Motivation
- Climate-related risks are becoming more and more relevant
 - Transition risks: regulatory reform intended to combat global warming
 - Physical risks: emerge from extreme (weather) events
- Adequate disclosure aids efficient pricing of risks
- Securities and Exchange Commission (SEC) requires firms to report self-identified (climate) risks in their annual 10-K filings (e.g. item 1.A Risk factors)
- We use BERT, a state-of-the-art NLP technique, to develop firm-specific measures of economic risks based on (qualitative) regulatory disclosure
- Analyse effect on term structure of credit default swap (CDS) spreads (including climate-related risks)
- Transition change affects firms at different horizons
- Various CDS maturities
- CDS market unlikely to be driven by preferences, focus on risk (hedging)

The effect of (climate) risk disclosure on credit spreads: theory

Risk-perception effect
- Risk disclosure may increase perception of corporate risk (Kothari et al., 2009)
- Transition risk
 - Argument based on the classical Merton (1974) model
 - Smooth transition to new regulatory regime will reduce firm’s asset value
- Physical risk
 - Increase in the severity and frequency of (extreme) climate events
 - Adding jumps to model (Zhou, 2001)

Information uncertainty effect
- Risk disclosure may reduce information asymmetry between firms and investors
- Transition risk
 - Disclosure reduces uncertainty on firm’s asset value (Duffie & Lando, 2001)
- Physical risk
 - Argument follows from implications of imprecise knowledge about rare events under ambiguity aversion (Liu et al., 2005)

Methodology – BERT
- Developed at Google (Devlin et al., 2019)
- Contextual neural language model
- Used on Item 1.A in 10-K reports
 - Look for presence of climate-relevant topics (CN task)
 - Assessment transition or physical risk (TP task)
 - Sentence level (CN) score
 - Aggregated on document level (~ firm-year level)
- Transition and Physical score

Methodology – Regression setup
- Baseline model – Panel first-difference model
 \[
 \Delta S^m_{i,t} = \beta_1 \Delta Transition_{i,t} + \beta_2 \Delta Physical_{i,t} + \Phi \Delta X_{i,t} + \Theta \Delta Y_{i,t} + \epsilon_{i,t+1},
 \]
 - with \(S^m_{i,t} \) next month’s (average) \(m \)-year spread
- Paris agreement. December 2015
 - Accelerated the global push for climate regulation
 - Especially relevant for transition risk disclosure
 - Effect: Transition should be even stronger after the Paris agreement
 - Introduce post-Paris dummy and interact with Transition and Physical

Main results
- General climate material sample

<table>
<thead>
<tr>
<th>N</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulated</td>
<td>8772</td>
<td>8572</td>
<td>8872</td>
<td>8772</td>
<td>8772</td>
<td>8772</td>
<td>8772</td>
<td>8772</td>
<td>8772</td>
</tr>
<tr>
<td>Regulated squared</td>
<td>0.028</td>
<td>0.030</td>
<td>0.028</td>
<td>0.025</td>
<td>0.027</td>
<td>0.024</td>
<td>0.026</td>
<td>0.007</td>
<td>0.007</td>
</tr>
</tbody>
</table>

- A one-standard-deviation increase in Transition leads to an increase of 6.99bps (4.4%) in the average five-year CDS spread for the post-Paris period.

- Focus on physical risk material industries

<table>
<thead>
<tr>
<th>N</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td>8772</td>
<td>8572</td>
<td>8872</td>
<td>8772</td>
<td>8772</td>
<td>8772</td>
<td>8772</td>
<td>8772</td>
<td>8772</td>
</tr>
<tr>
<td>Physical squared</td>
<td>0.028</td>
<td>0.030</td>
<td>0.028</td>
<td>0.025</td>
<td>0.027</td>
<td>0.024</td>
<td>0.026</td>
<td>0.007</td>
<td>0.007</td>
</tr>
</tbody>
</table>

- A one-standard-deviation increase in Physical results in a decrease in the average five-year CDS spread of 7.37bps (4.1%).

Robustness check – Substantial advantage new BERT measure?
- Carbon emissions data as proxy for transition risk
- Comparing with keyword-based NLP algorithms
 - CookESG research/CERES climate risk measure based on 10-K reports (Berkman et al., 2019)
 - Industry level climate risk materiality (Matsumura et al., 2018)
 - Disclosure reduces information uncertainty on firm’s asset value (Duffie & Lando, 2001)
- Physical risks: emerge from extreme (weather) events

References