Externalities of the Sharing Economy: Evidence from Ridesharing and the Local Housing Market Rachel (Jiqiu) Xiao Georgia State University

Abstract

- This study highlights sharing economy's externalities on the local economy
- I find that local housing prices and market rents increase after the introduction of Uber X, especially in zip codes with greater access to public transit and lower driving probability.
- The price appreciation is stronger for individual houses just beyond walking distance to public transit
- The findings suggest that ridesharing complements public transit and helps solve the "last mile" problem.

Motivation

- Housing and transportation expenditures are the largest components of household spending
- Ridesharing can either substitute or complement public transit
- Thus, ridesharing may impact households' home location decisions and the local housing market by releasing the transportation constraints

Data

- Uber X entry data at the city level in 2012–2015
- Zillow monthly housing value and rent indices
- Zillow individual house transaction data
- Zip code-level economic and housing variables from Census
- Location of rail stations from Google Map
- Uber pickups in NYC from the NYC Taxi Limousine Commission

Zip code-level **Difference-in-Difference Analysis**

 $\log(Y_{ict}) = \alpha_c + \mu_t + \beta X_{ict} + \theta TREATED_{ic} * POST_{ct} + \epsilon_{ict}$

- Sample: zip code by year-month in 2011-2017
- Treated group: zip codes in a city that adopted Uber X
- Post period: after Uber X enters the city
- Controls: zip code level economic and housing characteristics; city and time fixed effects
- 95% confidence interval

Figure 1:Dynamic Coefficient plot of Housing Value Index

Figure 2:Dynamic Coefficient plot of Rent Index

Zip code Level Heterogeneity

Table 1:	The Effect	of Uber	X Entry	by Public	Transit
	Resources	and Dri	ving Pro	babilities	

	DV: Log (Housing Value Index)		DV: Log (Rent Index)	
	(1)	(2)	(3)	(4)
POST _{ct} *TREATED _{ic}	0.111***	0.030**	0.089***	0.017***
	(6.98)	(2.35)	(13.23)	(2.66)
x NO.RAIL STATION _i	0.014**	0.014**	0.007***	0.007***
	(2.26)	(2.22)	(3.09)	(2.97)
x DRIVE PROBABILITY _{it}	-0.003***	-0.003***	-0.001**	-0.001**
	(-4.84)	(-4.57)	(-2.53)	(-2.38)
Observations	809,933	809,933	554,697	554,697
R-squared	0.841	0.844	0.839	0.845

★ Indicate that Uber X complements public transit

Figure 3: Change in Housing Sale Prices in the least "last mile" Zone

-0.05

-0.2

Figure 4: Change in Housing Sale Prices in the most "last mile" Zone

-0.15

-0.3

The "Last Mile" Problem

• The difficulty of getting people from a transit to their final destinations

 \star I find the least affected houses are within 0.5 miles while the most affected ones locate 0.5-3 miles of a rail station \star Uber X can help the affected houses by complementing public transit

The "Last Mile" Analysis using Housing Transactions

 $\log(\mathbf{P}_{ispt}) = \alpha_{st} + \mu_p + \beta X_i + \theta_1 D_{is}^{0.5} + \theta_2 D_{is}^3 + \theta_2 D$ $(\gamma_1 D_{i,s}^{0.5} + \gamma_2 D_{i,s}^3) * POST_{it} + \epsilon_{ispt}$

- Sample: housing sales occurred within 6 miles of a rail station in 2011-2017
- Treated group: housing sales within 0.5 miles/0.5-3 miles of the closet rail station
- Post period: after Uber X launched service for the local community
- Controls: housing characteristics and housing type; station-by-quarter fixed effects

 \star Findings: housing sale prices increase more in the most"last mile" area (0.5-3 mile of a rail station) after Uber X entry

Other Findings

• Housing prices and rents increase more in zip codes with larger populations, lower median ages and more minorities

• Results hold when instrumenting Uber X entry decisions using VC investments to Uber or a Bartik IV

• Causal inference from ridesharing prohibition: Austin, Texas experienced lower rents when ridesharing was suspended

• The joint effect of Uber X and Lyft is even larger • Higher Uber use intensity, higher housing Sale prices in the "last mile" area

• Uber X entry does not affect commercial property prices in the "last mile" area, suggesting my "last mile" results are not driven by increased economic activity

Conclusion

• The introduction of ridesharing increases local housing prices and rents by complementing public transit and solving the "last mile" problem

Contact Information

Department of Finance Robinson College of Business Georgia State University

• Email: jxiao4@gsu.edu

