑

{bk:bkth element of nb is j}

{
z′bk

(
n∑
l=1

√
ω̂bk,bl

)
−

n∑
l=1

(√
ω̂bk,blz

′
bl

)}
.
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A.4 Bootstrap Algorithm for Random-Coe�cients Logit Demand Estimation

When All the Observed Shares are Positive

When all the observed shares are positive, we have the usual MPEC formulation of the problem:

min
(Θ,ξ,g)

g′Φg

s.t. 0 = π (ξ; Θ)− s (A.3)

0 = Z′ξ − g. (A.4)

For each bootstrap trial, Φ should be replaced with Φb and 0 = Z′ξ − g should be replaced with

0 = Z′bξb − g, where (Φb,Zb, ξb) denotes the bootstrap-reshu�ed matrices/vectors of (Φ,Z, ξ).

However, the market-share equation (A.3) should be left intact.

The gradient of the objective function is:

∇g′Φbg =
(
0′ 0′ 2g′Φ′b

)
.

The constraint Jacobian of the problem is(
∂π
∂Θ

∂π
∂ξ O

O Z′b −I

)
,

and the Hessian of the Lagrangian is identical with the the original problem, except for the second

derivative of the objective function which is 2Φb.

A.5 Choice of Kernels and Bandwidth

For the kernel H (·) in (4.4), we use the product kernel with the marginal kernel for the continuous

elements of wj the Gaussian kernel. For the discrete elements of wj , we use the kernel described

in pages 136-137 of Li and Racine (2008). Silverman's rule is used for the bandwidth of Gaussian

marginal kernel, and vector of ones are used for the bandwidth of discrete marginal kernel. The �nal

results are robust to the choice of the bandwidth of Stage 2. For the kernel κ (·) and bandwidth hnd
in (4.7), we use the Gaussian kernel again with Silverman's rule-of-thumb bandwidth.

B Sensitivity of Estimates on the Imputed Magnitude of Zero Shares

In this section, we present the sensitivity analysis of the model parameter estimates with respect to

the magnitude of the small number being imputed in place of zero shares, estimation results both

for our Monte Carlo datasets and our real-world dataset. We estimated the Homogeneous Logit

model of demand with instrumenting for the prices, and varying the magnitudes of the number

being imputed from 10−5 to 10−300.
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The datasets being used here are identical to the datasets used in sections 5 and 6, respectively.

Notice that the estimates of Impute 10−12 in Table 10 are identical to those of Impute 10−12 of Table

8. Analogously, the estimates of Impute 10−12 in Table 9 are identical to those of Impute 10−12 in

Table 6.
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C Homogeneous Logit Demand Model Estimates on Monte Carlo

Datasets

Table 10 presents the estimation results for the Homogeneous Logit models using the same 100 Monte

Carlo datasets generated and used in section 5. It turns out that not accounting for the random-

coe�cients during the estimation biases the coe�cient estimates slightly. Even without random-

coe�cients, our PDWGMM estimator performs very well compared to the conventional methods to

handle zeros when selection-on-unobservables a�ect the prevalence of zero market shares.
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D First-Stage Regression on the Power of Instruments

Table 11: First-Stage Regression on the Power of Instruments

dj dj dj pj pj

1000 Cal/pack �0.0325 0.0125 0.0262 �0.0547 �0.0194

(0.107) (0.106) (0.106) (0.0947) (0.0947)

Vanilla 0.112 0.114 0.114 0.0121 0.0110

(0.0102) (0.0101) (0.0101) (0.00905) (0.00904)

Chocolate 0.0290 0.0286 0.0275 0.0139 0.0111

(0.0102) (0.0101) (0.0101) (0.00907) (0.00908)

Yogurt �0.112 �0.112 �0.108 0.0144 0.0239

(0.0129) (0.0128) (0.0129) (0.0115) (0.0116)

Mint 0.0413 0.0421 0.0417 �0.0261 �0.0271

(0.0141) (0.0140) (0.0140) (0.0125) (0.0125)

Fruit �0.000785 0.00323 0.00357 �0.0196 �0.0187

(0.0140) (0.0139) (0.0139) (0.0124) (0.0124)

Breyers �0.213 �0.215 �0.223 0.657 0.637

(0.0247) (0.0250) (0.0253) (0.0220) (0.0222)

Deans �0.446 �0.379 �0.392 1.130 1.094

(0.0240) (0.0241) (0.0249) (0.0213) (0.0221)

Edys �0.378 �0.324 �0.348 0.973 0.908

(0.0232) (0.0232) (0.0260) (0.0206) (0.0232)

Featured UPC 0.0329 0.0338

(0.0195) (0.0195)

Featured Brand 0.150 0.151

(0.0179) (0.0179)

Unit Cost 0.0219 0.0578

(0.0106) (0.00949)

Const. 0.646 0.554 0.475 2.953 2.749

(0.0401) (0.0400) (0.0552) (0.0356) (0.0489)

N 14907 14907 14907 14907 14907

R2 0.0605 0.0791 0.0794 0.258 0.260

Notes. Column names indicate the dependent variables. Standard errors are in the parentheses.
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