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1 Introduction

Over the past decade, artificial intelligence (AI) has emerged as a potential general purpose

technology (Cockburn et al. (2019)). Spurred on by advances in machine learning, the cost

of prediction across various domains has started to fall at an accelerating pace (Agrawal

et al. (2018a)). This raises interesting questions of where AI will be adopted and also its

potential disruptive impact on employment and businesses (Gans and Leigh (2019)).

To date, our conception of AI adoption has mainly operated at the unit of a task or

decision (e.g., Frank et al. (2019); Acemoglu and Restrepo (2018)). To forecast the potential

impact of AI on employment, for example, there have been numerous exercises designed to

identify jobs at risk from AI, the tasks that comprise jobs that are at risk and the more general

impact of automation on the workplace (Webb (2020); Brynjolfsson and Mitchell (2017);

Brynjolfsson et al. (2018); Felten et al. (2018)). That said, some of questioned whether

this task-level approach is suitable. Bresnahan (2020) argues that AI is an information

technology and, traditionally, such technologies have required organisational redesign to be

fully adopted. This is readily apparent in patterns of adoption of earlier generations of IT

(Bresnahan and Greenstein (1996); Bresnahan et al. (2002); Aral et al. (2012); Dranove et al.

(2014)).

Bresnahan (2020) emphasizes that AI will only be adopted where the consequences of

making errors in decisions have low stakes and where the decisions themselves are contained,

say, within specific modularised functions. He argues that this is the case for AI that

primarily enhances the functionality of user interfaces and ones that sort information prior

to it being acted upon by others. Thus, while Bresnahan’s assessment of the consequences

of AI are different from the task-based model, his predictions about which organizations will

be early adopters are similar: modular organizations where the consequences of a mistaken

machine prediction are relatively low.

As an example, Bresnahan discusses Amazon’s recommendation engine. The recommen-

dation engine uses data about consumer purchasing to predict which items a particular

consumer is likely to purchase next. These items are shown to the consumer, who then

chooses which item(s) to purchase (if any). This AI system is modular in the sense that it

does not require substantive changes elsewhere in the organization. It is a change to the

information each consumer sees, but the path from information to purchase to delivery is

unchanged. Furthermore, this AI system is low stakes. Here, Bresnahan emphasizes the

specific nature of the technology as prediction technology, noting, “Profits increase whether

the rate of true positives increases at the expense of either false negatives or true negatives–a

profitable sale occurs either way.” Furthermore, he notes that “[t]he role of the recommen-

2



dation engine as advisory to the user means that its output is not the final word.... This

lowers the stakes for false positives.”

He also discusses voice-based user interfaces such as Alexa and Siri. These make the cus-

tomer experience more efficient, but also have the power to improve workflows and replace

humans in many work tasks. For example, in Agrawal et al. (2019), we describe the role

of such user interfaces in replacing human transcription services in radiology. Transcription

services are modular in the sense that they are easily separated from the rest of the radi-

ologist’s workflow. The costs of a mistake are relatively low in the sense that radiologists

see–and can correct–mistakes quickly. The AI replaces the human task of transcription and

incrementally improves productivity.

Therefore, compared to the standard task based model, the systems based intuition

on modularity and stakes described in Bresnahan generates similar short-term empirical

predictions on which organizations–and which units with an organization–will adopt.1.

This paper demonstrates that a formalization of the intuition creates a distinct set of

predictions, particularly around modularity and stakes, when prediction improves in ways

that reduce risks and enable coordination. We provide a model of AI where tasks interact

with one another and are distributed across distinct decision-makers. The purpose is to

explore the barriers to the adoption of AI and to provide testable implications for how studies

focusing on forecasting AI’s impact should proceed. We find that Bresnahan’s intuition

applies in many–but not all–cases. We show that Bresnahan’s emphasis on one prediction

over one decision explains why modularity and low stakes lead to AI adoption. In contrast,

when there can be more than one prediction over more than one decision, then less modular

firms with higher stakes may benefit more from the better predictions that AI brings.

We do this using a framework that builds on Van den Steen (2017). We model a project

whose payoff is the outcome of a number of decisions undertaken by different agents. If the

agent knows the state, then it can take the appropriate action to maximize the stand-alone

payoff. In addition to a stand-alone payoff for a good decision, there is an additional payoff if

decisions are aligned. Artificial intelligence is represented by a prediction of the state given

to a particular agent. Agents cannot communicate.

Using this model, we first explore the role of modularity. Consistent with Bresnahan’s

intuition, we find that the more organisations have distinct tasks that do not interact much,

the more likely it is for AI to be adopted. Because AI involves the generation of information

to inform ever more nuanced and tailored decision-making, when it is deployed in a decision

1Bresnahan (2020) also discusses the role of capital deepening–that firms with pre-existing useful IT
capital are more likely to adopt AI. In doing so, he emphasizes that AI is a complement to IT infrastructure.
While this is not a direct prediction of the task-based model, it is consistent with discussions of task-based
predictions of early adoption (e.g. Webb (2020)
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that is interdependent with other decisions, it can be disruptive with negative productivity

implications across an entire system.

Second, this effect of modularity is compounded when AI itself is imperfect as, not only

does this make relying on AI more risky, it also enhances its potential disruptive effect. This

implies that, also consistent with Bresnahan’s intuition, when the stakes are higher and a

mistake becomes more costly, adoption is even less likely.

Third, we extend the model to examine different types of predictions. We allow for a

focal state, in which coordination is likely absent additional information, and a number of

other ex ante identical states. These other states are riskier, in the sense that a mistake

is more costly. They are also less likely. If there is only one such state, then Bresnahan’s

intuition applies: that AI is more valuable in modular organizations with low stakes decisions.

If, however, there are at least two riskier states, then AI can be more valuable for less

modular organizations and for higher stakes. Better prediction enables useful coordination

across decisions. Specifically, when improved prediction reduces the chance of picking the

wrong risky state, less modular organizations benefit most, particularly when the risks of an

incorrect decision are high.

Overall, this formalization of a systems-based view of the benefit of AI provides predic-

tions of what types of organizations are likely to adopt. These predictions are different from

those of the task-based model. The task-based model emphasizes modularity and a reduc-

tion in costs for prediction-based tasks. More modular organizations with high labor costs

are likely to see AI adoption. The AI will replace humans in those prediction-based tasks

and the organization will largely remain unchanged beyond the capital-labor substitution.

The systems-based model also predicts that AI will be adopted in modular, low-stakes

situations when the AI improves prediction of the risky state. However, when a prediction is

available that reduces the change of picking the wrong risky state, then the systems model

generates a different prediction than the task based model. In such cases, organizations with

less modularity and higher stakes benefit most because such predictions reduce the chance

of a costly mistake and increase the benefit of coordination across decisions.

This idea underlies a thought experiment we highlighted in our book Prediction Machines.

If Amazon’s recommendation engine improves on the dimension of not recommending prod-

ucts that people don’t want–i.e. reducing the false positives–then it makes sense to integrate

the AI into the overall business model. In particular, if the AI is accurate enough about

what the consumer does not want, then it is worth restructuring the organization to reduce

modularity by shipping the item to the consumers door before it is ordered. Shipping would

need to be integrated with the recommendation engine, eliminating the modular nature of

the recommendation. A mistake is costly, as the company would need to send someone to
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pick it up from the customer’s home and the customer would face a hassle.

Uncertainty increasing AI versus uncertainty reducing AI Stitch Fix is uncertainty reduc-

ing – so allows easier alignment Need to put in timing to make sense of this. Which action

chosen first.

2 Model Set-Up

The model here is based on Van den Steen (2017) more general in some aspects and simplified

in others. Suppose that a project return, R, depends on the outcomes of K decisions,

{D1, ..., DK} indexed by k. Each decision results in the choice of an action, ak ∈ Ak, a set of

Mk elements. An action can be stand-alone “correct,” alignment “correct,” both or neither.

A stand-alone correct decision, Dk, results in an increment to project return of αk compared

with an incorrect decision. If two decisions, {Dk, Dj}, are correctly aligned this results in an

increment to product return of γkj relative to the case where those decisions are incorrectly

aligned.

The “correctness” is a decision is modelled here in a reduced form way. We suppose that

the correct stand-alone decision is associated with a state, Tk ∈ Ak, knowledge of which

reveals the correct decision. This state could be driven by an assessment of the external

environment for a decision and/or an agent’s judgment regarding the trade-offs and risks

associated with particular actions. For instance, a retail manager may be considering a

decision of how much to re-stock based on a prediction of future demand as well as the

relative costs associated with errors in that forecast (inventory holding costs versus lost sales

due to stock outs). Based on that prediction and judgement, at a given time, there is an

assessment of the state and associated optimal action. If that state is correctly identified

and the associated action taken, there is a boost to project return of αk. If not, there is no

such boost.2

We treat the correctness of the alignment decisions similarly. We suppose that whether

two decisions, {Dk, Dj}, are aligned is associated with a state Tkj ∈ {Ak, Aj}. If {ak, aj} =

θkj, then the decision is “correct” and it contributes γkj to project return. Otherwise, there is

no contribution. We assume that Tkj is a bijection (or one-to-one correspondence) where for

every ak there exists an action aj that creates alignment. Thus, so long as this relationship

is known, there is an alignment incentive to choose the actions that selected that state for

each {Dk, Dj}. Note that the order of k and j matters here and the state θkj is different

2In many decisions, the “distance” from the optimal or correct decision matters. Here we abstract from
those considerations but it could be imagined that αk is a measure of the loss from deviating from the
optimum and a tolerance for errors would be reflected in a relatively low αk.
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from θjk. Importantly, it may not be possible to choose both the correct stand-alone and

alignment decisions in both directions. Thus, decision-makers will face a dilemma in terms

of whether to choose between correct stand-alone versus alignment decisions.

That dilemma will be resolved by the relative returns to stand-alone optimality and

alignment. We suppose that R =
∑

k Rk where:

Rk = αkIak=Tk +
∑
j 6=k

γkjI{ak,aj}=Tkj

where Ix are indicators that take a value of 1 if the condition, x is met and 0 otherwise. It

is assumed that αk ≥ 0 and each γkj ≥ 0.

2.1 Information Structure

Van den Steen (2017), assumes that each Tk and Tkj are equally likely and drawn from an

infinite set with Mk → ∞ for all k. Thus, there is a zero probability that one agent could

guess the “correct” action in the absence of knowledge of those states. Below we will consider

several means by which this situation can be improved. One is that agents receive a signal of

various stand-alone states for decisions they own. This may come in the form of a prediction

that resolves some external uncertainty and hence, provides a clearer signal of a stand-alone

state. Moving beyond Van den Steen (2017), we will consider distributions for stand-alone

states that involve mass points indicating potential status-quo outcomes that agents may

rely upon in equilibrium. If an agent “owns” a decision, Dk, they are the only agent who can

potentially observe, in the absence of communication, the outcomes Tk and Tkj. Specifically,

they do not know for any decision Dj 6=k, Tj nor Tjl including Tjk. Our interpretation of this

knowledge set is that an agent who owns a decision is using information regarding the state

as their own innate judgment regarding the trade-offs between alternative actions. In some

situations, communication may make coordination possible so that, for instance, alignment

actions between Dk and Dj are based on max{γjk, γkj} rather than one or the other.

2.2 Equilibrium Outcome with no focal actions

Suppose, for the moment, that each Tk and Tkj are equally likely. For instance, the proba-

bility that ak = Tk is 1
Mk

and the probability that aj is paired with ak (i.e., {ak, aj} = Tkj

conditional on choosing ak) is similarly 1/Mk. In addition, suppose that states are revealed

to the agent who owns Dk with probabilities pk and pkj both > 1
Mk

respectively. (For states

without k or where k is second in the order, there is no revelation).

6



Following Van den Steen (2017), we consider a case where each decision is “owned” by a

distinct agent (thus, there are K agents) and they have no means of explicitly coordinating

between them. Consider agent k (where we index the agent by the decision they own).

Suppose agent k has complete information regarding the states they are able to observe.

That agent knows that, for any given action they take, there is a 1
Mj

probability that it will

align with the choice of another agent j. This applies to any action including the action that

maximises the stand-alone component of the agent’s payoff. Thus, they expect to generate

a project contribution of:

αk +
∑
j 6=k

1

Mj

γkj

By contrast, if the agent does not know the action that generates a stand-alone contribution,

they can choose an action at random and expect a project contribution of:

1

Mk

αk +
∑
j 6=k

1

Mj

γkj

Note that these outcomes do not change as any pkj changes. Therefore, the expected con-

tribution of the agent prior to receiving information (or not) about the correct stand-alone

action is:
1

Mk

((1 + pk(Mk − 1))αk +
∑
j 6=k

1

Mj

γkj

Note that as Mk,Mj →∞ as in Van den Steen (2017), this becomes pkαk. This demonstrates

the difficulty of achieving the benefits from coordination if the absence of communication of

some other focussing device.

2.3 The role of communication

In the model as set-up, an alignment contribution arises at random or not at all. Of course,

if stand-alone actions are themselves chosen randomly, there may be no addressing this

situation. However, what if the chosen stand-alone action can be communicated to agents

prior to them choosing alignment actions? Suppose that such communication could occur at

a cost of c per message which resulted in the receiver potentially knowing the sender’s action

choice. Communication is imperfect, however, so that if a sender sends a message indicating

a particular action, with probability µ that message is misinterpreted as another action. In

this event, alignment is not possible. Thus, if a message is sent to all decision-makers, then
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the expected alignment contributions become:∑
j 6=k

pkj(1− µ)γkj − (K − 1)c

This demonstrates that the problem of alignment is a combination of the problem of judgment

(knowing the state, Tkj so that Dj can choose the correct alignment action) and the problem

of communication. When both of these are ‘solved’ in a given situation, which happens with

probability pkj(1− µ), then alignment can be achieved.

This highlights a fundamental trade-off in systems. between external responsiveness and

internal alignment. If stand-alone actions were fixed and always the same, then so long as

other decision-makers had judgment (and so knew Tkj), then alignment could be achieved.

By contrast, if stand-alone actions are varying, then to achieve alignment, judgment is

insufficient. Instead, communication is required. That communication both permits the

possibility of alignment but also gives value to judgment.

3 AI Adoption and Modularity

Our interest is in examining the impact of better prediction on how decisions are made in

organisations. To this end, we make two simplifications to the model as specified above. First,

the prediction we focus on is that regarding random variables external to the organisation

that drive, at a first instance, the stand-alone contribution of decisions. To capture this, we

turn now to examine an environment where all but one decision, D1, has αk = 0. Thus, stand-

alone requirements do not guide those decisions and hence, neither do predictions regarding

external random variables. By contrast, for D1, α1 = α > 0 and thus, if better predictions

enable the agent who “owns” D1 identify the action that will be correctly matched with

external uncertainty, that will impact on the likelihood that that agent’s choices drive other

choices in the organisation. To that end, we assume that it is only stand-alone requirements

that determine 1’s choices and so we set γ1k = 0 for all k 6= 1. Figure 1 shows the resulting

structure.

Second, we assume that the degree of interactions between any decision in terms of its

alignment with D1 to be symmetric, with γk1 = γ for all k. We also assume that the

probability that an element of Tk1 is revealed to agent k is symmetric across all alignment

states with pk1 = q for all k. Similarly, we assume that the number of actions for each

decision, Dk, are also symmetric between decisions; i.e., Mk = M for all k. Finally, for

notational convenience, we set all other interactions γkj where j 6= 1 to zero.3

3Without this assumption, some additional terms are added to the equations that follow but play no role
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Figure 1: Simplified Model

D2 D3 D4

D1

γ21
γ31

γ41

α1

One way to represent better prediction is as an increase in p1 which we conveniently omit

the subscript. Based on the model set-up in the previous section where there are no focal

actions, the marginal impact of higher p would simply be α. Without coordination, there is

no means by which other decisions change as a result of better prediction of this type. In

other words, the improved prediction changes the outcomes of D1 but nothing else.4

Suppose, instead, that the probability distribution of T1 is such that there exists once

action, aS which has a higher prior probability of being correct than other actions (a status

quo action). Let the prior probability that aS is the correct stand-alone action for D1 be

ρ > 1
M

. The probability that any particular alternative action from the remaining M − 1

actions is optimal is (1− ρ) 1
M−1 .

This profoundly changes the equilibrium outcome.

Proposition 1 (Modularity) In the simplified model, agent 1 will choose to ignore the AI

signal and set a1 = aS always, if:

α ≤ q(K − 1)γ

Otherwise, agent 1 will choose a1 6= aS if they receive a signal θ1 = ar 6= aS and choose

a1 = aS otherwise.

Proof. First, let’s conjecture that all other agents believe that a1 = aS. Then if they know

Tk1, then will choose the appropriate correctly aligned action and earn γ. This happens

with probability q. With probability 1− q, they do not know the correct aligned action and

so choose an action at random. Thus, their expected payoff is (q + (1 − q) 1
M

)γ. Second,

if agent 1 commits to choose aS regardless of the signal they receive, then their expected

contribution is ρα and the contribution of other agents is as in step 1. Third, note that if

aS is the correct stand-alone action for 1, then their expected payoff is α.

in the equilibrium outcomes.
4It is easy to see that this would apply to better prediction related to all external variables should other

decisions have a positive stand-alone contribution, αk > 0.
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These calculations assume that, if everyone expects agent 1 to choose aS, the correct

alignment actions to that are chosen. The only circumstance in which agent 1 would not

choose aS is where another action is known to be the optimal stand-alone action. This

happens with probability p(1 − ρ). In this case, by choosing the alternative action, 1’s

contribution becomes α.

What happens to the contributions of other agents? If they were expecting 1 to choose

aS, then, if k learns Tk1, their realised contribution falls to 0, as they would have matched

incorrectly. This happens with probability q. With probability, 1 − q, no such learning

occurs. In this case, the probability that alignment is achieved is 1
M

. Thus, for agent k 6= 1,

if they behave as if 1 has chosen aS, their expected contribution is:

(1− p(1− ρ))(q + (1− q) 1
M

)γ + p(1− ρ)(1− q) 1
M
γ

The alternative is for k to choose, instead, to choose an action at random which gives them

an expected contribution of:

((1− p(1− ρ)) 1
M

+ p(1− ρ) 1
M

)γ

Comparing these outcomes, behaving as if 1 has chosen aS is optimal for k if:

1− p(1− ρ) ≥ (1− p(1− ρ)) 1
M

+ p(1− ρ) 1
M

=⇒ p(1− ρ) ≤ M−1
M

Note that the left hand side is higher the smaller ρ is. However, ρ is bounded by 1
M

.

Substituting this in, we can see that this inequality always holds. Thus, it is always optimal

for other agents to make decisions as if 1 has chosen aS rather than another, effectively,

random action.

Thus, there are two broad strategies that can be undertaken by agent 1. Let’s suppose

that p is sufficiently low that it is optimal for all other agents to try and align their strategies

with a choice by 1 of aS.

1. Always choose a1 = aS which results in a total expected project return of:

ρα + (K − 1)(q + (1− q) 1
M

)γ

2. Choose a1 = aS unless information is received that shows it not to be stand-alone

optimal which results in a total expected project return of:

(p+ (1− p)ρ)α + (1− p(1− ρ))(K − 1)(q + (1− q) 1
M

)γ + p(1− ρ)(1− q)(K − 1) 1
M
γ
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Comparing these two, it is optimal for agent 1 to ignore their signal of the correct stand-alone

action if α ≤ q(K − 1)γ.

Proposition 1 shows that if the value of alignment is high and/or the stand-alone contribution

of 1 is low, then it is optimal for agent 1 to always choose aS. The interesting implication

is that this choice is independent p – the quality of 1’s information about the correct stand-

alone value. In other words, improving 1’s information regarding T1, does not change 1’s

incentives to react to that information. This is because anything that drives 1 towards a

non-focal action, causes a loss of alignment and an improvement in the expected stand-alone

contribution. This can only happen when 1 learns that aS is not optimal, with happens

with probability p(1− ρ). In this case, 1 is able to appropriate the stand-alone contribution

by switching from aS but that very same switch causes a loss of alignment because other

agents are aligning with respect to aS. Ironically, no such loss occurs if other agents cannot

judge the precise action that would achieve alignment with aS and instead choose their

actions effectively at random. Thus, it is precisely the conscious attempt at alignment that

is thwarted if agent 1 relies on the predictive signal in choosing their action.

Stability in expected choices breeds better alignment of actions from independent decision-

makers. When an agent relies on prediction to determine those choices, the model here shows

that the cost of this is a loss of alignment. This loss is mitigated if there are fewer interacting

decisions (K) or the loss from a lack of alignment (γ) is smaller.

The implication of this for AI adoption is that, unless there is a change in how alignment

is achieved in organisations, then organisations that are more modular in their design so

that γ is sufficiently low, will see adoption of AI at the task level with the cost being a

corresponding loss of alignment. Modularity will limit those losses. This analysis holds the

means of coordinating different decisions fixed. As we explore in the next section, one of the

consequences of AI adoption is a change in organisational design to accommodate it.

Before turning to that, it is useful to remark on the role of q. Recall that this is the

probability that an agent k > 1 who owns the decision is able to learn the correct decision

to align with aS. Above we referred to this as that agent’s judgment – their ability to select

a decision that balances the trade-offs that might be experienced at the time to achieve

alignment.

Note that as q increases, the alignment cost of adopting AI also increases. In other

words, better judgment of this type is a substitute with improved prediction. That stands

in contrast to other results (notably, Agrawal et al. (2018b)) who stress a complementarity

here. The difference, of course, is that the prediction is with respect to one decision while

the judgment is with respect to a distinct decision. However, those decisions are themselves
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complements.

What is going on here is that a higher q increases the returns to choosing aS rather than

something else while better prediction, if taken advantage of, reduces the probability that

aS will be chosen and the value of that judgment is realised. If other agents had better

knowledge of other actions being taken, then their judgment could be matched to those

actions and improve alignment. But since such coordination is limited here, that value

cannot be realised.

4 Designing for Flexible Alignment

When a decision in an organisation becomes responsive to more granular predictions about

the external environment, this causes variation in the action being taken that can have

implications for the choices and performance of other decisions in the organisation. Here

we explore how by designing organisations to match the AI being adopted, the scope for

such adoption can be enhanced. We will show that, in these cases, AI adoption requires a

systemic change throughout the organisation.

4.1 Increased Modularity

If one action in an organisation starts to vary more often, how can this variation be ac-

commodated throughout the organisation? An obvious first path would be to design the

organisation to insulate the other actions from the variation arising from, say, D1, following

the adoption of AI. This could be done through a modular design that lowered γ, the degree

to which decision/functions were interdependent. There are, however, costs associated with

this. As Baldwin and Clark (2000) argue, apart from potential costs of loss of control of

decision-makers, designing a more modular organisation is itself a potentially difficult process

with significant sunk costs.

This kind of change implies that where AI has value in a system that is not otherwise

modular, adopting AI will require architectural innovation that builds a new organisational

structure from the ground up. This process takes time and is one of the reasons why adoption

of general purpose technologies can be slow (David (1990)).

4.2 Increased Communication

Thusfar, decision-makers are assumed to act independently even if they share the organisa-

tion’s goal. In reality, there may be opportunity for communication between decision-makers

to facilitate alignment. For instance, should agent 1 wish to choose an action other than aS,
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a meeting or other form of communication could take place where 1’s chosen action could

be communicated. This would provide an opportunity for others to align their actions.

There are two constraints on communication. One is that this involves costs that are

incurred each time 1 needs to communicate an alternative action. We will assume that those

costs are c per message, per recipient. The other is that communication may be imperfect

and there is a possibility of miscommunication whereby 1 intends to choose an action but this

is interpreted by others as an alternative action. That miscommunication could be common

or independent amongst recipients. We assume that every message involves a probability of

miscommunication of µ < M−2
M−1 in which case if the intended action is â1, an action a1 6= â1, a

S

is communicated.

Given this communication structure, suppose that agent 1 chooses to communicate an

action they know that T1 6= aS. This happens with probability p(1 − ρ). Given this, it is

reasonable to assume that other agents believe that aS will be chosen unless they receive a

message to the contrary. If other agents receive that message, it is optimal for them to act

on that message as 1 − µ > 1
M−1 . This means that any other agent’s expected alignment

contribution is:

(1− p(1− ρ))(q + (1− q) 1
M

)γ + p(1− ρ)(q(1− µ) + (1− q) 1
M

)γ − p(1− ρ)c

= (q + (1− q) 1
M

)γ − p(1− ρ)(µγ + c)

That is, when communication takes place, three things might happen. First, with probability

q(1− µ), the agent correct learns 1’s choice and knows the appropriate alignment action to

take. Second, with probability qµ, the agent knows the appropriate alignment action to

take with the action they believe 1 has chosen but that message is incorrect and so the

alignment contribution is forgone. Third, with probability q, the agent does not learn the

correct alignment action to take to 1’s communicated action and so receives the alignment

contribution with probability 1
M

. This final outcome does not depend on whether 1’s message

is garbled or not.

If 1 pursues that strategy of relying on the prediction coupled with communication of

deviations from a1 = aS, the expected project return becomes:

(p+ (1− p)ρ)α + (K − 1)(q + (1− q) 1
M

)γ − (K − 1)p(1− ρ)(qµγ + c)

Given the symmetry amongst those agents, whether miscommunication is common or not

does not impact on this expected project return. Note that this is preferred to agent 1
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choosing a1 = aS always if:

α ≥ (K − 1)(qµγ + c)

And this is preferred to agent 1 choosing to respond to the prediction but not communicate

it if:

q(1− µ)γ ≥ c

And just to complete the picture, recall that agent 1 choosing to respond to the prediction

but not communicate it is preferred to choosing aS always if:

α ≥ q(K − 1)γ

Note that, so long as c ≤ q(1 − µ)γ, then the threshold for adopting AI is lower when

communication is possible than when it is not. This happens whenever communication is

preferred to not communicating.

Communication represents another way of mitigating the losses from a loss of alignment.

This analysis shows that AI adoption is more likely when communication can be used in this

manner. However, the simplified model here shows that communication is useful or not in its

own right and the adoption of AI will not in itself drive the adoption of more communication.

5 AI Adoption and Stakes

Above we derived the conditions under which an organisation would want to pay attention

to a prediction in decision-making and alter actions taken based on the signal received. It

assumed that the signal, if it was received, was perfectly revealing about the true state of the

world. In reality, signals are imperfect and can be biased towards false positives and false

negatives regarding a state. It is the possibility of making errors that causes decision-makers

to be concerned about the ‘stakes’ associated with their decisions. In this section, we amend

the simplified model of the previous section to take this into account. The goal is to explore

how interactions between decisions alter the organisation’s preferences regarding the bias of

predictive signals it receives.

To this end, we make the following changes to the simplified model. First, let θ1 be a signal

of T1, the true state. Table 1 shows the signal space based on a signal of θ1 = aS versus two

representative alternative actions ar and a−r. Action ar represents the appropriate action in

a given state 1 = ar while action a−r represents an inappropriate action. This inappropriate

action has a different payoff from choosing the default action aS when the state is T1 = ar.

Row 1 of Table 1 shows that if T1 = aS, then with probability λS, θ1 = aS (i.e., a
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Table 1: Prediction Bias

θ1 = aS θ1 = ar θ1 = a−r
T1 = aS λS

1−λS
M−1

1−λS
M−1

T1 = ar λ−S λr
1−λr−λ−S

M−2

true positive) and otherwise signals another action as correct (i.e., a false negative) with

probability, 1
M−1(1 − λS). By contrast row 2 shows if, say, T1 = ar, it is correct with

probability λr (i.e., a true negative relative to the status-quo) but with probability, λ−S, it

signals the status quo action, aS (i.e., a false positive) and, with probability 1−λr−λ−S

M−2 , it

signals an alternative (non-status quo) action a−r (i.e., a false negative with respect to ar).

Given this, agent 1 uses the imperfect signal to update their beliefs regarding the likelihood

of various actions. In particular,

Pr[T1 = aS|θ1 = aS] =
ρλS

ρλS + (1− ρ)λ−S

Pr[T1 = ar|θ1 = ar] =
(1− ρ)λr

ρλ−S + (1− ρ)(1− λ−S)

where we use the fact that Pr[θ1 = ar] = ρ
M−1λ−S+ 1−ρ

M−1(λr+
∑ 1−λr−λ−S

M−2 ) = ρλ−S+(1−ρ)(1−λ−S)

M−1 .

We assume, however, that these signals are informative so that Pr[T1 = aS|θ1 = aS] > ρ and

Pr[T1 = ar|θ1 = ar] >
1−ρ
M−1 for each ar 6= aS. This places lower bounds on λ−S and λr.

While we continue to assume that if 1 chooses aS incorrectly, the stand-alone contribution

is 0, the second change to the model is to now assume that, if 1 chooses an action other

than aS incorrectly, the stand-alone contribution is −β.5 Thus, choosing aS is a safer choice

which carries the consequence of losing α if incorrectly selected while other actions are riskier

in that an incorrect selection results not only in a loss of α but an additional loss of β. In

addition, should agent 1 incorrectly choose a non-status quo action, we assume there is no

ability for other agents to align with that action and generate the contribution, γ, even

randomly. Thus, the risks associated with choosing an action other than the status quo are

two-fold, an additional stand-alone loss and a loss of an alignment opportunity.

With this amended set of assumptions, we can show the following:

Proposition 2 (Stakes) In the amended model, agent 1 will choose to ignore the AI signal

and set a1 = aS always, if:

β ≥ ((1−ρ)λr−ρ(1−λS))α+(ρλS+(1−ρ)λ−S−1)(q+(1−q) 1
M

)(K−1)γ+(1−ρ)λr(1−q)
1
M

(K−1)γ
(1−ρ)(M−2)(1−λr−λ−S)

5Note that this is similar to decision 1 having a lower α than the other decisions.

15



Otherwise, agent 1 will choose a1 = θ1.

Proof. Consider a situation where agent 1 responds to the signal and chooses the action that

is signaled. This is optimal by our assumption that signals are informative. As before, we

start by assuming that other agents believe that agent 1 will choose aS always and respond

accordingly. In this case, the expected project return is:

(ρλS + (1− ρ)λr)α− (1− ρ)(M − 2)(1− λr − λ−S)β

+(ρλS + (1− ρ)λ−S)(q + (1− q) 1
M

)(K − 1)γ

+(1− ρ)λr(1− q) 1
M

(K − 1)γ

(1)

By contrast, recall that, if agent 1 ignores the signal and chooses aS always, the expected

project return is:

ρα + (q + (1− q) 1
M

)(K − 1)γ

Comparing these gives the condition in the proposition.

Note as signal becomes precise (that is, λS, λr → 1 (and by implication λS → 0) we have:

α ≤ q(K − 1)γ; the same condition as Proposition 1.

As before, note that a higher (K − 1)γ reduces the attractiveness of adopting AI. Thus,

our earlier result that lower modularity restricts AI adoption continues to hold in this setting.

However, we also add here the role of β. A higher β means that D1 is a decision with higher

stakes; in particular, there are greater costs associated with an incorrect decision that differs

from the status quo action, aS. This will reduce the attractiveness of adopting AI when

λ−S > 0. Thus, Proposition 2 reflects the intuition in Bresnahan (2020).

5.1 The type of improvement

This result suggests that as the precision of AI is improved, it will be adopted first in places

with high modularity and lower stakes. However, to explore this more carefully we need to

be precise about what we mean by an improvement in precision. The following proposition

demonstrates how distinct improvements in AI prediction impact on the expected project

return for organisations that adopt AI – i.e., ones where agent 1 relies on the AI signal.

Proposition 3 (Precision) In the amended model, if agent 1 chooses an action based on the

signal θ1, then:

1. an increase in λr, has a marginal return of (1− ρ)(α+ (M − 2)β+ (1− q) 1
M

(K− 1)γ);
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2. an increase in λS, has a marginal return of ρ(α + (q + (1− q) 1
M

)(K − 1)γ); and

3. an increase in λ−S, has a marginal return of (1−ρ)((M−2)β+(q+(1−q) 1
M

)(K−1)γ).

The proof simply involves taking derivatives of (1) with respect to λr, λS and λ−S. The

different improvements in the quality of AI prediction have different impacts on the expected

return from a project. Recall that in the previous model, an increase in p, had a marginal

return of (1 − ρ)(α − (K − 1)qγ) because this corresponded to an increase the probability

that agent 1 switched their decision from the focal one, aS, which increased the stand-alone

contribution but reduced alignment with other decisions. The amended model, by contrast,

expresses improvements in AI in terms of changes in the relative precision of predictions.

Thus, an increase in λS (the prediction quality when the state is aS), not only ensures that

following the AI prediction is more likely to yield a stand-alone improvement but because

the precision of that signal is higher, it is more likely to permit alignment with the focal

action. That is, the higher is γ, the more valuable it is to have a clearer (or more sensitive)

prediction of whether T1 = aS.

When considering changes in the other precision parameters, the level of stakes (β) plays

a role. An increase in λr means that there is a reduced error rate in choosing an alternative

action to aS and this lower error rate is more valuable the higher is β. Interestingly, an

increase in λ−S which represents a higher error rate when choosing aS when another action

is optimal, also reduces the likelihood that the stakes are at put at risk so the returns to this

imprecision are increasing in β. Conversely, if prediction actually becomes more accurate,

reducing λS, higher stakes reduce the returns to such accuracy.

Finally, those other precision parameters change how the need for alignment (γ) impacts

on the return to precision. In this case, an increase in λr is more valuable when γ is high

because it increases the probability that when choosing an alternative action, alignment will

be possible. An increase in λ−S also has a higher return when γ is higher but this is because

it reduces the chance of choosing an action other than aS and, thus, preserves the value of

aligning on that focal action.

What this implies is that as AI improves in precision on this dimension of a more reliable

prediction of choosing one alternative action over another alternative action, this will favour

adoption by organisations with less modularity and more higher stakes decisions. This anal-

ysis means we have to more clearly specify precisely how AI is improving predictions and

not simply whether a prediction is becoming available or not to properly understand how

organisational characteristics impact on AI adoption.
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5.2 Communication Systems

To date, achieving alignment has been really on possible if the status quo action, aS is chosen

and either other agents know how to align their actions or randomly achieve alignment.

Earlier we showed that communication of the prediction (or the action being taken by agent

1) could allow for further alignment. Such communication is costly, c per message and

imperfect, being garbled with probability µ. However, in the context of a more precise

prediction, incurring those costs could be worthwhile. Here we explore the incentives of

an organisation to adopt a broader communication structure in response to more precise

prediction.

If communication is possible, then it is worthwhile for agent 1 to communicate their

intended action if it is something other than aS. This arises with probability (1 − ρ)λr. In

this case, with probability (1− µ)q another agent receives that communication and has the

knowledge to select the appropriate alignment action resulting in a contribution of γ. On

the other hand, with probability µ, the signal is garbled. In this case, the correct alignment

action is not chosen. However, if the agent does not have knowledge of the correct alignment,

then they may choose the correct alignment action randomly with probability (1−q) 1
M

. Thus,

miscommunication only is an issue if something other than aS is being communicated.

Given all of this, with communication, (1) becomes:

(ρλS + (1− ρ)λr)α− (1− ρ)(M − 2)(1− λr − λ−S)β

+(ρλS + (1− ρ)λ−S)(q + (1− q) 1
M

)(K − 1)γ

+(1− ρ)λr(q(1− µ) + (1− q) 1
M

)(K − 1)γ

−(1− ρ)λrc

(2)

It can immediately be seen that this raises the return to improving λr to (1− ρ)(α+ (M −
2)β + (q(1− µ) + (1− q) 1

M
)(K − 1)γ).

When an organisation can adopt a communication system, it only has an incentive to do

so if it wants to communicate – that is, if agent 1 wants to rely on the signal θ1 and select

an action other than aS. In this case, a decreasing modularity, that is, an increase in γ, has

a marginal return of:

(ρλS + (1− ρ)(λr + λ−S))(q + (1− q) 1
M

)(K − 1)− (1− ρ)λrqµ(K − 1)

By contrast, without reliance on the prediction an increase in γ has a marginal return of
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(q + (1− q) 1
M

)(K − 1). Thus, increasing γ is more valuable when AI is adopted if:

(ρλS + (1− ρ)(λr + λ−S)− 1)(q + (1− q) 1
M

) ≥ (1− ρ)λrqµ

As ρλS + (1 − ρ)(λr + λ−S) ≤ 1 this condition does not hold. Thus, while communication

mitigates the costs associated with low modularity, because that communication is imperfect,

lower modularity still increases the costs associated with relying on the prediction.

6 Conclusions

This paper has provided a model of a systems based approach to understanding the impact

of AI, as in Bresnahan (2020). The model provides distinct predictions about which organi-

zation will adopt AI from the task-based model that has dominated the discussion of AI in

the economics literature so far. The answer depends on the nature of the predictions. If the

AI predictions improve the likelihood of true positives and therefore enable a firm to take

different actions from the default, then both the task based and the systems based models

suggest that AI will be adopted by modular organizations for low stakes decisions. In con-

trast, in the systems based view, the formal model suggests that if the AI predictions reduce

the likelihood of a false positive for something other than the focal action, then AI will be

adopted by less modular organizations for high stakes decisions. The standard task-based

view does not generate different predictions based on the type of prediction being made.

This distinction is evident in Bresnahan’s primary example of marketing-focused rec-

ommendation engines. He argues that Amazon has been an early adopter of AI for its

recommendation engine because it is modular and low stakes. The consequence of a true

positive is helpful and a false positive matters little. However, if we allow for a different

prediction tool to reduce false positives relative to increasing true positives, then such a pre-

diction tool would be particularly valuable for non-modular organizations and high stakes

decisions. That leads to the shipping-then-shipping example that we highlight in Prediction

Machines.

Key to this distinction between the systems based view and the task based view is

the recognition that the current generation of AI represents prediction technology, and the

specifics of the type of prediction being made matters. If prediction is one-dimensional then

modular and low stakes decisions will adopt AI first. If prediction is multi-dimensional, then

an AI that reduces the rate of false positives is particularly likely to be transformative.
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