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Abstract

Biased information about the payoffs received by others can drive innovation, risk-taking, and
investment booms. We study this cultural phenomenon using a model based on two premises.
The first premise is a tendency for large successes, and the actions that lead to them, to be more
salient to onlookers than small successes or failures. The second premise is selection neglect – the
failure of observers to adjust for biased observation. In our model, each firm in sequence chooses
to adopt or to reject a project that has two possible payoffs, one positive and one negative. The
probability of success is higher in the high state of the world than in the low state. Each
firm observes the payoffs received by past adopters before making its decision, but there is a
chance that an adopter’s outcome will be censored, especially if the payoff was negative. Failure
to account for biased censoring causes firms to become overly optimistic, leading to irrational
booms in adoption. Booms may eventually collapse, or they may last forever. We describe these
effects as a form of cultural evolution with adoption or rejection viewed as traits transmitted
between firms. Evolution here is driven not only by differential copying of successful traits, but
also by cognitive reasoning about which traits are more likely to succeed – quantified using the
Price Equation to decompose the effects of mutation pressure and evolutionary selection. This
account provides a new explanation for investment booms, merger and IPO waves, and waves
of technological innovation.

1 Introduction

We study how biases in social transmission of information about the actions and payoffs of others
induces innovation and risk-taking by firms. Our model is based on two premises. The first is the
tendency for large successes, and the actions that led to them, to be more visible and salient to
others than failures. For example, if 999 out of 1000 small start-ups fail completely, and one grows
to become as large and successful as Google, each of the failures, being small, is seldom noticed
and remembered, whereas discussion of the huge success becomes ubiquitous.

The second premise is the psychological phenomenon of selection neglect, the failure of
observers to adjust for bias in the process that generates the data they observe.1 We apply these two
premises to business initiatives, such as creating a startup firm, undertaking a corporate ‘moonshot’
or ‘sure bet’ investment project, or making a large acquisition. We show that the dynamics of this
evolutionary process can lead to boom and bust patterns, consistent with merger and IPO waves,
and sudden waves of innovative technological activity.

1See, e.g., (Nisbett and Ross 1980), (Brenner, Koehler, and Tversky 1996), and, in the financial context, (Koehler
and Mercer 2009).
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We model a setting in which firms in sequence decide whether to adopt or to reject un-
dertaking a project based on observation of the payoffs of previous firms. We consider biased
censorship—a higher probability of observing successful projects and their outcomes than failed
ones. Owing to selection neglect, a manager will have a biased assessment of the prospects of
the project. We analyze how these factors shape boom/bust dynamics and long-term survival of
different behaviors: adopting versus rejecting projects with different characteristics. We consider
our model in the context of cultural evolution of financial traits in a population of firms.

In our setting, each firm in a sequence chooses whether to adopt or reject a project with
two possible payoffs—a large success payoff or a negative failure payoff. The probability of success
is higher in the high state of the world than in the low state, such that the project is profitable in
expectation only in the high state. Each firm observes payoff outcomes of predecessors, but there
is some probability that any given adopter’s payoff is censored. If observers were rational, then
firms would adopt in the long run only if the state of the world is high. However, owing to selection
neglect, later firms tend to become overly optimistic about the state of the world, and so there can
be a positive probability that all firms will adopt in the low state. In this state biased censorship
can also exacerbate boom/bust patterns in which a long string of adopts occurs before ultimate
collapse.

Viewing adopting or rejecting as a cultural trait which is transmitted between firms, we em-
ploy the Price Equation to decompose the evolution of adoption versus rejection of risky strategies
into a selection component and a mutation component. Surprisingly, despite the central role of
selection bias in the evolution of project choice in the model, under some action histories there
is only mutation pressure, without evolutionary selection. This differs from cultural evolutionary
models with direct copying, in which there is only selection, and it highlights the role of cognitive
reasoning as a cultural evolutionary force.

We are not the first to examine selection bias and learning by firms. Denrell (Denrell 2003)
also examines a setting in which observers neglect selection bias in the information they observe
about firms. As in our model, failure is less likely to be observed than success. Denrell’s focus is
on how this biases learning about the traits that are characteristic of the upper tail of successful
firms, which he argues will disproportionately consist of variance-increasing strategies. So Denrell
concludes that selection bias will cause the spread of risky and unreliable management practices
(Denrell 2003).

Our study differs in several ways. First, we focus on beliefs about the benefits of project
adoption rather than about general managerial practices. Second, we allow for sequential choices
and selection bias. In other words, we model how neglect of selection bias affects an arbitrary ob-
server’s behavior, not just beliefs; and how the observer in turn becomes the target of observation
for the next agent, and so forth. This allows us to study the implications of selection bias for invest-
ment booms and collapses. Third, our modeling allows us to analyze the evolutionary process by
which behavioral traits are transmitted across agents, in terms of selection and mutation pressure.
Fourth, Denrell’s focus is on how differences in variance biases choices, whereas we analyze payoff
asymmetry, and show that greater moonshotness promotes project overadoption.

Han et al. (Han, Hirshleifer, and Walden 2020) examine a setting in which stock market
investors randomly meet to discuss their strategies, and the probability that an investor reports
the investor’s return performance is increasing in return. An investor has an exogenous probabil-
ity of copying another investor’s strategy that is increasing with reported return, if the investor
receives a report. As a result, high variance investing strategies spread through the population.
Our focus here is on project choices by firms that update beliefs in a quasi-Bayesian fashion, based
on sequential observation of a history of past payoffs by other firms. In contrast, in (Han, Hir-
shleifer, and Walden 2020) investors are randomly drawn to meet, and message receivers have an
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Table 1: Payoff Probabilities

Payoff Outcome (v)

State (θ) V −1

H p 1− p
L 1− p p

exogenous switching probability based upon the single observation during that meeting. Our study
also differs in deriving boom/bust dynamics, novel comparative statics about moonshotness, and
decomposition of outcomes into the effects of selection versus mutation pressure.

2 The basic setting

Consider a setting in which agents in sequence choose between two actions, adopt or reject, and
each learns about the state of the world from the payoff experiences of predecessors (see (Schlag
1998), (Bolton and Harris 1999), and (Cao, Han, and Hirshleifer 2011)). Reject generates a payoff
of zero, whereas adopting generates binary possible payoffs. Let the possible actions for the nth

agent in the sequence, denoted In, be an = A,R (adopt or reject a project). When an agent rejects,
the payoff is zero. The binary state of the world is θ = H,L, with prior probability q of state H.
In each state, there are two possible net payoffs to adoption, v = V > 0 or v = −1. Project success
has probability p > 1/2 in state H and 1 − p in state L. Therefore high payoff is a symmetric
binary signal about state, with payoff probabilities shown in Table 1.

We assume that when indifferent an agent rejects, and we impose parameter constraints such
that adopting is, in expectation, strictly profitable in state H and unprofitable in state L. We let
the expected profit from adopting conditional on state be Πθ,

ΠH ≡ E[v|θ = H] = pV − (1− p) > 0

ΠL ≡ E[v|θ = L] = (1− p)V − p < 0, (1)

which together imply that p > 1
V+1 and p > V

V+1 If V < 1, only the first constraint is binding, and
if V > 1, only the second one is.

Agents maximize expected profits conditional on their information, which derives from ob-
serving past payoffs. To avoid the trivial outcome that all agents always reject, we assume that the
prior expected value of action A is positive,

E[v] = q[pV − (1− p)] + (1− q)[(1− p)V − p]
= q(2p− 1)(V + 1) + (1− p)V − p > 0. (2)

This implies that the first agent, I1, adopts.

3 Full observability of past payoffs

If at any point an agent Ii’s belief about the state becomes sufficiently pessimistic, Ii rejects, and
Ii’s payoff of 0 contains no information about state. Since Ii+1 has no additional information, Ii+1

also rejects, as do all later agents. So in the stochastic process of actions and payoffs, the action R is
an absorbing outcome. With full observability of past payoffs, there is a random walk on beliefs, as
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measured by the log-likelihood ratio (LLR) between the two states, with a lower absorbing barrier
(see e.g., (Cao, Han, and Hirshleifer 2011)).

Specifically, conditional on state, so long as agents adopt, the belief follows a random walk
with drift. To see this, let di be the difference between the number of high payoff realizations (V )
and the number of low realizations (−1) observed by agent Ii (i.e., through the payoff of Ii−1), where
by convention, d1 = 0. Then by Bayes’ rule, since v realizations are conditionally independent given
state θ = H or L,

P (H|di, vi)
P (L|di, vi)

=
P (vi, di|H)

P (vi, di|L)

P (H)

P (L)
=
P (v|H)

P (v|L)

P (H|di)
P (L|di)

. (3)

Taking logs,

λi+1 ≡ log

(
P (H|di, vi+1)

P (L|di, vi)

)
= log

(
P (v|H)

P (v|L)

)
+ log

(
P (H|di)
P (L|di)

)
,

or

λi+1 = log

(
P (v|H)

P (v|L)

)
+ λi. (4)

So the LLR changes at each step adding the update increment log(P (v|H)
P (v|L) ), which is positive when

v = V and negative when v = −1, and which has the same absolute value in both cases. In state
θ = H, the probabilities of these increments are p for v = V and 1− p for v = −1. In state L, the
probabilities are 1− p for v = V and p for v = −1.

The LLR (belief state) increases by log(p/(1 − p)) > 0 or log((1 − p)/p) < 0 at each step,
by Eq. 4. It follows by simple induction that the LLR conditional upon all payoff observations is

λi ≡ log

(
P (H|di)
P (L|di)

)
= di log

(
p

1− p

)
+ log

(
q

1− q

)
. (5)

So the relevant payoff history from past adopts is fully summarized by di. (Rejects generate a
deterministic payoff, and therefore are uninformative.)

The lower absorbing barrier is the cutoff on the LLR above which adoption has a positive
expected payoff. To calculate this, observe that Ii adopts iff

E[v|di] = P (H|di)[pV − (1− p)] + (1− P (H|di))[(1− p)V − p] > 0. (6)

Bearing in mind Eq. 1, Ii adopts iff

λi = log

(
P (H|di)

1− P (H|di)

)
> log

(
p− (1− p)V
pV − (1− p)

)
> 0. (7)

Substituting Eq. 5 into Eq. 7, agent Ii adopts iff

di log

(
p

1− p

)
+ log

(
q

1− q

)
> log

(
p− (1− p)V
pV − (1− p)

)
, (8)

so the indifference cutoff on d is

d∗ ≡
log
(
p−(1−p)V
pV−(1−p)

)
− log

(
q

1−q

)
log
(

p
1−p

) . (9)

Since an indifferent agent rejects, the first reject occurs when di reaches or crosses d∗, di ≤ bd∗c.
For example, if d∗ = −1.1, the first reject occurs when di = −2.
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The numerator of Eq. 9 is negative (see SI for details), which implies that d∗ < 0. Intuitively,
under the prior belief, an agent adopts, and so bad news (di < 0) is required for an agent to reject.
In summary, the count of past high minus low payoffs follows a random walk with a lower absorbing
barrier bd∗c < 0.

In general, for a random walk with a lower absorbing barrier at 0 and an up move probability

r ≤ 1/2 the probability of ultimate ruin starting from position d0 is 1, and with r > 1/2, is
(
1−r
r

)d0
, which is decreasing in d0 (Feller 1950). The standard walk as an equivalent transformation of
our model in which the absorbing barrier bd∗c < 0 is increased to zero, and the starting position is
accordingly increased to d0 = −bd∗c). Here the probability of an up move corresponds to p > 1/2
or 1− p in the H or L state respectively. We therefore have

Proposition 1 With observation of all past actions and payoffs we have the following results:

1. In state L:

(a) With probability 1 there exists an i such that for all j ≥ i, agent Ij rejects.

(b) The probability that agent In rejects is (µ−bd
∗c − µn−1)/(1 − µn−1), for n > −bd∗c + 1,

where d∗ is given by Eq. 9 and µ ≡ p
1−p .

2. In state H:

(a) The probability that all agents adopt is 1 − ν−bd∗c, which is strictly between 0 and 1,
where ν ≡ 1−p

p .

(b) If not all agents adopt, then there exists an i such that for all j ≥ i, agent Ij rejects.

(c) The probability that agent In rejects is (ν−bd
∗c − νn−1)/(1− νn−1) for n > −bd∗c+ 1.

Proof: Part 1a: In state L the LLR and d follow random walks with negative drift. It follows from
standard properties of such walks that the lower absorbing barrier is reached with probability one.
Part 1b: This follows from a standard result for random walks through step n− 1, bearing in mind
that agent In only observes payoffs through agent In−1. Part 2a: In state H the random walk on d
has positive drift. The first agent, I1, adopts. A standard property of such a random walk is that
there are strictly positive probabilities that such a walk ever or never hits a lower barrier. Part 2b:
if the lower barrier is hit for some agent Ij , no further payoff information is generated, so all later
agents also reject. Part 2c: This follows from a standard property of walks through step n − 1,
bearing in mind that agent In only observes payoffs through agent In−1. ‖

The results of this Proposition are intuitive. For Part 1, if an arbitrarily large number of
agents were to adopt, beliefs would converge to virtual certainty in state L, causing rejection. For
Part 2, either early bad news makes adopt seem so bad that the reject barrier is crossed (in which
case no further information is generated, so all subsequent agents reject), or else there is an infinite
number of adopts, so that in the long run agents become highly confident of the H state.

4 Biased censorship and rational updating

Suppose now that high-payoff outcomes are more likely to be observed than low-payoff outcomes.
Specifically, we assume that a payoff of v = V is observed with probability δ ≤ 1, whereas a payoff
of v = −1 is observed only with probability π ≤ δ. So the upside censorship probability is 1−δ ≥ 0
and the downside censorship probability is 1−π ≥ 0. We assume strict inequalities, where the case
of δ = π = 1 is a benchmark for comparison.
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We call greater censorship of downside outcomes upside salience, defined algebraically as
the ratio β ≡ δ/π. Intuitively, projects that succeed are associated with high scale of continuing
economic transactions, which garners attention, whereas projects that fail tend to vanish.

We can think of censorship of observation of a firm’s project outcome as meaning that the
outcome is not reported conspicuously in the media. So we assume that censorship of an agent is
universal: the agent’s payoff is either visible to all successors or to none of them.2

Let vj = V or −1 be the realized payoff outcome of agent Ij if j adopts. Let Oij denote

the event that Ii observes Ij , where i > j, and Oij denote the event that Ii does not observe Ij .
Since I1 adopts, observation by rational I2 of I1’s payoff updates I2’s belief about state to (see SI
for details):

P (θ = H|O21, V1 = V ) =
P (θ = H,V1 = V |O21)

P (V1 = V |O21)
= p

P (θ = H|O21, V1 = −1) =
P (θ = H,V1 = −1|O21)

P (V1 = −1|O21)
= 1− p.

These expressions are independent of π and δ, because conditional on observation of a payoff, the
greater censorship of low payoffs makes no difference for inferences. The only information contained
in the sheer fact of observation is that the payoff is less likely to be −1. But conditional on a payoff
that is directly observed, this information is redundant.

In contrast, the absence of an observation of an earlier agent contains useful information for
agent Ii, as in the story in which detective Sherlock Holmes draws a key inference from “the dog
that did not bark.” For example, if I2 does not observe I1, then the rational inference is tilted
toward state θ = L, since the occurrence of no observation tends to comes from the payoff −1 (since
π < δ). The rational inference from no observation is (see SI for details)

P (θ = H|O21) =
P (θ = H|O21)

P (O21)
=
p(1− δ) + (1− p)(1− π)

2− δ − π .

5 Neglect of payoff-biased censorship

What if agents neglect the fact that there is biased censorship of their observations? We first
consider how neglect of censorship affects short-term and long-term adoption dynamics. In Section
5 we examine basic comparative statics on long-run adoption. Finally, in Section 6, we examine
the sources of cultural evolution toward adopt or reject using the Price Equation.

Neglect of biased censorship and adoption dynamics

When agents are unaware of censorship, if agent Ij observes j′ < j − 1 past actions and payoffs,
agent Ij mistakenly believes that he is the (j′ + 1)th agent in the decision queue. Intuitively, we
expect that disproportionate censorship of low payoffs will make agents overly optimistic about
project adoption.

We will show that the beliefs of an appropriate sequence of agents follows a random walk
with drift, with an absorbing barrier that induces rejection. Consider the subsequence of the belief
sequence that removes all agents whose payoffs are censored. This uncensored subsequence contains
the beliefs of all agents whose payoffs matter for later agents. We will see that the beliefs (LLRs)
of agents in this subsequence follow a random walk.

2As a result agents cannot glean any private information from the action choices of predecessors. This point is not
relevant for our main analysis, since, in our setting with imperfect rationality, agents do not even realize that there
is any such indirect information to be extracted.
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Let a B (for Biased) superscript denote an imperfectly rational expectation. A biased
agent mistakenly fails to condition on observation versus non-observation of payoffs when forming
expectations. So for I2 (see SI for details),

PB(θ = H|O21, v1 = V ) =
PB(θ = H,V1 = V )

PB(v1 = V )
= p

PB(θ = H|O21, v1 = −1) =
PB(θ = H, v1 = −1)

PB(v1 = −1)
= 1− p.

We see that the beliefs conditional on seeing V or −1 are the same as for a rational agent, inde-
pendent of noncensorship probabilities δ and π. So neglecting the information implicit in the fact
that a payoff was observed does not affect conditional beliefs.

In contrast, neglect of the information implicit in the absence of an observation crucially
affects action dynamics and the evolution of beliefs. Unlike a rational agent, an inattentive agent
does not draw inferences from censored observations.

When agents naively neglect non-observation, they update based on the observed difference
between the numbers of high and low payoffs, just as in the case with no censorship. Specifically,
let j be the index for the subsequence, i.e., a count in order of the uncensored agents. Let dj be the
difference in the number of V and −1 outcomes through the (j − 1)th agent in this subsequence.
Then Eq. 5 holds with i replaced with j.

However, neglect of censorship modifies the probabilities of an up or down move in beliefs
conditional on state in the LLR walk. In the uncensored subsequence, the probabilities of an up
move and down move in the next step are constant over time. So in the random walk for the
uncensored subsequence, conditional on state θ = H the probabilities of an up move, pH∗, and of
a down move, 1− pH∗, are (see SI for details)

pH∗ = P (v1 = V |H,O21) =
p

p+ (1− p)/β
> p

1− pH∗ =
1− p

1 + p(β − 1)
< 1− p, (10)

where the inequalities follow because upside salience β > 1. Note that the probability of an up
move in the subsequence random walk conditional upon state H is increased by upside salience.

Similarly, in the subsequence random walk, conditional on state θ = L the probabilities of
an up move and a down move respectively are

1− pL∗ =
1− p

1− p+ p/β
> 1− p

pL∗ =
p

p+ β(1− p)
< p, (11)

since β > 1.
There are two key differences in the evolution of beliefs from the case of no censorship. First,

we must characterize beliefs for censored agents as well. These are determined trivially from the
beliefs in the uncensored subsequence. Any censored agent’s belief is identical to the belief of the
next uncensored agent, since the next uncensored agent does not see intervening censored payoffs.
Second, the probability of an up move in the LLR walk is higher with neglect of biased censorship.
This effect can be arbitrarily large. As β becomes large (π ≈ 0), both pH∗, 1 − pL∗ → 1. So with
neglect of biased censorship, beliefs can tend to march upward, even in the L state where complete
information would inevitably lead to rational rejection.
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We summarize the evolutionary dynamics of adoption under biased censorship in the follow-
ing Proposition.

Proposition 2 Under biased censorship we have

1. In state L:

(a) (Weak upside salience) If β ≤ p/(1− p), then there exists i such that for all j > i agent
Ij rejects.

(b) (Strong upside salience) If β > p/(1−p), then: (i) The probability that all agents adopt is
1− ζ−bd∗c, where d∗ is given by Eq. 9 and ζ ≡ p

β(1−p) . This probability is strictly between

0 and 1, and is decreasing in π. (ii) If not all agents adopt, there exists i such that for
all j ≥ i agent Ij rejects. (iii) The probability that In rejects is (ζ−bd

∗c−ζn−1)/(1−ζn−1)
for n > −bd∗c+ 1.

2. In state H:

(a) The probability that all agents adopt is 1 − η−bd∗c, where η ≡ (1−p)
βp , which is strictly

between 0 and 1 and decreasing in π.

(b) If not all agents adopt, then there exists an i such that for all j ≥ i, agents Ij rejects.

(c) The probability of a reject within the first n agents is (η−bd
∗c − ηn−1)/(1 − ηn−1) for

n > −bd∗c+ 1.

Proof:
Part 1a: The proof is essentially the same as Proposition 1, Part 1. The random walk has an
equal up or down move, where in the L state, owing to selection bias, the up move and down move
have respective probabilities 1 − pL∗ and pL∗ as in Eq. 11. So the random walk conditional on L
has positive drift when 1 − pL∗ > 1

2 , or β > p
1−p . If instead β ≤ p/(1 − p), the drift is negative

or zero, so that the absorbing state, reject, is reached with probability 1. Part 1b: When upside
salience is sufficiently strong (β > p/(1 − p)), the LLR follows a random walk with positive drift,
so the conclusions follow by the same reasoning as in Proposition 1, Part 2. The expression for the
probability of reject within the first n agents follows by a standard result for random walks, where
the probability of an up move in the subsequence random walk is given by Eq. 11. Parts 2a and 2b:
For the H state, since β > 1 and p > 1/2, the LLR follows a random walk with positive drift. So
conclusions similar to those of Part 1b about the probability of adopting forever follow by similar
reasoning, where the probability of an up move conditional on the H state in the subsequence
random walk is given by Eq. 10. Part 2c: The result follows by a standard result for random walks,
where again the probability of an up move is given by Eq. 10. ‖

In sharp contrast with Proposition 1, owing to neglect of censorship of low payoffs, there is
a positive probability that all agents will adopt, even when the project has negative expected value
(state L). Moreover, the chance all agents adopt is greater in state H than without censorship.

Let β̂ ≡ p/(1− p) be the cutoff value on upside salience such that with positive probability
agents adopt in the long run even in state L. Clearly β̂ is increasing with p, the superiority in the
success rate in the high versus low state. When project success is highly sensitive to state, greater
relative selection bias on the upside versus the downside is needed to induce long-run adoption in
state L.

Proposition 2 shows that the model generates boom patterns, with strings of adoption, even
in state L. Owing to upside salience, such booms occur more often when agents neglect censorship.
In that case, there are irrational extra booms. Booms may be followed by collapse, or they may
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be sustained permanently. Adoption continues until (if ever) the preponderance of uncensored
evidence, in the form of low payoffs, favors reject.

In some realizations there is no boom (a single adopt followed by all reject). In others there
is a boom period followed by a collapse (several or many adopts and then all reject). In other cases
there is a persistent boom (all adopt). In the L state, the boom component of the boom/collapse
pattern is irrational relative to full knowledge of state.

Since agents do not know the state, booms and busts do not in themselves indicate bad
decision making. Without censorship, all decisions are rational, but such mistakes still occur with
positive probability. However, when there is biased censorship and selection neglect, there are
irrational booms and busts. This is illustrated in Figure 1, which depicts realizations belief LLR
over time. Without censorship, after two Adopts, the Reject barrier is reached, and all subsequent
agents reject. In contrast, under censorship there is a temporary boom, until the late sequence of
negative payoffs brings about collapse. This must eventually happen in the L state if upside salience
is sufficiently weak. The bottom graph makes a similar comparison under a set of realizations in
which, under censorship, the boom takes longer to collapse. Indeed, the boom may continue forever
even in state L, provided upside salience is sufficiently strong.

Under selection neglect, the probability of an early string of adopts is increased—there are
adoption bubbles. Suppose, for example, that there is relatively little censorship. By Proposi-
tion 2, with probability 1, in the L state eventually all agents reject. So censorship causes extra
booms that would not occur were agents rational. If censorship is not too severe, these booms later
crash. If censorship is more severe, matters are even worse—there are permanent mistaken booms.
The model therefore offers a new explanation for real investment booms and busts (Chirinko and
Schaller 2001)), IPO waves and overoptimism (Ritter 1991; Rajan and Servaes 1997; Lowry and
Schwert 2002), and value-reducing merger waves (Moeller, Schlingemann, and Stulz 2005; Bouw-
man, Fuller, and Nain 2009)). This explanation differs from some past explanations that require
payoff externalities (DeMarzo, Kaniel, and Kremer 2007) or shifts in investor sentiment (Gilchrist,
Himmelberg, and Huberman 2005). There are, of course, other possible explanations as well.

Since key parameters of a model, such as β, can never be estimated perfectly, it is important
to know whether model implications are robust to parameter variations. The qualitative implica-
tions of Propositions 1 and 2 are robust to small variations in β, except for the measure-zero set of
critical values described in the propositions.

Comparative statics of long-run adoption

How does the upside payoff, the censorship probability, and the prior likelihood of success affect
the chance of eventual adoption? To address these questions, in either state H or L, we analyze
the partial derivatives of the chance of persistent adoption with respect to model parameters.

The long-run log rejection probability in the two states (where for state L, we impose the
condition that β > p/(1− p) so that ruin is not assured) is

log(P (Ever Reject|θ)) =

−(bd∗c) log
(
1−p
βp

)
if θ = H

−(bd∗c) log
(

p
β(1−p)

)
if θ = L.

(12)

Since log(p/(1 − p)) and log((1 − p)/p) have opposite sign, it is evident that all the parameters
except perhaps p and β (which reflects δ and π) have opposite directional effects on the long-run
reject probabilities.

We use a version of Eq. 12 that ignores the floor function as a continuous approximation
for the chance long-run rejection, after substituting Eq. 9 for d∗. To derive comparative statics, let
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Figure 1: Booms of project adoption, with and without biased censorship. The top graph compares
belief states of successive firms (x-axis) in the case of censorship (black) to the case of censorship
(gray), under a set of payoff realizations in which the boom eventually collapses. The bottom graph
makes a similar comparison under a set of realizations in which, under censorship, the boom takes
longer to collapse, or may never collapse. Red payoffs correspond to censored outcomes.
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RH and RL denote the log probabilities of ever rejecting in state H or L:

RH ≡ log(P (Ever Reject|θ = H))

RL ≡ log(P (Ever Reject|θ = L)) (13)

We study the partial derivatives of RH and RL with respect to model parameters, p, q, V , and
β (or π and δ separately) in regime with a positive chance of all agents adopting even in state L
(i.e. β > p/(1− p)).

The effect of increasing upside salience follows immediately from differentiating Eq. 12 with
respect to β. This gives ∂RH

∂β , ∂R
L

∂β < 0. Since δ and π enter the reject probability expressions

only through the definition of β, we also immediately have ∂RH

∂δ ,
∂RL

∂δ < 0, and ∂RH

∂π , ∂R
L

∂π > 0. So
as upside salience becomes stronger (owing to either lower upside censorship or stronger downside
censorship), the long-run chance of adoption under L increases. Intuitively, upside salience breeds
overoptimism, reducing rejection probability.

High upside payoff, V , and high probability of the H state, q, both promote long-run adop-
tion. These facts have opposite implications about the effects of moonshotness, which is by defini-
tion associated with both high V and low q. Some less obvious comparative statics, including those
pertaining to interactive effects of parameters obtained from mixed partial derivatives, are derived
and discussed in the SI. We summarize these results as follows.

Proposition 3 In both states θ = H,L, where for state L we require parameter values such that
RL < 1, we have the following comparative statics: ∂Rθ

∂β ,
∂Rθ

∂δ < 0 and ∂Rθ

∂π < 0 ; ∂Rθ

∂V ,
∂Rθ

∂q < 0.

Furthermore, in state L, for parameter values such that RL < 1, we have: ∂RL

∂p > 0; ∂2RL

∂β∂V ,
∂2RL

∂δ∂V < 0

and ∂2RL

∂π∂V > 0; ∂2RL

∂β∂q > 0.

Moonshots, sure bets, and upside salience

A moonshot is a project that has low probability of success, parameterized by the probability of the
H state, q, and a high upside payoff V . This is the opposite of a ‘sure bet’ project, which has high
q and low V . We expect upside salience β to be greater for moonshots than for sure bets. Both a
low ex ante probability of success and a high conditional payoff makes success more surprising and
newsworthy.

As stated in Proposition 3, long-run adoption is more likely when upside salience β is larger.
So the model offers the empirical implication that moonshots will tend to be adopted more heavily
than sure bet projects, even after controlling for net expected value.

We can study the effects of moonshotness formally by considering excess rejection probabil-
ities in the two states. As before, we assume that β > 1, and, for the analysis of state L, focus
on the case in which β > p/(1 − p) so that eventual rejection is not assured. Specifically, for two
possible values of upside salience, β and β (where both satisfy the relevant inequality above), let
the excess log reject probability relative to benchmark β in state H or L be defined as

eH(β, β) ≡ −R
H,β

RH,β
= − log

(
1−p
βp

)/
log
(
1−p
βp

)
eL(β, β) ≡ −R

L,β

RL,β
= − log

(
p

β(1−p)

)/
log
(

p

β(1−p)

)
, (14)

where Rθ,β and Rθ,β are the values of Rθ for two given values of β, and where the algebraic
expressions follow from Eq. 12. The excess log reject probability captures the idea that, for any
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given values of q, V , and p, greater upside salience biases agents away from rejecting. So these
expressions are decreasing with upside salience, β.3 Notably, these are exact expressions, and they
are independent of q and V .

To understand the effect of moonshotness in more depth, consider the probability of eventual
rejection when varying V and q inversely while holding constant the prior expected payoff, v ≡ E(v).
As argued above, an increase in moonshotness, captured here by an increase in V , increases upside
salience β. Since the expressions in Eq. 14 have no direct dependence upon V and q, varying
moonshotness affects these expressions only through its effect on upside salience β.

Specifically, differentiating Eq. 14 with respect to β yields

∂eH(β, β)

∂β
=

1

β log
(
1−p
βp

) < 0

∂eL(β, β)

∂β
=

1

β log
(

p

β(1−p)

) < 0. (15)

So greater upside salience β decreases the excess rejection probability. By increasing upside salience,
an increase in moonshotness decreases excess rejection, meaning it decreases rejection after con-
trolling for the direct effects of V and q (other than their effect on β). Intuitively, moonshotness
biases observation toward past successes rather than failures, which promotes adoption. In the SI,
we discuss in greater detail the conceptual experiment underlying the comparative statics on excess
log reject probabilities.

Salience and firm size

The noncensorship parameter π in the model is a proxy for the salience of downside outcomes, and
δ for the salience of upside outcomes, where we have defined β = δ/π as the relative attention to
the upside payoff (upside salience). Greater overall attention by media and observers will tend to
increase both π and δ.

This effect will in general be asymmetric. For example, other things equal, large firms tend
to receive much greater attention than small firms (O’Brien and Bushan 1990). In the limit, if a
well-known firm such as Ford receives high attention to both its successes and failures, π = δ ≈ 1,
so β ≈ 1, i.e., there is no upside salience. In other words, for a large firm, failure of a major project
can be notable enough to be reported upon in the media. In contrast, small start-ups often fail
unnoticed. What is mainly reported in the media are extraordinary successes that start in garages
and become tech giants. So other things equal, β will be higher for small firms than for large firms.
The model therefore implies that the bias in favor of adopting risky projects will be especially
strong for small start-ups. A further implication is that moonshots that are initiated with great
fanfare and heavy investment may not generate as much mythology and overestimation as stories
about firms that started in a garage.

If the effects of the model are stronger for small startups, then naive observers will strongly
overestimate the probability of such startups succeeding, resulting in active and impetuous en-
trepreneurial activity. There is survey evidence that entrepreneurs are highly overoptimistic about
their likely success (Cooper, Woo, and Dunkelberg 1988). Our model suggests that there will
tend to be much less overoptimism about the innovative projects of large firms, and therefore less
frequent undertaking of such projects.

3Since the benchmark denominator expression Rθ,β < 0, a negative sign is needed to ensure that higher eθ(β, β)
is indicative of higher reject probability.
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6 Identifying sources of cultural evolution using the Price Equa-
tion

Our model is an evolutionary system in which later agents stochastically inherit the trait of adopt
versus reject from earlier agents. If we designate some set of earlier agents as ancestral, and some
set of later agents as descendant, then we can glean insight into the drivers of cultural evolution
using the Price Equation (Price 1970). The Price Equation decomposes evolutionary change into
selection and nonselection effects. The nonselection component is often called mutation pressure—
the degree to which traits shift through the inheritance process instead of fitness-biased biased
replication. The standard Price Equation applies to realizations; we take expectations to employ
it in ex ante form.

The ex ante Price Equation

The insights provided by the Price Equation depend on how key categories are defined: ances-
tors, descendants, inheritance, and traits. We view inheritance in our setting as a potential causal
dependence of the adopt/reject trait among descendants on the traits of ancestors. Under this inter-
pretation there is no inheritance from a censored agent, because later agents derive no information
from such an agent.

With this definition in mind, we now describe a stochastic version of the Price Equation. In
the model, the history in general contains some mixture of high and low payoffs. Let the ancestral
generation be denoted a and the descendant generation d. Let qi be the frequency of type i in the
a population, where i = 0 indicates reject and i = 1 indicates adopt. Let q′i be the frequency of
type i in the d population. We use overlines to denote expected frequencies, so let q′i ≡ E[q′i].
In a realization where type i = 0 has zero frequency in a, fitness is undefined. We therefore use
a form of the Price Equation emphasized by (Frank 1997) that contains ancestral and descendant
frequencies instead of fitnesses.

The average trait values in the a and d populations, and the expected average trait in the
d population conditional upon observed payoff information F , are ẑ

∑
qizi, ẑ′ =

∑
q′iz′i, and

¯̂z′F ≡ E[ẑ′|F ] =
∑
E[q′iz′i|F ]. We study the change in trait value, ∆ẑ ≡ ẑ′ − ẑ and the expected

change, ∆̂z
F
≡ E[ẑ′|F ]− ẑ.

Let ∆qi ≡ q′i−qi be the frequency change due to natural selection, and let ∆q
i ≡ q′iF−qi be

the expected frequency change conditional upon information F . Let the trait value change, and the

expected trait value change conditional upon information F be ∆zi ≡ z′i−zi and ∆z
iF ≡ z′iF −zi.

The Price Equation decomposes average trait change into two terms

∆ẑ =
∑

q′i
(
∆zi

)︸ ︷︷ ︸
mutation pressure

+
∑(

∆qi
)
zi︸ ︷︷ ︸

selection

, (16)

as given by (Frank 1997). The expected change in the average population trait value is therefore

∆̂z
F

=
∑

E[q′i
(
z′i − zi

)
|F ]︸ ︷︷ ︸

mutation pressure

+
∑

E[(q′i − qi)zi|F ]︸ ︷︷ ︸
selection

, (17)

where in our context the sum is the 2 alleles, adopt and reject. We code these types with index
i = 0, 1, which have ancestral alleles z0 = 0 and z1 = 1, where 0 indicates reject and 1 indicates
adopt.
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Consider, in state θ, a sequence of A or R realizations through agent In. We consider this
population of n agents to be the ancestral generation, and we analyze the change or expected
change in the average trait value to the descendant generation, In+1, which is a population of a
single agent.

Under our definition of inheritance as a potential causal dependence of traits, an ancestral
agent who is censored has no descendants. Furthermore, an agent with trait i = 0 rejects, resulting
in a deterministic payoff of zero, which is uninformative to later agents. Since reject agents have
no influence on later beliefs or actions, reject agents have no descendants. Finally, an uncensored
agent with trait i = 1 does generate information that influences the information, and potentially
the behavior, of the descendant Ij+1. So all uncensored agents collectively share the same, single
descendant. That is, the descendant Ij+1 inherits from all ancestral agents.4 Since i refers to type
in the above equations, the terms reflect the aggregated inheritance derived from all the agents of
each type.

Selection and mutation pressure in project adoption

We study the expected evolution of traits conditional on the behaviors of early agents. We examine
two conditionings: (i) all ancestral agents through In have adopted or (ii) not all ancestral agents
adopted. Then we examine unconditional trait evolution in an illustrative special case.

Case 1: All ancestral agents adopted
Consider first the case in which, in state θ, all agents adopt through agent In. There is only

type i = 1 in the a generation, so q0 = 0 and q1 = 1. Trivially, there can be no selection in the
evolutionary sense, because the a population has only one allele.

Furthermore, there is stochastic mutation pressure wherein the zi = 1 ancestors can map
into a z′i = 0 descendant. Observe that q′1 = 1; all agents in d are descendants of type i = 1 in
generation a.

Since it is not meaningful to study evolution when there are no ancestors, let B denote the
event that there is at least one uncensored ancestor, which is a special case of the conditioning on
general information set F . We substitute into Eq. 17 to obtain

∆̂zF = E[z′1 − 1|z1 = · · · = zn = 1,B]

= P (z′ = 1|z1 = · · · = zn = 1,B)− 1, (18)

where the RHS expression comes solely from the mutation pressure term of the Price Equation.
The superscript of F denotes conditioning on both B and on all past adopt.

What the Price Equation reveals here (Eq. 18) is that, even though there is selection bias
on project payoffs that affects the evolution of the adopt/reject trait, there is no selection in the
evolutionary sense. Selection bias induces cultural evolution by inducing mutation pressure in the
trait value between ancestors and their descendants, rather than through selection on survival of
ancestors.

This may seem counterintuitive, since a key driver of evolution here is that agents with low
payoffs are “selected out.” However, all ancestral agents have the same trait, i = 1. There is
no variance for evolutionary selection to act upon. In contrast, censorship is based on whether
the agents who adopted and experienced high versus low payoffs. That censorship decreases the
tendency for In+1 to switch to reject.

4This is consistent with versions of the Price Equation in which a descendant can have multiple ancestors. In the
biological context, the number of ancestors is usually one or two for asexual or sexual reproduction, but in cultural
contexts an agent can have many influencers.
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The mutation pressure that drives expected trait change in Eq. 18 is negative, meaning there
is always a chance that the descendant of an A agent will reject. Mutation pressure here is caused
by cognitive reasoning, as later agents assess state based on the payoffs received by earlier agents.
Notably, stronger selection bias weakens the pressure toward R. Moreover, the form of mutation
pressure here differs from mutation pressure in genetic settings, in that its strength depends on
the number of (uncensored) type-A agents in the ancestral generation. In genetic inheritance a
mutation bias has a fixed strength and it applies to a single parent-offspring replication event.
In our context, all the uncensored type-A ancestors are collectively the causal parents of a single
offspring, and the greater their number, the greater the chance the offspring will convert to type
R.

Case 2: A past reject has occurred
We now consider trait evolution conditional on at least one past reject. There is also at least

one past adopt, since I1 always adopts. Since the a generation has a mixture of adopt and reject
alleles, there may be selection in the evolutionary sense.

Since there has been a past reject, all subsequent agents reject, so in the d generation agent
In+1 always rejects. In fact, with no additional complexity, we now generalize trivially so that
the d generation includes any number of agents In+1, In+2 and so forth. Also, since the outcome
is deterministic, our stochastic version of the Price Equation reduces to the deterministic Price
Equation as in Eq. 16.

Since a reject does not generate informative payoffs, and therefore has no causal effect on
later agents, the reject type (i = 0) has no cultural descendants. In contrast, when an a agent
adopts and is not censored, payoff information is transmitted to descendants and can influence
behavior. Collectively, a sufficiently high number of low payoffs derived from uncensored past
adopts causes the d agent(s) to reject. So as before, each agent in the d generation descends from
all the agents of type i = 1, and only type i = 1 has descendants. So by definition, the descendant
frequencies are q′0 = 0, q′1 = 1.

Since, under Case 2 conditioning, the descendants of type z1 = 1 always reject, we have
z′1 = 0. In other words, trait i = 1 has perfect negative heritability. This is reflected in the
mutation pressure component of the Price Equation. Substituting these values into the Price
Equation gives

∆̂z
F

= −1︸︷︷︸
mutation pressure

+ 1− q1︸ ︷︷ ︸
selection

(19)

where F refers in this case to the conditioning on at least one past reject and at least one uncensored
adopt. The initial mean value of zi in a is q0(0) + (1 − q0)1 = 1 − q0. The initial a mean and
the change in mean are negatives of each others, which reflects the fact that all descendants reject.
(mean trait value of zero).

The decomposition shows that evolution toward the reject allele derives from the opposition
of two strong effects: evolutionary selection and mutation pressure. There is strong selection for
A, since only A types leave descendants. However, this is overwhelmed by even stronger mutation
pressure toward R. Specifically, evolutionary selection results in no descendants of the i = 0 type,
yielding a positive selection term. But mutation pressure in the descendants of the i = 1 type is
overwhelming; all of them shift from z1 = 1 to z′1 = 0. This generates the −1 term. So the R allele
becomes fixed in the d generation.

The mutation pressure in this setting is more extreme than in previous case with no rejects
in the ancestral generation (Eq 18), because this setting is deterministic: the descendent genera-
tion definitively rejects, and the rejection assuredly arose by mutation from an ancestor who had
adopted. Furthermore, the strength of selection (i.e. change in mean phenotype due to differential
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survival) is strongest when q1 is small – that is, when the ancestral generation has only a small
frequency of adopters – because here there is a greater differential contribution of adopters versus
rejectors to the descendent generation.

The censorship parameter pi does not enter Eq. 19. Intuitively, censorship affects who
becomes an A or R in the a generation, but once we condition on an R being present in the a
generation, this determines that R will be fixed in the d generation. So biased censorship does not
affect the strength of evolutionary selection.

Case 3: Without conditioning on whether past rejects
In the SI, we also perform a Price Equation decomposition in a case with minimal conditioning—

only on the presence of at least one uncensored ancestor. This allows for the cases of All Past Adopt
(Case 1) or Some Past Reject (Case 2) as possible realizations. The insights from Cases 1 and 2 carry
through to this minimal-conditioning case. There is still opposition between the effects of selection
and mutation pressure, with selection favoring adopt and mutation pressure favoring reject.

Taken together, the three applications of the Price Equation above provide a notable contrast
between cultural and genetic evolution. Moreover, evolution in our context also differs from trait
dynamics in other behavioral settings, such as in evolutionary game theory where inheritance
is determined by direct copying (Nowak 2006). Accurate copying leads only to selection, i.e.,
differential reproduction of traits. In contrast, agents here process information thoughtfully, which
enriches the causality of trait transmission. Information transmission from parent to offspring
results in mutation pressure, which can even overwhelm selection.

This application of the Price Equation offers three lessons. First is that care is needed in
drawing interpretations about cultural transmission in terms of selection. It is tempting to view
cultural transmission as simply a matter of differential survival of traits that are more effective at
reproducing themselves. This form of selection can certainly occur, but cultural transmission can
also take very different forms. As we have seen, one of these forms is a systematic, endogenous
mutation pressure arising from cognition. Such pressure can operate even when there is no selection
(Case 1), and it can overwhelm selection when the two forces are opposed (Case 2).

Second is that the Price Equation decomposition can apply to many social economic models,
so long as some agents are influenced by other agents, and a causal linkage between actions is used
to specify inheritance. The third lesson is that, unlike in evolutionary game theory (Nowak 2006),
mutation pressure will often be important in these settings, because agents engage in cognitive
reasoning about unknown states.

7 Discussion

Biased information about others can profoundly influence investment risk-taking, which we have
studied as a cultural trait transmitted among firms. We have shown that when low-payoff outcomes
are censored with higher probability than high-payoff outcomes, firms that do not account for this
censorship bias become overly optimistic and undertake projects too often. This causes booms of
overadoption, followed either by a eventual bust or by permanent long-run adoption even in a state
where complete information would assuredly lead to (rational) rejection of a risky project.

These dynamics are a form of cultural evolution in which parentage reflects causality. This
is a richer form of cultural evolution than simple copying of successful traits, because it allows
for cognitive reasoning about which traits are more likely to yield high payoff based on (biased)
observations of prior outcomes.

Even for given size of project, some types of firms (such as large firms) tend to receive more
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attention than others (e.g., greater coverage by financial and media analysts). Since attention
probabilities are bounded above by one, the upside salience of high-profile firms is necessarily
limited; even their failures are noticed.

Specifically, when attention is high, censorship of low outcomes is less likely, which reduces
overadoption. For example, if a huge moon-shot initiative by a large established firm (e.g., self-
driving cars) were to fail, this could be as conspicuous as a success. So the model implies that
overadoption will be more pronounced among startups and small firms than among large established
enterprises. The extreme difference in visibility of success versus failure among startups provides a
new explanation for the overoptimistic expectations of entrepreneurs, and for the empirical anomaly
of low returns to private equity (Moskowitz and Vissing-Jørgensen 2002).

Some firms receive higher attention for reasons other than sheer size. For example, as a
creator of innovative consumer products, Apple has long been a magnet for attention, starting even
before it became a giant. Firms in consumer product businesses tend to attract greater attention
than infrastructure firms. A failure of a project by a firm in a high-attention sector may be more
salient than failure in a sector that receives little attention.

When a firm’s decision making is influenced by observations of other firms, adopting or
rejecting a project is a cultural trait transmitted with bias between firms. We use the Price
Equation to decompose such transmission into a selection component and a mutation component.
Notably, even though misperceptions of managers are driven by selection bias in what they observe,
the Price Equation reveals that behavioral evolution is driven by the opposing effects of mutation
pressure and evolutionary selection, and that in some conditions there is only mutation pressure,
without evolutionary selection. This contrasts sharply with a large domain of cultural evolutionary
models with accurate copying, in which there is only selection.

The result of excessive adoption in our model is relative to a rational firm-level optimum.
However, there are, in general, positive externalities to research and innovation. So excessive adop-
tion that is unprofitable at the firm level, may be welfare-increasing at the social level. Innovative
and moonshot projects may generate especially high externalities. On the other hand, there are
also undesirable innovations such as patent trolling and the use of hijacked airplanes as weapons.

We assume upside salience: that the probability that a high payoff is observed by others
be greater than the probability that a low payoff is observed, but less than one. We expect
moonshots to have high upside-salience, because a rare, very high payoff is especially noticeable.
In consequence, the model implies that overadoption will be more severe for moonshot projects.
We also expect ‘sexy’ projects (project that are innovative, fun and exciting, such as self-driving
cars) to have high upside-salience. For given upside cash flow, people especially like to hear about
projects that they feel will change life in vivid ways. And so there may be a tendency to over-invest
in such sexy projects.

We have shown that upside salience causes managers to overvalue moonshot projects, re-
sulting in over-adoption and boom/bust patterns. For similar reasons, security market investors
may overvalue “lottery stocks” (stocks with positive skewness), consistent with evidence from stock
returns as summarized in (Han, Hirshleifer, and Walden 2020).

Our main focus has been investment at the firm level, but our approach can also be applied at
larger scales to explain industry-level or aggregate-level investment boom/bust patterns. Industries
may differ in upside salience of payoff outcomes, in part owing to differences in average firm size.
So our model suggests that boom/bust patterns can be much more pronounced in some industries
than in others. This is an interesting direction for empirical testing.

Stepping beyond the model somewhat, our approach also has organizational implications,
including an advantage to managers of recruiting team members who are less heavily censored in
observing others. Examples would include directors and venture capitalists who have broader direct
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experience, rather than observation through the media, than the manager or entrepreneur in past
projects, especially for small startups.
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Supporting Information Text10

1. Updating under full observation: additional details11

In the main text we claim that d∗ is negative. The reasoning is as follows. Under the prior belief, adopting is profitable. Since12

q(2p− 1)(V + 1) > 0, we have 1− q < pV−(1−p)
(2p−1)(V+1) . The numerators and denominator in these two expressions are positive, so13

dividing gives log( p−(1−p)V
pV−(1−p) )− log( q

1−q ) < 0, which is the numerator of our expression for d∗.14

2. Updating under biased censorship: derivations15

Rational updating under biased censorship: derivations. Let vj = V or −1 be the realized payoff outcome of agent Ij if j16

adopts. Let Oij denote the event that Ii observes Ij , where i > j, and Oij denote the event that Ii does not observe Ij . Since17

I1 adopts, observation by rational I2 of I1’s payoff updates I2’s belief about state to18

P (θ = H|O21, V1 = V ) = P (θ = H,V1 = V |O21)
P (V1 = V |O21) =

(
1
2

)
pδ(

1
2

)
pδ +

(
1
2

)
(1− p)δ

= p19

P (θ = H|O21, V1 = −1) = P (θ = H,V1 = −1|O21)
P (V1 = −1|O21) =

(
1
2

)
(1− p)π(

1
2

)
(1− p)π +

(
1
2

)
pπ

20

= 1− p. [1]21

By contrast, if I2 does not observe I1, the rational inference from no observation is:22

P (θ = H|O21) =
P (θ = H|O21)

P (O21)
23

=
P (H, v1 = V )(1− δ) + P (H, v1 = −1)(1− π)

P (H, v1 = V )(1− δ) + P (H, v1 = −1)(1− π) + P (L, v1 = V )(1− δ) + P (L, v1 = −1)(1− π)
24

=

(
1
2

)
p(1− δ) +

(
1
2

)
(1− p)(1− π)(

1
2

)
p(1− δ) +

(
1
2

)
(1− p)(1− π) +

(
1
2

)
(1− p)(1− δ) +

(
1
2

)
p(1− π)

25

=
p(1− δ) + (1− p)(1− π)

2− δ − π
. [2]26

27

Neglect of biased censorship and adoption dynamics: derivations. Let a B superscript denote an imperfectly rational (biased)28

expectation. A biased agent mistakenly drops the conditioning on observation versus non-observation of payoffs in forming29

expectations. So for I2,30

PB(θ = H|O21, v1 = V ) = PB(θ = H,V1 = V )
PB(v1 = V )31

= PB(θ = H,V1 = V )(
1
2

)
PB(v1 = V |θ = H) +

(
1
2

)
PB(v1 = V |θ = L)

32

=
(

1
2

)
p(

1
2

)
p+

(
1
2

)
(1− p)

= p33

PB(θ = H|O21, v1 = −1) = PB(θ = H, v1 = −1)
PB(v1 = −1)34

=
(

1
2

)
(1− p)(

1
2

)
(1− p) +

(
1
2

)
p

= 1− p. [3]35

In the random walk for the uncensored subsequence, conditional on state θ = H the probabilities of an up move, pH∗, and36

of a down move, 1− pH∗, are37

pH∗ = P (v1 = V |H,O21) = P (v1 = V,H,O21)
P (v1 = V,H,O21) + P (v1 = −1, H,O21)38

=
(

1
2

)
P (v1 = V,O21|H)(

1
2

)
P (v1 = V,O21|H) +

(
1
2

)
P (v1 = −1, O21|H)

39

= pδ

pδ + (1− p)π40

= p

p+ (1− p)/β > p41

1− pH∗ = 1− p
1 + p(β − 1) < 1− p, [4]42
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where the inequalities follow because upside salience β = δ/π > 1.43

3. Derivation of comparative statics44

In the main text we derived the inequality45

log
(
p− (1− p)V
pV − (1− p)

)
− log

(
q

1− q

)
< 0. [5]46

We can show several simple conclusions. For state H, ∂R
H

∂V
< 0 and ∂RH

∂q
< 0. In other words, as the upside reward V of47

the project increases, or the prior likelihood of state H increases, the probability of long-run adoption increases. Specifically,48

differentiating the expression for RH from the main text gives49

∂RH

∂q
=

log
( 1−p
βp

)
q(q − 1) log( p

1−p ) . [6]50

The denominator is positive, because p > 1
2 , and the numerator is negative, because β > p/(1− p), so ∂RH

∂q
< 0. Similarly,51

∂RH

∂V
=

(2p− 1) log
( 1−p
βp

)
(p(1 + V )− V )(p(1 + V )− 1) log

(
p

1−p

) . [7]52

The numerator is negative, again, whereas each term in the denominator is positive (because p > V
1+V and V > 1 and p > 1

2 ),53

and so ∂RH

∂V
< 0.54

Likewise, for state L, when RL < 1, we have ∂RL

∂p
> 0, ∂R

L

∂V
< 0, and ∂RL

∂q
< 0. Specifically,55

∂RL

∂q
= −

log
(
β(1−p)

p

)
(1− q)q log

(
p

1−p

) . [8]56

The numerator is positive for β > p/(1− p) and the denominator positive for p > 1/2, and so ∂RL

∂q
< 0.57

Likewise58

∂RL

∂V
=

(2p− 1) log
(

p
β(1−p)

)
[p(1 + V )− V ][]p(1 + V )− 1] log

(
p

1−p

) . [9]59

In this case the denominator is again positive, and numerator again negative, under the condition β > p/(1 − p), so that60

∂RL

∂V
< 0.61

Likewise,62

∂RL

∂β
= ∂RH

∂β
=

log
(

q
1−q

)
− log

(
p(1+V )−V
p(1+V )−1

)
1
β

log
(

p
(1−p)

) . [10]63

Here the denominator is positive, because p > 1/2, and the second term in the numerator is also positive because V > 1.64

Although the sign of the numerator in general depends on q, the restrictions on q imposed by (2) assure that the numerator is65

positive by Eq. (5). So ∂RL

∂β
= ∂RH

∂β
< 0.66

Likewise67

∂RL

∂p
=

ζ log
(

p
β(1−p)

)
(p−1)p − log

(
p

1−p

)( (V 2−1) log
(

p
1−p

)
[(p−1)V+p](pV+p−1) + ζ

(p−1)p

)
log2 ( p

1−p

) > 0 [11]68

where69

ζ ≡ log
(

q

1− q

)
− log

(
p(1 + V )− V
p(1 + V )− 1

)
> 0 [12]70

by Eq. 5.In other words, higher p promotes rejection because payoffs become more accurate indicators of the actual state, L.71

Agents also understand that payoffs are more accurate, and therefore update more strongly to payoff outcomes. This increases72

the sizes of up- and down-moves in the LLR random walk, reducing the mean number of steps required to reach the absorbing73

barrier. This effect also promotes rejection in the long run.∗74

Some less obvious comparative statics are obtained by examining interactive effects of parameters by inspecting mixed75

partial derivatives. These provide more distinctive empirical implications of the model. When we vary both upside salience and76

upside payoff, we obtain77

∂2RL

∂β∂V
= − 2p− 1

β[p(1 + V )− V ][p(1 + V )− 1] log
(

p
1−p

) < 0. [13]78

∗ In contrast, in theH state the two effects are opposing, so the comparative statics on p is ambiguous.
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Since β = δ/π, and β and π enter into the expression for RL only through β, it follows immediately that ∂2RL/(∂δ∂V ) < 079

and ∂2RL/(∂π∂V ) > 0.80

To understand this, first consider the effects of V and π on the chance of ever rejecting individually. Rejection occurs when81

the random walk d′k (the net count of up versus down steps observed by agent Ik) hits the lower boundary d∗ < 0. Increasing82

the upside payoff V decreases d∗, making rejection less likely (∂RL/∂V < 0). Increasing π (reducing censorship) increases the83

chance of a downward step, making rejection more likely (∂RL/∂π > 0). However, if V is already very large, the chance of ever84

reaching the lower boundary d∗ � 0 is almost zero, and so the marginal effect of an increase in π is small. So the cross partial85

on RL is positive. A similar intuition applies with opposite sign for the cross partials with respect to β or δ.86

Likewise,87

∂2RL

∂β∂q
= 1
βq(1− q) log

(
p

1−p

) > 0. [14]88

The intuition here is essentially the same as that for the cross partial of β with V discussed above.†89

4. Motivating conceptual experiment for comparative statics on excess log reject probabilities90

The conceptual experiment underlying the comparative statics on the excess log reject probabilities is a differences-in-differences91

comparison. The starting point is a pair of projects with the same q and V values but different β values, β and β. Taking92

the partial derivative with respect to β involves a comparison with another pair of projects with beta values of β′ > β and93

β, where β′ − β approaches zero. This pair of projects has values q′ and V ′, which are consistent with higher moonshotness.94

The result of this experiment therefore answers the question of how much a small increase in β that derives from a change in95

moonshotness changes the reject probability, after adjusting for the direct effect of the shift in q and V values from (q, V )96

to (q′, V ′) (“direct” meaning other than through their effect on β). Specifically, since eθ(β, β) is independent of the q and V97

values, this comparison accommodates the second pair of projects having any arbitrary different common set of q and V values,98

q′ and V ′.99

This can be seen in more detail from Table S1, which shows the four projects involved. Specifically, this adjustment is100

reflected in the fact that when we compare a project with (β, q, V ) to a project with (β′, q′, V ′), the normalization benchmark101

factor in the denominator shifts at the same time from a project with (β, q, V ) to a project with (β, q′, V ′).102

We apply this general experiment to the specific values of β′, q′ and V ′ implied by varying moonshotness. We have argued103

that β is increasing with moonshotness, so that if we increase V while decreasing q parametrically to hold expected payoff104

constant, β decreases. In other words, we can define the function βκ(V ; p, v) for the relation between β and moonshotness105

as parameterized by V , and assume that ∂βκ(V )/∂V > 0. As discussed earlier, we also have the parametric relationship106

∂qκ(V )/∂V < 0. So in the experiment above, q′ = qκ(V + ∆V ; p, v), and β′ = βκ(V + ∆V ; p, v).107

5. Case 3 of Price Equation: No conditioning on whether there is a past reject108

Here we perform a Price equation decomposition with minimal conditioning—only on the presence of at least one uncensored109

ancestor (event B). This allows for the cases of All Past Adopt (Case 1) or Some Past Reject (Case 2) as possible realizations.110

From the expectational Price equation, recognizing that z0 = z′0 = 0, z1 = 1, so
∑

qizi = q1, and
∑

E[q′izi|B] = E[q′1z1|B],111

we obtain112

∆̂z
B

= E[q′1
(
z′1 − z1) |B]︸ ︷︷ ︸

mutation pressure

+ E[(q′1 − q1)z1|B]︸ ︷︷ ︸
selection

113

= E[q′1
(
z′1 − 1

)
|B]︸ ︷︷ ︸

mutation pressure

+ E[q′1 − q1|B]︸ ︷︷ ︸
selection

. [15]114

We examine the case of n = 2 ancestors. We first calculate E[q1|B]. Let xj denote the adopt/reject decision of agent Ij ,115

coded as 0 and 1. Then since x1 = 1, the event (x2 = 1,B) occurs when (1) v1 = V , or (2) v1 = −1, I1 is censored, and I2 is116

not censored. Also, observe that q1 = 0.5(1 + x2). So117

E[q1|B] = 0.5 + 0.5E[x2|B]118

= 0.5 + 0.5P (x2 = 1|B)119

= 0.5 + 0.5P (x2 = 1,B)
P (B)120

= 0.5 + 0.5 P (x2 = 1,B)
1− [q(1− p) + (1− q)p]2(1− π)2121

= 0.5 + 0.5
{
qp+ (1− q)(1− p) + [q(1− p) + (1− q)p](1− π)π

1− [q(1− p) + (1− q)p]2(1− π)2

}
. [16]122

†Higher q, the probability of the good state, increases the absorption buffer (decreases d∗ < 0), reducing RL . Higher upside salience β also reduces RL . Since the probability of a reject is bounded
below by zero, a higher buffer weakens the negative marginal effect of upside salience on the probability of ever rejecting. So the cross partial between q and β onRL is positive.
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Table S1. Comparative Statics on Moonshotness

Levels of moonshotness
Benchmark vs. Focal project Initial Level Increased Level

Benchmark project (β, q, V ) (β, q′, V ′)
Focal project (β, q, V ) (β′, q′, V ′)
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Since rejectors have no causal influence on the descendant population, the descendant population comes entirely from type123

1, i.e., q′1 = 1, which is deterministic. So E[q′1|B] = 1.124

We also need to calculate E[q′1z′1|B] = E[z′1|B]. The descendant of type 1 has type either 0 or 1, so125

E[z′1|B] = P (z′1 = 1|B) = P (z′1 = 1,B)
P (B) . [17]126

The event z′1 = 1 is just the event that I3 adopts. This occurs iff: (1) both ancestors adopt, and (2) the sole uncensored127

ancestor has v = V , or there are two uncensored ancestors and at least one has v = V . Both ancestors adopt iff I2 adopts,128

which occurs iff either (a) v1 = V , or (b) I1 is censored. So the pathways for I3 to adopt are: (i) v1 = V (since even if v2 = −1129

is not censored, I3 adopts); (ii) v1 = −1, I1 censored, v2 = −1, I2 censored; and (iii) v1 = −1, I1 censored, v2 = V .130

The event B rules out pathway (ii). So the numerator is131

P (z′1 = 1,B) = qp+ (1− q)(1− p) + [q(1− p) + (1− q)p](1− π)[qp+ (1− q)(1− p)]132

= [qp+ (1− q)(1− p)]{1 + [q(1− p) + (1− q)p](1− π)}.133

The denominator is
P (B) = 1− [q(1− p) + (1− q)p]2(1− π)2.

So134

P (z′1 = 1|B) = [qp+ (1− q)(1− p)]{1 + [q(1− p) + (1− q)p](1− π)}
1− [q(1− p) + (1− q)p]2(1− π)2 . [18]135

We have now calculated all the ingredients of the Price equation. Substituting them into (15) gives136

∆̂z
B

= [qp+ (1− q)(1− p)]{1 + [q(1− p) + (1− q)p](1− π)}
1− [q(1− p) + (1− q)p]2(1− π)2 − 1︸ ︷︷ ︸

mutation pressure

137

+ 1
2 −

1
2

{
qp+ (1− q)(1− p) + [q(1− p) + (1− q)p](1− π)π

1− [q(1− p) + (1− q)p]2(1− π)2

}
︸ ︷︷ ︸

selection

[19]138

In this context, in which the ancestral agents may or may not contain a rejector, the censorship rate enters into the decomposition139

of change from the Price Equation. Since the ratios above are probabilities less than 1, there is again negative mutation140

pressure and positive selection. The positive selection occurs because only adopters have descendants. The negative mutation141

pressure occurs because adopters who generate negative payoffs generate descendants who are rejectors.142
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