Intermediated Credit and Local Resilience Erica Jiang¹, Will Shuo Liu², Lee Seltzer³

Abstract

- We test whether bank capitalization affects local resilience during crises.
- Exploit shocks to real economy by COVID-19 pandemic.
- We find that counties with poorly capitalized local banking sectors exhibit more business closures, more unemployment, more decline in income and hours worked during the pandemic.

Motivation

- Previous literature shows lack of bank lending to consumers worsened financial crisis (Ramcharan et al 2016) and shocks to banking sector can hurt labor markets (Chodorow-Reich 2014).
- Raises the question of whether bank capital can serve as hedging for local economy against real economic shocks like COVID-19 pandemic and associated social distancing.

Research Question

- Were areas with well capitalized banking sectors more resilient to the COVID-19 shock?
- Quantitatively, how much can a better capitalized banking sector reduce socially costly business closures and displacement of labor during real economic downturns?

Data

- Individual-worker daily hours and wage from Homebase
- County-level unemployment from BLS
- Bank Call Reports and FDIC SOD
- Small Business Administration loans and stimulus data
- John Hopkins CSSE COVID data

¹University of Southern California, ²City University of Hong Kong, ³University of Texas at Austin

COVID-19 Shock

• March 16: Social distancing guidelines by the White House.

Figure 1: Business Openings by state

Empirical Analysis

Table 1: Changes in Businesses Open by Tier 1 Ratio

 $Outcome_{it} = \beta \ i.BottomQuartTier1_i \times Post_t + \Gamma X_i \times Post_t + \mu_i + \nu_t + \epsilon_{it}$

	Business Open								
	(1)	(2)	(3)	(4)	(5)				
	All	Entertainment	Food	Professional	Other				
Bottom Quartile									
Tier $1 \times Post$	-10.444***	-1.572**	-4.357***	-0.897*	-3.269***				
	(2.765)	(0.631)	(1.506)	(0.459)	(0.974)				
R^2	0.912	0.959	0.918	0.923	0.941				
Obs	27,920	27,920	27,920	12,544	19,552				

Table 2: Changes in individual Wages and hours by Tier 1 Ratio

 $Outcome_{it} = \beta \ i.BottomQuartTier1_i \times Post_t + \Gamma X_i \times Post_t + \mu_i + \nu_t + \epsilon_{it}$

	Weekly Wages			Weekly Hours Worked			
	(1)	(2)	(3)	(4)	(5)	(6)	
	All	Non-Manager	Manager	All	Non-Manager	Manager	
Bottom Quartile							
Tier $1 \times Post$	-0.012***	-0.012***	-0.018*	-0.005***	-0.004**	-0.016**	
	(0.003)	(0.003)	(0.009)	(0.002)	(0.002)	(0.007)	
R^2	0.762	0.760	0.747	0.644	0.644	0.614	
Obs	1,811,150	$1,\!638,\!575$	$154,\!656$	3,141,761	2,832,619	$275,\!157$	

• Controls include the number of COVID cases per 100,000 in county i, percent of employees employed by vulnerable industries in county i, and demographic variables; all regressions include individual and time fixed effects.

• Observations for Table 1 are at county-by-week level; observations for Table 2 are at individual worker-by-week level.

Dynamic Difference-in-Differences Coefficient Plots

• Treated: county-level tier-1 capital in the bottom quartile among all counties in the same state. • Shaded area represents 95% confidence interval.

Figure 2: Change in county-level businesses open

Figure 3: Change in county-level employment

- capital.
- stimulus.

Other Findings

• Using individual worker data, we find more job termination in bottom quartile Tier 1 counties. • Results hold when using BLS county unemployment rate as the outcome.

• Results generally hold when using reliance on SBA lending as the treatment instead of Tier 1

Current Work in Progress

• Empirical analysis about how bank capitalization influences the effectiveness of government

• Model to quantify the effect of bank capitalization on local resilience.

References

• Chodorow-Reich, Gabriel. "The employment effects of credit market disruptions: Firm-level evidence from the 2008–9 financial crisis." The Quarterly Journal of Economics 129.1 (2014): 1-59.

• Ramcharan, Rodney, Stephane Verani, and Skander J. Van den Heuvel. "From Wall Street to main street: the impact of the financial crisis on consumer credit supply." The Journal of Finance 71.3 (2016): 1323-1356.