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Abstract

We consider an agent who is endowed with two sets of orderings: pro-orderings and con-

orderings. For each choice set, if an alternative is the top-ranked by a pro-ordering (con-ordering),

then this is a pro (con) for choosing that alternative. The alternative with more pros than cons is cho-

sen from each choice set. Each ordering may have a weight reflecting its salience. In this case, each

alternative is chosen with a probability proportional to the total weight of its pros and cons. We show

that every nuance of the rich human choice behavior can be captured via this structured model.
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1 Introduction

Charles Darwin, the legendary naturalist, wrote “The day of days!” in his journal

on November 11, 1838, when his cousin Emma Wedgwood accepted his marriage

proposal. However, whether to marry at all had been a hard decision for Darwin.

Just a few months prior, Darwin had scribbled a carefully considered list of pros

–such as “constant companion” and “charms of music” –and cons –such as “fewer

conversations with clever people” and “no books”– regarding the potential impact of

marriage on his life.1 With this list of pros and cons, Darwin seems to follow a choice

procedure ascribed to Benjamin Franklin.2 Here we present Franklin (1887)’s choice

procedure in his own words.

To get over this, my Way is, to divide half a Sheet of Paper by a Line into

two Columns, writing over the one Pro, and over the other Con. I endeavour

to estimate their respective Weights; and where I find two, one on each side,

that seem equal, I strike them both out: If I find a Reason pro equal to some

two Reasons con, I strike out the three. If I judge some two Reasons con equal

to some three Reasons pro, I strike out the five; and thus proceeding I find

at length where the Ballance lies. And tho’ the Weight of Reasons cannot

be taken with the Precision of Algebraic Quantities, yet when each is thus

considered separately and comparatively, and the whole lies before me, I

think I can judge better, and am less likely to take a rash Step; and in fact

I have found great Advantage from this kind of Equation, in what may be

called Moral or Prudential Algebra.

Choice models most commonly used in economics are based on maximization

of preferences. An alternative mode of choice, which is common for the scholarly

work in other social disciplines such as history, law, and political science, is the

less formal reason-based analysis (Shafir et al. (1993)). Reason-based analysis is also

1See Glass (1988) for the full list.
2In 1772, Joseph Priestley wrote a letter to Benjamin Franklin asking for Franklin’s advice on a

decision he was trying to make. Franklin wrote back indicating that he could not tell him what to do,

but he could tell him how to make his decision, and suggested his prudential algebra.
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commonly used for the analysis of ‘case studies’ in business and law schools. In the

vein of Franklin’s prudential algebra, first, various arguments that support or oppose

an alternative are identified, then the balance of these arguments determines the

choice.3 We formulate and analyze the pro-con choice model that connects these two

approaches by presenting a reason-based choice model, in which the ‘reasons’ are

formed via a preference-based language.

We formulate the pro-con choice model in the deterministic choice setup by

extending Franklin’s prudential algebra to choice sets that possibly contain more

than two alternatives. A (deterministic) pro-con model (pcM) is a pair 〈�,B〉 such

that �= {�1, ∙ ∙ ∙ ,�m} is a set of pro-orderings and B= {B1, ∙ ∙ ∙ ,Bq} is a set of

con-orderings. We require that an ordering can not both serve as a pro- and con-

ordering. Since � and B are defined as sets of orderings rather than lists or profiles

of orderings, each ordering can be used only once as a pro- or con-ordering.4 Given

an pcM 〈�,B〉, for each choice set S and alternative x, if x is the �i-top-ranked

alternative in S for some �i ∈ �, then we interpret this as a ‘pro’ for choosing x from

S. On the other hand, if x is the Bi-top-ranked alternative in S for some Bi∈B, then

we interpret this as a ‘con’ for choosing x from S.

Our central new concept is the following: A choice function5 is pro-con ratio-

nal(izable) if there is an pcM 〈�,B〉 such that for each choice set S, an alternative x

is chosen from S if and only if pros for choosing x from S are more than the cons for

choosing x from S.6

3Shafir et al. (1993) argue that reason-based analyses have been used to understand unique his-

toric, legal and political decisions. Examples include presidential decisions taken during the Cuban

missile crisis (Allison (1971)), the Camp David accords (Telhami (1990)), and the Vietnam war (Gelb

& Betts (2016)).
4One concern is the number of orderings in � and B. It follows from this requirement that if there

are n alternatives in X, then at most n!-many orderings are used in a pro-con model.
5A choice function C singles out an alternative from each choice set S, which is a nonempty subset

of the grand alternative set X.
6In extending Franklin’s prudential algebra, one can consider a sequential pro-con model in which

first the alternatives that fail to have more pros than cons in the given choice set are eliminated, and

then the elimination continues until an alternative is singled out. Our model is a specific sequential

pro-con model in which all the alternatives but the chosen one are eliminated in the first step.
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A random pro-con model (RpcM) is a triplet 〈�,B, λ〉, where � and B stand for

the sets of pro-orderings and con-orderings, as before. The weight function λ assigns

to each pro-ordering �i ∈ � a value in the [0, 1] interval and con-ordering Bi ∈ B

a value in the [−1, 0] interval, which we interpret as a measure of the salience of

each ordering.7 The total weight of an alternative in a choice set is the total weight

of the pro-and con-orderings at which it is top-ranked. To make a choice from each

choice set, a pro-con–rational agent considers the alternatives with a positive total

weight, and chooses each alternative from this consideration set with a probability

proportional to its total weight.

The most familiar stochastic choice model in economics is the RUM, which as-

sumes that an agent is endowed with a probability measure μ over a set of orderings

� such that he randomly selects an ordering to be maximized from � according to

μ. An RUM 〈�, μ〉 is an RpcM in which there is no set of con-orderings. Both the

RpcM and the RUM are additive models, in the sense that the choice probability of an

alternative is calculated by summing up the weights assigned to the orderings. The

primitives of both the RpcM and RUM are structurally invariant, in the sense that the

decision maker uses the same 〈�, μ〉 and 〈�,B, λ〉 to make a choice from each choice

set. These two features of RUM reflect themselves in its characterization.8 Despite

the similarity between the RpcM and the RUM, in Theorem 2, we show that every

random choice function is pro-con rational. Our technique is build on an original ex-

tension of Ford Jr & Fulkerson (2015)’s seminal result in optimization theory, which

may be of independent interest. Then, by using the construction in Theorem 2’s proof

together with two key results from the integer-programming literature, in Theorem

1, we show that each (deterministic) choice function is pro-con rational.9

7 In line with the experimental findings of Shafir (1993) indicating that the weight assigned to the

pros is more than the weight assigned to the cons, we require the total weighted sum of pro-orderings

and con-orderings be unity.
8Namely, the RCFs that render a random utility representation are those with nonnegative Block-

Marschak polynomials. See Block & Marschak (1960), Falmagne (1978), McFadden (1978), and Bar-

berá & Pattanaik (1986).
9This result does not directly follow from Theorem 2, since a pro-con model is not a direct adapta-

tion of the random pro-con model, in that we require each ordering to have a fixed unit weight instead

5



The remaining observations in the paper are as follows. In Section 2.3, we ob-

serve that our Theorem 1 fails to hold in the context of multi-valued choice rules

unless we allow multiple appearance of an ordering as a pro- or con-ordering. In

Section 2.4, we illustrate that our results facilitate identification of other inclusive

choice models, by showing that each choice function is plurality-rationalizable. The

model and the result can thought of as a generalization of an earlier model and a

related result by McGarvey (1953). For the uniqueness of representation, the RpcM

has characteristics similar to the RUM, which we discuss in Section 3.3.

1.1 Related literature

In the deterministic choice literature, previous choice models proposed by Kalai et al.

(2002) and Bossert & Sprumont (2013) yield similar “anything goes” results. A

choice function is rationalizable by multiple rationales (Kalai et al. (2002)) if there is

a collection of preference relations such that for each choice set the choice is made by

maximizing one of these preferences. Put differently, the decision maker selects an or-

dering to be maximized for each choice set. A choice function is backwards-induction

rationalizable (Bossert & Sprumont (2013)) if there is an extensive-form game such

that for each choice set the backwards-induction outcome of the restriction of the

game to the choice set coincides with the choice. In this model, for each choice set, a

new game is obtained by pruning the original tree of all branches leading to unavail-

able alternatives. For random choice functions, Manzini & Mariotti (2014) provide an

anything-goes result for the menu-dependent random consideration set rules, in which

an agent keeps a single preference relation and attaches to each alternative a choice-

set-specific attention parameter. Then, he chooses an alternative with the probability

that no more-preferable alternative grabs his attention.

In contrast to these models, we believe that the pro-con model is more struc-

tured and exhibits limited context dependency. An agent following a pro-con model

restricts the pro- and con-orderings to the given choice set to make a choice.

of having fractional weights. To best of our knowledge the use of integer programming techniques in

this context is new.
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It may of interest to view our model from the perspective of probabilistic social

choice. Existing work in this literature show that the class of probabilistic group de-

cision rules have considerable richness and appeal. As a partial list one can consider

Intriligator (1973), Barberá & Sonnenschein (1978), Pattanaik & Peleg (1986), and

Intriligator (1982). These studies typically investigate the structure of coalitional

power under probabilistic social decision rules. The closest to our work is Pattanaik

& Peleg (1986) who axiomatically characterize the random dictatorship procedure,

in which there is a probability measure μ on the members of the society N such

that for each profile of individual preferences {�i}i∈N , the society chooses from each

choice set according to the RUM 〈{�i}i∈N , μ〉. Along these lines, for a social-choice

interpretation of the mixed-sign representation in an RpcM, consider a chair who

stochastically aggregates different opinions in a committee to make a choice. It is typ-

ically assumed that as more committee members top rank an alternative, the choice

probability of this alternative increases. However, there may be an antagonistic re-

lationship between the chair and some committee members, so that the chair would

be less likely to choose the alternative favored by them.

Our Theorem 2 is related to a result in a contemporary paper by Saito (2017),

who offers characterizations of the mixed logit model. It follows from the results

of this paper, which is proved by using a different approach, that each RCF can be

expressed as an affine combination of two random utility functions.10 We discuss the

technical differences at the end of Section 3.2.

2 Deterministic pro-con choice

2.1 The model

Given a nonempty finite alternative set X, any nonempty subset S is called a choice

set. Let Ω denote the collection of all choice sets. A (deterministic) choice function

C is a mapping that assigns each choice set S ∈ Ω a member of S, that is C : Ω → X

10We are grateful to an anonymous referee for bringing this connection to our awareness.
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such that C(S) ∈ S. An ordering, denoted generically by �i or Bi, is a complete,

transitive, and antisymmetric binary relation on X.

A (deterministic) pro-con model (pcM) is a pair 〈�,B〉, where �= {�1

, ∙ ∙ ∙ ,�m} and B= {B1, ∙ ∙ ∙ ,Bq} are sets of pro- and con-orderings on X. We

require that if an ordering appears as a pro-ordering, then it can not appear

as a con-ordering. Given an pcM 〈�,B〉, for each choice set S and alternative

x ∈ S, if x is the �i-top-ranked alternative in S for some �i ∈ �, then we

interpret this as a ‘pro’ for choosing x from S. On the other hand, if x is

the Bi-top-ranked alternative in S for some Bi∈B, then we interpret this as a

‘con’ for choosing x from S. Define Pros(x, S) = {�i ∈ � : x = max(S,�i)} and

Cons(x, S) = {Bi ∈B : x = max(S,Bi)}.

Definition 1 A choice function C is pro-con rational if there is an pcM 〈�,B〉 such

that for each choice set S ∈ Ω and x ∈ S, C(S) = x if and only if |Pros(x, S)| >

|Cons(x, S)|.

Note that if an agent is pro-con rational, then at each choice set S there should

be a single alternative x such that the number of Pros(x, S) is greater than the

number of Cons(x, S). Moreover, the pro-con model is not a direct adaptation of its

random counterpart. In that, we require each ordering to have a fixed unit weight,

instead of having fractional weights. Next, to illustrate how the model works, we re-

visit Luce and Raiffa’s dinner example (Luce & Raiffa (1957)) by following a pro-con

model.

Example 1 Suppose you choose chicken when the menu consists of steak and

chicken only, yet go for the steak when the menu consists of steak (S), chicken (C),

and fish (F ). Consider the pro-orderings �1 and �2 that order the three dishes accord-

ing to their attractiveness and healthiness, so suppose S �1 F �1 C and C �2 F �2 S.

As a con-ordering, consider F B S B C, which orders the dishes according to their

riskiness. Since cooking fish requires expertise, it is the most risky one and chicken is

the safest option.

Now, to make a choice from the grand menu, the pros are: “S is the most attrac-
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tive”, “F is the most healthy”, but also “F is the most risky”. Thus, S is chosen from

the grand menu. If only S and C are available, then we have “C is the most healthy”,

“S is the most attractive”, but also “S is the most risky”, so C is chosen.

In our Definition 1, we ask for a rather structured representation that corre-

sponds to one-to-one elimination in Franklin’s prudential algebra. We see at least

two benefits of this stringency. First, we obtain the uniqueness property presented in

Section 3.3. Second, in Section 2.3, we argue that our Theorem 1 fails to hold in the

context of multi-valued choice rules. Finally, given our Theorem 1, one can use our

representation to identify other inclusive choice models, which otherwise may not

be an easy exercise. In Section 2.4, we present an application along these lines, in

which we show that each choice function is plurality-rationalizable.

2.2 Main result

By using the construction in the proof of Theorem 2 and two well-known results

from integer-programming literature, we show that every choice function is pro-con

rational. In the language of mathematical programming, in Theorem 2, we show

that the relaxed (convex) problem has a solution. Next, we present the result and its

proof.

Theorem 1 Every choice function is pro-con rational.

Proof. We prove this result by following the construction used to prove Theorem 2.

So, we proceed by induction. Note that since C is a deterministic choice function,

for each xi ∈ X, λ1([�xi ]) ∈ {0, 1}. Next, by proceeding inductively, we assume that

for any k ∈ {1, . . . , n − 1}, there is a signed weight function λk that takes values

{−1, 0, 1} over Pk and represents Ck. It remains to show that we can construct λk+1

taking values {−1, 0, 1} over Pk+1, and that represents Ck+1. We know from Step 1

of the proof of Theorem 2 that to show this it is sufficient to construct λk+1 such that

(RS) and (CS) holds. However, this time, in addition to satisfying (RS) and (CS), we

require each λk+1
ij ∈ {−1, 0, 1}.
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First, note that equalities (RS) and (CS) can be written as a system of linear

equations: Aλ = b, where A = [aij ] is a (k! + (n − k)) × (n − k)k! matrix with

entries aij ∈ {0, 1}, and b = [λk([�k
1]), . . . , λ

k([�k
k!]), q(x1, S), . . . , q(xn−k, S)] is the

column vector of size k! + (n − k). Let Q denote the associated polyhedron, i.e.

Q = {λ ∈ R(n−k)k! : Aλ = b and − 1 ≤ λ ≤ 1}. A matrix is totally unimodular if the

determinant of each square submatrix is 0, 1 or −1. Following result directly follows

from Theorem 2 of Hoffman & Kruskal (2010).

Lemma 1 (Hoffman & Kruskal (2010)) If matrix A is totally unimodular, then the

vertices of Q are integer valued.

Heller & Tompkins (1956) provide the following sufficient condition for a matrix

being totally unimodular.

Lemma 2 (Heller & Tompkins (1956)) Let A be an m× n matrix whose rows can be

partitioned into two disjoint sets R1 and R2. Then, A is totally unimodular if:

1. Each entry in A is 0, 1, or −1;

2. Each column of A contains at most two non-zero entries;

3. If two non-zero entries in a column of A have the same sign, then the row of one

is in R1, and the other is in R2;

4. If two non-zero entries in a column of A have opposite signs, then the rows of both

are in R1, or both in R2.

Next, by using Lemma 2, we show that the matrix that is used to define (RS)

and (CS) as a system of linear equations is totally unimodular. To see this, let A

be the matrix defining the polyhedron Q. Since A = [aij ] is a matrix with entries

aij ∈ {0, 1}, (1) and (4) are directly satisfied. To see that (2) and (3) also hold, let

R1 = [1, . . . , k!] consist of the the first k! rows and R2 = [1, . . . , n − k] consist of the

the remaining n − k rows of A. Note that for each i ∈ R1, the ith row Ai is such that

Aiλ = λk([�k
i ]). That is, for each j ∈ {(i − 1)k!, . . . , ik!}, aij = 1 and the rest of Ai

equals 0. For each i ∈ R2, the ith row Ai is such that Aiλ = q(xi, A). That is, for each
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j ∈ {i, i + k!, . . . , i + (n − k − 1)k!}, aij = 1 and the rest of Ai equals 0. To see that

(2) and (3) hold, note that for each i, i′ ∈ R1 and i, i′ ∈ R2, the non-zero entries of Ai

and Ai′ are disjoint. It follows that for each column there can be at most two rows

with value 1, one in R1 and the other in R2.

Finally, it follows from the construction in Step 3 of the proof of Theorem 2 that

Q is nonempty, since there is λ vector with entries taking values in the [−1, 1] interval.

Since, as shown above, A is totally unimodular, it directly follows from Lemma 1 that

the vertices of Q are integer valued. Therefore, λk+1 can be constructed such that

(RS) and (CS) hold, and each λk+1
ij ∈ {−1, 0, 1}.

Remark 1 The constructed pro-con representation is a rather parsimonious one. To

see this, consider a more stringent pro-con model, in which if an alternative x is cho-

sen from a choice set S, it is barely chosen in the sense |Pros(x, S)|−|Cons(x, S)| = 1,

and if an alternative y is not chosen, it is barely not chosen in the sense |Pros(y, S)|−

|Cons(y, S)| = 0. It follows from the proof of Theorem 1 that the same anything–goes-

result for this more demanding model.

2.3 Extension to multi-valued choice

There are instances in which an agent must choose more than a single alternative

from a choice set. For example, consider a school that chooses a cohort from a set of

applicants or a professor who chooses a set of questions out of his archive to prepare

an exam. As for the random choice, imagine that we have access the support of the

random choice function, but not the frequencies, then the observed choice behavior

yields a choice rule.11

So far, we have assumed that the observed choice behavior is summarized by

a choice function or a random choice rule. Both models rule out the possibility that

choice can be multi-valued. Formally, a choice rule C : Ω → Ω such that for each S ∈

Ω, C(S) ⊂ S. A choice rule is pro-con rational if there exists a pro-con model 〈�,B〉

such that for each choice set S ∈ Ω, C(S) = arg maxx∈S(|Pros(x, S)| − |Cons(x, S)|).

11See, for example, Fishburn (1978) who explores a connection in this vein.
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That is, for each choice set S ∈ Ω and x ∈ S, x ∈ C(S) if and only if |Pros(x, S)| −

|Cons(x, S)| ≥ |Pros(y, S)| − |Cons(y, S)| for each y ∈ S.

A natural question is if our result in Theorem 1 extends to choice rules or not. To

see that not every choice rule is pro-con rational, consider the choice rule C defined

on {x, y, z} such that C({x, y, z}) = {x, y}, C({x, y}) = {x}, C({y, z}) = {y}, and

C({x, z}) = {z}. It is easy to see that C is not pro-con rational.12 The stringency in

here derives from the requirement that each ordering can be used only once as a pro-

or con-ordering in a pro-con model.

In contrast, if we allow multiple appearance of an ordering as a pro- or con-

ordering, then every choice rule can be recovered. To see this, let C be a choice

rule, and let p be the associated RCR such that for each S ∈ Ω and x ∈ C(S),

p(x, S) = 1/|C(S)|. It follows from Theorem 2 that there is a random pro-con model

〈�,B, λ〉 which represents p. Moreover, it follows from the construction in the proof

of Theorem 2 that if for each S ∈ Ω and x ∈ C(S), p(x, S) is a rational number, then

for each �i ∈ � and Bj∈B, we can choose λ(�i) = mi/M and λ(Bj) = mj/M , where

mi,mj,M are positive integers. Now, consider a list (or a profile) of pro-orderings

with mi-many copies of �i and mj-many copies of Bj for each �i ∈ � and Bj∈B. It

directly follows from this construction that for each S ∈ Ω and x ∈ S, x ∈ C(S) if

and only if x maximizes the difference between number of pro-orderings at which x

is top-ranked in S and the number of con-orderings at which x is top-ranked in S.

2.4 Plurality-rationalizable choice rules

We analyze a collective decision making model based on plurality voting. It turns

out that this model is closely related to our pro-con choice model. To introduce this

model, let [�∗] = [�∗
1, . . . ,�

∗
m] be a preference profile, which is a list of orderings. In

12The two stage threshold representation analyzed by Manzini et al. (2013) has a similar feature.

In that, although each choice function has a two-stage threshold representation, this does not hold for

choice rules. That is, for each choice function there is a triplet 〈f, θ, g〉 such that for each S ∈ Ω, the

alternative that maximizes g(x) subject to f(x) ≥ θ(S) is chosen, However, such a two stage threshold

representation can not be obtained for every choice rule.
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contrast to a set of orderings, denoted by � or B, an ordering �∗
i can appear more

than once in a preference profile [�∗]. For each choice set S ∈ Ω and x ∈ S, x is a

plurality winner of [�∗] in S if for each y ∈ S \ {x}, the number of orderings in [�∗]

that top rank x in S is more than or equal to the number of orderings in [�∗] that top

rank y in S. That is, for each y ∈ S \ {x}, |{�∗
i ∈ [�∗] : x = max(S,�∗

i )}| ≥ |{�∗
i

∈ [�∗] : y = max(S,�∗
i )}|. Next, we define plurality-rationalizability, then by using

our Theorem 1, we show that every choice rule is plurality-rationalizable.

Definition 2 A choice rule C is plurality-rationalizable if there is preference profile

[�∗] such that for each choice set S ∈ Ω and x ∈ S, x ∈ C(S) if and only if x is a

plurality winner of [�∗] in S.

Proposition 1 Every choice rule is plurality-rationalizable.13

Proof. Let C be a choice rule. In Section 2.3, by using Theorem 1, we show that if

we allow multiple appearance of an ordering as a pro- or con-ordering, then every

choice rule is pro-con rational. First, to formalize this representation, let � and B be

the set of pro- and con-orderings such that each �i∈� (Bi∈B) is copied ki times to

represent C. Then, define for each S ∈ Ω and x ∈ S, SPros(x, S) =
∑

{�i∈Pros(x,S)} ki

and SCons(x, S) =
∑

{Bi∈Cons(x,S)} ki, where Pros(x, S) and Cons(x, S) are defined

as usual with respect to � and B. Now, we know that for each S ∈ Ω and x ∈ S,

x ∈ C(S) if and only if x ∈ arg maxx∈S(|SPros(x, S,�∗)| − |SCons(x, S,B∗)|).

Now, to construct the desired preference profile, let k = max{Bi∈B∗}ki, and begin

with the list of all orderings defined on X copied k times. This is preference profile

with kn! elements. Then, eliminate ki copies of the inverse of each ordering Bi∈B,

and add ki copies of each ordering �i∈ �. Note that since we have k copies of each

ordering, the elimination part is well-defined. Let [�∗] be the obtained preference

profile.

We show that for each S ∈ Ω and x ∈ S, x ∈ C(S) if and only if x is a plurality

winner of [�∗] in S. We know that x ∈ C(S) if and only if for each y ∈ S \ {x},

13Our initial result was for choice functions. We thank Vicki Knoblauch and an anonymous referee

for suggesting the extension to choice rules.
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|SPros(x, S)| − |SCons(x, S)| ≥ |SPros(y, S)| − |SCons(y, S)|. Now, note that by

construction of [�∗], for each y ∈ S the number of orderings in [�∗] that top rank

y in S equals k times the number of all orderings that top rank y in S, added to

|SPros(y, S)| − |SCons(y, S)|. Since for each y ∈ S, the number of all orderings that

top rank y in S is fixed, it follows that x ∈ C(S) if and only if x is a plurality winner

of [�∗] in S.

If we restrict our attention to choice functions, then we can consider an even

more stringent model. In which, we require that an alternative x is chosen from a

choice set S if and only if x is the plurality winner at the margin, in the sense that

if x receives k votes then each other alternative receives k − 1 votes. It follows

from Remark 1 and the proof of Proposition 1 that every choice function is plurality-

rationalizable via this more demanding model.

In an early paper McGarvey (1953) shows that for each asymmetric and com-

plete binary relation, there exists a preference profile such that the given binary re-

lation is obtained from the preference profile by comparing each pair of alternatives

via majority voting.14 We obtain McGarvey’s result, as a corollary to Proposition 1. To

see this, note that if we restrict a choice rule to binary choice sets, then we obtain an

asymmetric and complete binary relation. Since for binary choices, being a plurality

winner means being a majority winner, McGarvey’s result directly follows.

3 Random pro-con choice

3.1 The model

A random choice function (RCF) p is a mapping that assigns each choice set S ∈ Ω,

a probability measure over S. For each S ∈ Ω and x ∈ S, we denote by p(x, S) the

probability that alternative x is chosen from choice set S.

14Stearns (1959) finds upper and lower bounds on the number of voters to generate any binary

relation. Knoblauch (2016) provides an extension for infinite sets.
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A random pro-con model (RpcM) is a triplet 〈�,B, λ〉, where � and B stand

for the sets of pro- and con-orderings on X as before. The weight function, denoted

by λ, is such that for each �i ∈ � and Bi∈B, we have λ(�i) ∈ (0, 1], λ(Bi) ∈ [−1, 0),

and the weighted sum of pro-orderings and con-orderings is one, i.e.
∑

{�i∈�} λ(�i

)+
∑

{Bi∈B}
λ(Bi) = 1. The weight function λ acts like a probability measure over the

set of orderings that can assign negative values. In measure theoretic language, the

primitive of a random pro-con model is a signed probability measure defined over the

set of orderings.

Given an RpcM 〈�,B, λ〉, for each choice set S and alternative x ∈ S, if x is the

�i-top-ranked alternative in S for some �i ∈ �, then we interpret this as a ‘pro’ for

choosing x from S. On the other hand, if x is the Bi-top-ranked alternative in S for

some Bi∈B, then we interpret this as a ‘con’ for choosing x from S. We interpret the

weight assigned to each pro-ordering or con-ordering as a measure of the strength of

that ordering.

To define when an RCF is pro-con rational, let Pros(x, S) = {�i ∈ � : x =

max(S,�i)} and Cons(x, S) = {Bi∈B : x = max(S,Bi)}. Next, we formally define

when an RCF is pro-con rational. For a given RpcM 〈�,B, λ〉, for each choice set

S ∈ Ω and x ∈ S, we denote the total weight of x in S by λ(x, S), i.e. λ(x, S) =

λ(Pros(x, S)) + λ(Cons(x, S)). For each choice set S ∈ Ω, let S+ be the set of alter-

natives in S that receives a positive total weight, i.e. S+ = {x ∈ S : λ(x, S) > 0}.

Definition 3 An RCF p is pro-con rational if there is an RpcM 〈�,B, λ〉 such that for

each choice set S ∈ Ω and x ∈ S,

p(x, S) = max

{
0 ,

λ(x, S)
∑

{y∈S+} λ(y, S)

}

(1)

That is, to make a choice from each choice set S, a pro-con–rational agent

considers the alternatives with a positive total weight, and chooses each alter-

native from this consideration set with a probability proportional to its total

weight. An equivalent formulation is as follows. An RCF p is pro-con rational

if there is an RpcM 〈�,B, λ〉 such that for each choice set S ∈ Ω and x ∈ S,

p(x, S) = λ(Pros(x, S)) + λ(Cons(x, S)) , where λ(Pros(x, S)) and λ(Cons(x, S)) are
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the sum of the weights over Pros(x, S) and Cons(x, S). Our proof of Theorem 2 clar-

ifies this equivalence.

As an alternative to the RUM, Tversky (1972) proposes EBA in which an agent

views each alternative as a set of attributes. Then, at each stage, the agent selects an

attribute with probability proportional to its weight and eliminates all the alternatives

without the selected attribute. Pro-con model offers a choice procedure that both

carries the act of selecting an ordering to be maximized as in the random utility model

(RUM), and elimination of the alternatives based on their attributes as in Tversky

(1972)’s elimination by aspects (EBA). In that, a pro-con–rational agent’s attitude to

the relevant attributes is twofold: If it is a pro-ordering, then he seeks maximization

as in the RUM, if it is a con-ordering, then he is satisfied by elimination of the worst

alternative as in the EBA. In line with this interpretation, we illustrate in Example

2 that each ordering in an RpcM can be interpreted as an attribute or a relevant

criterion.

To illustrate how RpcM works, we focus on a particular choice problem in which

there are only two orderings (�1,�2) that are relevant for choice, such as price and

quality, and present an attraction effect scenario.15 In this scenario, when we intro-

duce an asymmetrically dominated alternative, called a decoy, the choice probability

of the dominating alternative goes up. This choice behavior, known as the attraction

effect, is incompatible with any RUM.

Example 2 (Attraction Effect) Suppose X = {x, y, z}, where x and y are two com-

peting alternatives such that none clearly dominates the other, and z is another al-

ternative that is dominated by x but not y. Consider the following RpcM 〈�,B, λ〉, in

which there is single pair of orderings used both as the pro- and con-orderings. We

can interpret this ordering pair as two distinct criteria that order the alternatives.

Now, since for both criteria x is better than z, we get p(x, {x, z}) = 1. Since x and y fail

to dominate each other, and y fail to dominate z, we get p(y, {x, y}) = p(y, {y, z}) =

15Experimental evidence for the attraction effect is first presented by Payne & Puto (1982) and

Huber & Puto (1983). Following their work, evidence for the attraction effect has been observed in a

wide variety of settings. For a list of these results, consult Rieskamp et al. (2006).
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1/2. That is, z is a ‘decoy’ for x when y is available. Note that when only x and y

are available, since x is the �2-worst alternative, x is eliminated with a weight of

1/2. However, when the decoy z is added to the choice set, then x is no longer the

�2-worst alternative, and we get p(x, {x, y, z}) = 2/3. That is, availability of decoy z

increases the choice probability of x. Thus, our model captures the intuition that the

choice probability of an alternative may increase when a decoy is added, since this

alternative may no longer be the worst one according to a relevant attribute.

3.2 Main result

In our main result, we show that every random choice function is pro-con rational.

We present a detailed discussion of the result in the introduction. We present the

proof in Section 5. As a notable technical contribution, we extend and use Ford-

Fulkerson Theorem (Ford Jr & Fulkerson (2015)) from combinatorial matrix theory.

Next, we state the theorem and present an overview of the proof. Then, we discuss

the technical connection to Saito (2017).

Theorem 2 Every random choice function is pro-con rational.

An overview of the proof: For a given RCF p, we show that there is a signed

weight function λ, which assigns each ordering �i, a value λ(�i) ∈ [−1, 1] such that λ

represents p. That is, for each choice set S and x ∈ S, p(x, S) is the sum of the weights

over orderings at which x is the top-ranked alternative. We prove this by induction.

To clarify the induction argument, for k = 1, let Ω1 = {X} and let P1 consists

of n-many equivalence classes such that each class contains all the orderings that
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top rank the same alternative, irrespective of whether these are chosen with positive

probability. That is, for X = {x1, . . . , xn}, we have P1 = {[�x1 ], ∙ ∙ ∙ , [�xn ]}, where for

each i ∈ {1, . . . , n} and ordering �i ∈ [�xi ], xi = max(X,�i). Now for each xi ∈ X,

define λ1([�xi ]) = p(xi, X). It directly follows that λ1 is a signed weight function

over P1 that represents the restriction of the given RCF to Ω1, denoted by p1. By

proceeding inductively, it remains to show that we can construct λk+1 over Pk+1 that

represents pk+1.

In Step 1 of the proof we show that finding such a λk+1 boils down to finding

a solution to the system of equalities described by row sums (RS) and column sums

(CS). Up to this point the proof structure is similar to the one followed by Falmagne

(1978) and Barberá & Pattanaik (1986) for the characterization of RUM.

To understand (RS), while moving from the kth-step to the (k + 1)th-step, each

[�k] is decomposed into a collection {[�k+1
j ]}j∈J such that for each [�k+1

j ] there exists

an alternative xj that is not linearly ordered by [�k], but placed at [�k+1
j ] right on

top of the alternatives that are not linearly ordered by [�k]. Therefore, the sum of

the weights assigned to {[�k+1
j ]}j∈J should be equal to the weight assigned to [�k].

This gives us the set of equalities formulated in (RS). To understand (CS), let S be

the set of alternatives that are not linearly ordered by [�k]. Now, we should design

λk+1 such that for each xj ∈ S, p(xj , S) should be equal to the sum of the weights

assigned to orderings at which xj is the top-ranked alternative in S. The set of

equalities formulated in (CS) guarantees this. This follows from our Lemma 6, which

we obtain by using the Mobius inversion.16

Our proof is based on two interwoven observations. To understand the first,

let us turn back to the induction argument. It is easy to see that the signed weight

function λ2 over P2 that represents p2 is determined uniquely. That is, there is a

unique λ2 that satisfies equalities (RS) and (CS) formed for k = 2. But, then for

λ3 (in general for each k ≥ 3) to be defined over P3, the solution to the associated

(RS) and (CS) for k = 3 is no longer unique. The difficulty is that although any λ3

that satisfies equalities (RS) and (CS) for the k = 3 represents p3, depending on the

16Fiorini (2004) is the first who makes the same observation.
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choice of λ3, the (RS) and (CS) formed for a future step, k > 3, may not have a

solution. Therefore, to conclude the induction successfully, for each k ≥ 3, we should

be “forwarding looking” in choosing λk.

Our second critical observation is that finding a solution to the system de-

scribed by (RS) and (CS) can be translated to the following basic problem: Let

R = [r1, . . . , rm] and C = [c1, . . . , cn] be two real-valued vectors such that the sum

of R equals to the sum of C. Now, for which R and C can we find an m × n ma-

trix A = [aij ] such that A has row sum vector R and column sum vector C, with

each entry aij ∈ [−1, 1]? Ford Jr & Fulkerson (2015) provide a full answer to this

question when R and C are positive real valued.17 However, there are two issues

peculiar to our problem. First issue is that the row and column sums can be negative

real valued. Indeed, we get nonnegative-valued rows and columns only if the Block-

Marschak polynomials are nonnegative, that is, the given p is an RUM. Second issue

is that, related to our previous observation, we need “forward looking” solutions.

In our Lemma 5, we provide an extension of Ford-Fulkerson Theorem that paves

the way for our proof by solving the two issues. To get an intuition for Lemma 5, it

is easy to see that the sum of the absolute values of the rows and columns should

be bounded in order to extend the result to real-valued vectors. So, in Lemma 5,

we require this sum be less than or equal to 2m, where m is the number of rows.

The choice of this specific bound has two implications. First, we can extend Ford-

Fulkerson Theorem with real-valued rows and columns. This solves the first issue.

Second, we guarantee that there is a solution that satisfy the bound formulated in

item (iii) of Lemma 5. This solution turns out be the forwarding looking solution,

which solves the second issue.

The rest of the proof is as follows. In Step 2, we show that (RS) equals (CS). In

Step 3, by using a structural result presented in Lemma 7, we show that the row and

column vectors associated with (RS) and (CS) satisfy the premises of our Lemma 5.

This completes the construction of the desired signed weight function.

17Brualdi & Ryser (1991) provides a detailed account of similar results.
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As discussed in Section 1.1, Saito (2017) independently shows that each RCF

can be expressed as an affine combination of two random utility functions by using

different techniques. In our Theorem 2 we require the weights used in this affine

combination be chosen from [−1, 1] interval. This requirement is critical for obtain-

ing Theorem 1. In that, for a deterministic pro-con model, we require pro- and

con-orderings be sets of orderings rather than lists of orderings in which the same

ordering can appear multiple times.

To see the technical implication of this requirement for our proof, note that

by following the construction in our proof and directly applying the Ford-Fulkerson

Theorem, each RCF can be expressed as an affine combination of random utility

functions. To show that these weights can be chosen from [−1, 1] interval, we extend

the Ford-Fulkerson Theorem (see Lemma 5) and follow a deliberate induction argu-

ment supported by other structural results, such as Lemma 7. We believe that our

technique can be fruitful in solving similar random choice problems.

3.3 Uniqueness

An RCF may have different random utility representations even with disjoint sets of

orderings. Falmagne (1978) argues that random utility representation is essentially

unique. That is, the sum of the probabilities assigned to the orderings at which an

alternative x is the kth-top-ranked in a choice set is the same for all random utility

representations of the given RCF. Similarly, the primitives of an RpcM are struc-

turally invariant in the sense that the agent uses the same triplet 〈�,B, λ〉 to make

a choice from each choice set. As an instance of this similarity, both models render

a unique representation when there are only three alternatives.18 As for the general

case, Proposition 2 provides a uniqueness result for the RpcM, which can be thought

as the counterpart of Falmagne’s result for the RUM. Finally, as a direct corollary

to Proposition 2, we present the counterpart of our uniqueness result for a pro-con

model.
18This directly follows from the construction used to establish the base of induction in Theorem 2’s

proof.
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For a given RpcM 〈�,B, λ〉, let for each S ∈ Ω and x ∈ S, λ(x = Bk|S,�,B) be

the sum of the weights assigned to the pro- and con-orderings at which x is the kth-

top-ranked alternative in S. In our next result, we show that for each RCF the sum

of the weights assigned to the orderings at which x is the kth-top-ranked alternative

in S is the same for each pro-con representation of the given RCF. That is, λ(x =

Bk|S,�,B) is fixed for each RpcM 〈�,B, λ〉 that represents the given RCF.

Proposition 2 If 〈�,B, λ〉 and 〈�′,B′, λ′〉 are random pro-con representations of the

same RCF p, then for each S ∈ Ω and x ∈ S,

λ(x = Bk|S,�,B) = λ′(x = Bk|S,�′,B′). (2)

Proof. Let 〈�,B, λ〉 and 〈�′,B′, λ′〉 be two RPMs that represent the same RCF p.

Now, for each choice set S ∈ Ω, both λ and λ′ should satisfy the identity (CS) used

in Step 1 of the proof of Theorem 2. That is, for each S ∈ Ω and x ∈ S both λ and λ′

generates the same q(x, S) value. Therefore, if we can show that λ(x = Bk|S,�,B)

can be expressed in terms of q(x, ∙), then (2) follows. To see this, let 〈�,B, λ〉 be any

RpcM that represents p. Next, for each S ∈ Ω, x ∈ S, and k ∈ {1, . . . , |S|}, consider a

partition (S1, S2) of S such that x ∈ S2 and |S1| = k−1. Let P(S, x, k) be the collection

of all these partitions. Now, for each fixed (S1, S2) ∈ P(S, x, k), let λ(x|S1, S2,�,B)

be the sum of the weights of the orderings at which x is the top-ranked alternative

in S2 and the top-ranked alternative in S1. Note that for each such ordering, x is the

kth-top-ranked alternative in S. Now, it follows that we have:

λ(x = Bk|S,�,B) =
∑

{(S1,S2)∈P(S,x,k)}

λ(x|S1, S2,�,B). (3)

Since for each T ∈ Ω such that S2 ⊂ T and T ⊂ X \ S1, by definition, q(x, T )

gives the total weight of the orderings at which x is the top-ranked alternative in S,

it follows that

∑

P(S,x,k)

λ(x|S1, S2,�,B) =
∑

P(S,x,k)

∑

S2⊂T⊂X\S1

q(x, T ). (4)

Finally, if we substitute (3) in (4), then we express λ(x = Bk|S,�,B) only in terms

of q(x, ∙), as desired.
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Next, we present the counterpart of our uniqueness result for a pro-con model.

For a given pcM 〈�,B〉, let for each S ∈ Ω and x ∈ S, Prosk(x, S) be the set of pro-

orderings at which x is the kth-top-ranked alternative in S. Similarly, let Consk(x, S)

be the set of con-orderings at which x is the kth-top-ranked alternative in S. We

show that for a given choice function, the difference between the number of pro-

orderings at which x is the kth-top-ranked alternative in S and the number of con-

orderings at which x is the kth-top-ranked alternative in S is the same for each pro-

con representation of the given choice function. We obtain this result as a direct

corollary to our Proposition 2.

Corollary 1 If 〈�,B〉 and 〈�′,B′〉 are pro-con representations of the same choice func-

tion C, then for each S ∈ Ω, x ∈ S, and k ∈ {1, . . . , n}, both representations lead the

same |Prosk(x, S)| − |Consk(x, S)| value.

Proof. Since each pro- and con-ordering has a unit weight at each pro-con represen-

tation of a given choice function, |Prosk(x, S)| − |Consk(x, S)| equals λ(x = Bk|S,�

,B). Then, it follows from Proposition 2 that |Prosk(x, S)|− |Consk(x, S)| is fixed for

each pro-con representation.

4 Conclusion

Our main results show that the pro-con model–an additive model similar to the

RUM–provides a language to describe any choice behavior in terms of structurally-

invariant primitives. The structural invariance of the pro-con model reflects itself

as a form of uniqueness, which is similar to the uniqueness of a random utility

model. Knowing that each choice function is pro-con rational facilitates identifica-

tion of other inclusive choice models. We present an application along these lines, in

which we show that each choice rule is plurality-rationalizable. Although our study

covers a rather extensive treatment of the pro-con model, we can hardly claim that

it is exhaustive, as it leads to a wide variety of directions yet to be pursued.
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5 Proof of Theorem 2

We start by proving some lemmas that are critical for proving the theorem. First, we

use a result by Ford Jr & Fulkerson (2015)19 as Lemma 3. Then, our Lemma 4 follows

directly. Next, by using Lemma 4, we prove Lemma 5, which shows that, under

suitable conditions, Lemma 3 holds for any real-valued row and column vectors.

Lemma 3 (Ford Jr & Fulkerson (2015)) Let R = [r1, . . . , rm] and C = [c1, . . . , cn] be

positive real-valued vectors with
∑m

i=1 ri =
∑n

j=1 cj. There is an m × n matrix A = [aij ]

such that A has row sum vector R and column sum vector C, and each entry aij ∈ [0, 1]

if and only if for each I ⊂ {1, 2, . . . ,m} and J ⊂ {1, 2, . . . , n},

|I||J | ≥
∑

i∈I

ri −
∑

j /∈J

cj . (FF)

Lemma 4 Let R = [r1, . . . , rm] and C = [c1, . . . , cn] be positive real-valued vectors with

0 ≤ ri ≤ 1 and 0 ≤ cj ≤ m such that
∑m

i=1 ri =
∑n

j=1 ci. Then there is an m× n matrix

A = [aij ] such that A has row sum vector R and column sum vector C, and each entry

aij ∈ [0, 1].

Proof. Given such R and C, since for each i ∈ {1, 2, . . . ,m}, 0 ≤ ri ≤ 1, we have for

each I ⊂ {1, 2, . . . ,m},
∑

i∈I ri ≤ |I|. Then, it directly follows that (FF) holds.

Next by using Lemma 4, we prove Lemma 5, which plays a key role in proving

Theorem 2.

Lemma 5 Let R = [r1, . . . , rm] and C = [c1, . . . , cn] be real-valued vectors with −1 ≤

ri ≤ 1 and −m ≤ cj ≤ m such that
∑m

i=1 ri =
∑n

j=1 cj. If 2m ≥
∑m

i=1 |ri| +
∑n

j=1 |cj|,

then there is an m × n matrix A = [aij ] such that:

i. A has row sum vector R and column sum vector C,

ii. each entry aij ∈ [−1, 1], and

19This result, as stated in Lemma 3, but with integrality assumptions on R, C, and A follows from

Corollary 1.4.2 in Brualdi & Ryser (1991). They report that Ford Jr & Fulkerson (2015) prove, by using

network flow techniques, that the theorem remains true if the integrality assumptions are dropped,

and the conclusion asserts the existence of a real nonnegative matrix.
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iii. for each j ∈ {1, . . . , n},
∑m

i=1 |aij | ≤ |cj| + max{0,
∑m

i=1 |ri|−
∑n

j=1 |cj |

n
}.

Proof. Since ri and cj values can be positive or negative, although the sum of the

rows equals the sum of the column, their absolute values may not be the same. We

analyze two cases separately, where
∑m

i=1 |ri| ≥
∑n

j=1 |cj| and
∑m

i=1 |ri| <
∑n

j=1 |cj|.

Before proceeding with these cases, first we introduce some notation and make some

elementary observations.

For each real number x, let x+ = max{x, 0} and x− = min{x, 0}. Note that

for each x, x+ + x− = x. Let R+ = [r+
1 , . . . , r+

m] and R− = [r−1 , . . . , r−m]. Define

the n-vectors C+ and C− respectively. Next, let ΣR+ =
∑m

i=1 r+
i , ΣR− =

∑m
i=1 r−i ,

ΣC+ =
∑n

j=1 c+
j and ΣC− =

∑n
j=1 c−j . That is, ΣR+(ΣR−) and ΣC+(ΣC−) are the sum

of the positive (negative) rows in R and columns in C. Since the sum of the rows

equals the sum of the columns, we have ΣR+ + ΣR− = ΣC+ + ΣC− .

For each row vector R and column vector C, suppose for each i ∈ {1, . . . ,m1},

ri ≥ 0 and for each i ∈ {m1 + 1, . . . ,m}, ri < 0. Similarly, suppose for each

j ∈ {1, . . . , n1}, cj ≥ 0 and for each j ∈ {n1 +1, . . . , n}, cj < 0. Now, let R1(R2) be the

m1-vector ((m − m1)-vector), consisting of the non-negative (negative) components

of R. Similarly, for each column vector C, let C1(C2) be the n1-vector ((n − n1)-

vector), consisting of the non-negative (negative) components of C. It directly fol-

lows from the definitions that
∑m1

i=1 ri =
∑m

i=1 r+
i and

∑m
i=m1+1 ri =

∑m
i=1 r−i . Simi-

larly,
∑n1

j=1 cj =
∑n

j=1 c+
j and

∑n
j=n1+1 cj =

∑n
j=1 c−j .

Case 1: Suppose that
∑

i=I |ri| ≥
∑

j∈J |cj|. First, for each j ∈ {1, . . . , n}, let

εj =
ΣR+ −ΣC+

n
.

Note that since
∑m

i=1 |ri| ≥
∑n

j=1 |cj|, we have ΣR+ ≥ ΣC+ and ΣR− ≤ ΣC− . Moreover,

since the sum of the rows equals the sum of the columns, we have ΣR+ −ΣC+ =

ΣC− −ΣR− . Therefore, by the choice of εj, we get

m∑

i=1

r+
i =

n∑

j=1

c+
j + εj and

m∑

i=1

r−i =
n∑

j=1

c−j − εj . (5)

Next, consider row-column vector pairs (R1, C++ε) and (−R2,−(C−−ε)), where

ε is the non-negative n-vector such that each εj is as defined above. It follows from (5)
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that for both pairs the sum of the rows equals the sum of the columns. Now we apply

Lemma 4 to the row-column vector pairs (R1, C++ε) and (−R2,−(C−−ε)). It directly

follows that there exists a positive m1 × n matrix A+ and a negative (m − m1) × n

matrix A− that satisfy (i) and (ii). We will obtain the desired matrix A by augmenting

A+ and A−. We illustrate A+ and A− below.

(c+
1 + ε1) (c+

2 + ε2) (c+
3 + ε3) ∙ ∙ ∙ (c+

n + εn)

r1 ≥ 0

r2 ≥ 0
...

rm1 ≥ 0

A+

A− rm1+1 < 0
...

rm < 0

(c−1 − ε1) (c−2 − ε2) (c−3 − ε3) ∙ ∙ ∙ (c−n − εn)

Since A+ and A− satisfy (i) and (ii), A satisfies (i) and (ii). To see that A satisfies

(iii), for each j ∈ {1, . . . , n}, consider
∑m

i=1 |aij|. Note that, by the construction of A+

and A−, for each j ∈ {1, . . . , n},
m∑

i=1

|aij | = c+
j + εj + (−c−j + εj) = |cj| + 2εj = |cj| + 2

ΣR+ −ΣC+

n
. (6)

Since for each j ∈ {1, . . . , n}, cj = c+
j + c−j such that either c+ = 0 or c−j = 0,

we get |cj| = c+
j − c−j . To see that (iii) holds, observe that

∑m
i=1 |ri| −

∑n
j=1 |cj| =

ΣR+ −ΣC+ + ΣC− −ΣR− . Since the sum of the rows equals the sum of the columns,

i.e. ΣR+ + ΣR− = ΣC+ + ΣC− , we also have ΣR+ −ΣC+ = ΣC− −ΣR− . This observa-

tion, together with (6), implies that (iii) holds.

Case 2 Suppose that
∑m

i=1 |ri| <
∑n

j=1 |cj|. First, we show that there exists a non-

negative m-vector ε such that

(E1) for each i ∈ {1, . . . ,m}, r+
i + εi ≤ 1 and r−i − εi ≥ −1, and

(E2)
∑m

i=1 r+
i + εi =

∑n
j=1 c+

j (equivalently
∑m

i=1 r−i − εi =
∑n

j=1 c−j ) holds.

Step 1: We show that if ΣC+ −ΣR+ ≤ m −
∑m

i=1 |ri|, then there exists a non-

negative m-vector ε that satisfies (E1) and (E2). To see this, first note that m −
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∑m
i=1 |ri| =

∑m
i=1(1 − |ri|). Next, note that, by simply rearranging the terms, we can

rewrite (E2) as follows:
m∑

i=1

εi = ΣC+ −ΣR+ . (7)

Since ΣC+ −ΣR+ ≤
∑m

i=1(1 − |ri|), for each i ∈ {1, . . . ,m}, we can choose an εi such

that 0 ≤ εi ≤ 1 − |ri| and (7) holds. It directly follows that the associated ε vector

satisfies (E1) and (E2).

Step 2: We show that since 2m ≥
∑m

i=1 |ri| +
∑n

j=1 |cj|, we have ΣC+ −ΣR+ ≤

m −
∑m

i=1 |ri|. First, it directly follows from the definitions that

m∑

i=1

|ri| +
n∑

j=1

|cj| = ΣR+ −ΣR− + ΣC+ −ΣC− .

Since the sum of the rows equals the sum of the columns, i.e. ΣR+ + ΣR− =

ΣC+ + ΣC− , we also have ΣR+ −ΣC− = ΣC+ −ΣR− . It follows that

ΣC+ −ΣR− ≤ m.

Finally, if we subtract
∑m

i=1 |ri| from both sides of this equality, we obtain

ΣC+ −ΣR+ ≤ m −
∑m

i=1 |ri|, as desired.

It follows from Step 1 and Step 2 that there exists a non-negative m-vector ε

that satisfies (E1) and (E2). Now, consider the row-column vector pairs (R+ + ε, C1)

and (−(R− − ε),−C2). Since ε satisfies (E1) for each i ∈ {1, . . . ,m}, r+
i + εi ∈ [0, 1]

and r−i − εi ∈ [−1, 0]. Since ε satisfies (E2), for both of the row-column vector pairs

the sum of the rows equals the sum of the columns. Therefore, we can apply Lemma

4 to row-column vector pairs (R+ + ε, C1) and (−(R− − ε),−C2). It directly follows

that there exists a positive m × n1 matrix A+ and a negative m × (n − n1) matrix A−

that satisfy (i) and (ii). We obtain the desired matrix A by augmenting A+ and A−.

We illustrate A+ and A− below.
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c1 c2 ∙ ∙ ∙ cn1 ≥ 0

(r+
1 + ε1)

(r+
2 + ε2)

...

...

(r+
m + εm)

A+ A−

(r−1 − ε1)

(r−2 − ε2)
...
...

(r−m − εm)

cn1+1 < 0 ∙ ∙ ∙ cn

Since A+ and A− satisfy (i) and (ii), A satisfies (i) and (ii). In this case, since

we did not add anything to the columns and each entry in A+(A−) is non-negative

(negative), for each j ∈ {1, . . . , n},
∑m

i=1 |aij | = |cj|. Therefore, A also satisfies (iii).

To prove Theorem 2, let p be an RCF and P denote the collection of all orderings

on X. First, we show that there is a signed weight function λ : P → [−1, 1] that

represents p, i.e. for each S ∈ Ω and x ∈ S, p(x, S) is the sum of the weights

over {�i ∈ P : x = max(S,�i)}. Note that λ can assign negative weights to

orderings. Once we obtain this signed weight function λ, let � be the collection of

orderings that receive positive weights, and let B′ be the collection of orderings that

receive negative weights. Let B be the collection of the inverse of the orderings in

B′. Finally, let λ∗ be the weight function obtained from λ by assigning the absolute

value of the weights assigned by λ. It directly follows that p is pro-con rational with

respect to the RpcM 〈�,B, λ∗〉. We first introduce some notation and present crucial

observations to construct the desired signed weight function λ.

Let p be a given RCF and Let q : X × Ω → R be a mapping such that for each

S ∈ Ω and a /∈ S, q(a, S) = q(a, S ∪ {a}) holds. Next, we present a result that is

directly obtained by applying the Möbius inversion.20

Lemma 6 For each choice set S ∈ Ω, and alternative a ∈ S,

p(a, S) =
∑

S⊂T⊂X

q(a, T ) (8)

20See Stanley (1997), Section 3.7. See also Fiorini (2004), who makes the same observation.
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if and only if

q(a, S) =
∑

S⊂T⊂X

(−1)|T |−|S|p(a, T ) (9)

Proof. For each alternative a ∈ X, note that p(a, ∙) and q(a, ∙) are real-valued func-

tions defined on the domain consisting of all S ∈ Ω with a ∈ S. Then, by applying

the Möbius inversion, we get the conclusion.

Lemma 7 For each choice set S ∈ Ω with |S| = n − k,

∑

a∈X

|q(a, S)| ≤ 2k. (10)

Proof. First, note that (10) can be written as follows:

∑

a∈S

|q(a, S)| +
∑

b/∈S

| − q(b, S)| ≤ 2k. (11)

For a set of real numbers,{x1, x2, . . . xn}, to show
∑n

i=1 |xi| ≤ 2d, it suffices to

show that for each I ⊂ {1, 2, ∙ ∙ ∙ , n}, we have −d ≤
∑

i∈I xi ≤ d. Now, as the set

of real numbers, consider {q(a, S)}a∈X . It follows that to show that (11) holds, it

suffices to show that for each S1 ⊂ S and S2 ⊂ X \ S,

−2k−1 ≤
∑

a∈S1

q(a, S) −
∑

b∈S2

q(b, S) ≤ 2k−1

holds. To see this, first, for each S1 ⊂ S and S2 ⊂ X \ S, it follows from Lemma 6

that for each a ∈ S1 and for each b ∈ S2, we have

q(a, S) =
∑

S⊂T⊂X

(−1)|T |−|S|p(a, T ) and q(b, S) =
∑

S⊂T⊂X

(−1)|T |−|S|−1p(b, T ). (12)

Note that we obtain the second equality from Lemma 6, since for each b /∈ S, by

definition of q(b, S), we have q(b, S) = q(b, S ∪ {b}). Next, note that for each T ∈ Ω

with S ⊂ T , a ∈ S, and b /∈ S, p(a, T ) has the opposite sign of p(b, T ). Now, suppose

for each b ∈ S2, we multiply q(b, S) with −1. Then, it follows from (12) that

∑

a∈S1

q(a, S) −
∑

b∈S2

q(b, S) =
∑

S⊂T⊂X

(−1)|T |−|S|
∑

a∈S1∪S2

p(a, T ). (13)
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Note that, for each T ∈ Ω such that S ⊂ T ,
∑

a∈S1∪S2
p(a, T ) ∈ [0, 1]. Therefore,

the term (−1)|T |−|S|
∑

a∈S1∪S2
p(a, T ) adds at most 1 to the right-hand side of (13) if

|T | − |S| is even, and at least −1 if |T | − |S| is odd. Since |S| = n − k, for each m

with n − k ≤ m ≤ n, there are
(

k
m−n+k

)
possible choice sets T ∈ Ω such that S ⊂ T

and |T | = m. Moreover, for each i ∈ {1, . . . , k}, there are
(

k
i

)
possible choice sets

T such that S ⊂ T and |T | = n − k + i. Now, the right-hand side of (13) reaches

its maximum (minimum) when the negative (positive) terms are 0 and the positive

(negative) terms are 1(−1). Thus, we get

−

b k−1
2

c∑

i=0

(
k

2i + 1

)

≤
∑

S⊂T⊂X

(−1)|T |−|S|
∑

a∈S1∪S2

p(a, T ) ≤

b k
2
c∑

i=0

(
k

2i

)

.

It follows from the binomial theorem that both leftmost and rightmost sums are equal

to 2k−1. This, combined with (13), implies

−2k−1 ≤
∑

a∈S1

q(a, S) −
∑

b∈S2

q(b, S) ≤ 2k−1.

Then, as argued before, it follows that
∑

a∈X |q(a, S)| ≤ 2k.

Now, we are ready to complete the proof of Theorem 2. Recall that we assume

|X| = n. For each k ∈ {1, . . . , n}, let Ωk = {S ∈ Ω : |S| > n − k}. Note that Ωn = Ω

and Ω1 ⊂ Ω2 ⊂ ∙ ∙ ∙ ⊂ Ωn. For each pair of orderings �1,�2∈ P , �1 is k-identical

to �2, denoted by �1∼k�2, if the first k-ranked alternatives are the same. Note that

∼k is an equivalence relation on P . Let Pk be the collection of orderings, such that

each set (equivalence class) contains orderings that are k-identical to each other (Pk

is the quotient space induced from ∼k). For each k ∈ {1, . . . , n}, let [�k] denote an

equivalence class at Pk, where �k linearly orders a fixed set of k alternatives in X.

Note that for each k ∈ {1, . . . , n}, S ∈ Ωk and �1,�2∈ P , if �1∼k�2, then

since S contains more than n − k alternatives, max(�1, S) = max(�2, S). Therefore,

for each S ∈ Ωk, it is sufficient to specify the weights on the equivalence classes

contained in Pk instead of all the weights over P . Let pk be the restriction of p to

Ωk. Similarly, if λ is a signed weight function over P , then let λk be the restriction of

λ to Pk, i.e. for each [�k] ∈ Pk, λk[�k] =
∑

�i∈[�k] λ(�i). It directly follows that λ

represents p if and only if for each k ∈ {1, . . . , n}, λk represents pk. In what follows,
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we inductively show that for each k ∈ {1, . . . , n}, there is a signed weight function

λk over Pk that represents pk. For k = n we obtain the desired λ.

For k = 1, Ω1 = {X} and P1 consists of n-many equivalence classes such that

each class contains all the orderings that top rank the same alternative, irrespective

of whether these are chosen with positive probability. That is, if X = {x1, . . . , xn},

then P1 = {[�x1 ], ∙ ∙ ∙ , [�xn ]}, where for each i ∈ {1, . . . , n} and �i∈ [�xi ], max(X,�i

) = xi. Now, for each xi ∈ X, define λ1([�xi ]) = p(xi, X). It directly follows that λ1 is

a signed weight function over P1 that represents p1.

For k = 2, Ω2 = {X} ∪ {X \ {x}}x∈X and P2 consists of
(

n
2

)
-many equivalence

classes such that each class contains all the orderings that top rank the same two

alternatives. Now, for each [�2
i ] ∈ P2 such that xi1 is the first-ranked alternative and

xi2 is the second-ranked alternative, define λ2([�2
i ]) = p(xi2, X \ {xi1})− p(xi2, X). It

directly follows that λ2 is a signed weight function over P2 that represents p2. Next,

by our inductive hypothesis, we assume that for each k ∈ {1, . . . , n − 1}, there is a

signed weight function λk over Pk that represents pk. Next, we show that we can

construct λk+1 over Pk+1 that represents pk+1.

Note that Pk+1 is a refinement of Pk, in which each equivalence class [�k] ∈ Pk

is divided into sub-equivalence classes {[�k+1
1 ], ∙ ∙ ∙ [�k+1

n−k]} ⊂ Pk+1. Given λk, we

require λk+1 satisfy for each [�k] ∈ Pk the following

λk([�k]) =
n−k∑

j=1

λk+1([�k+1
j ]). (14)

If λk+1 satisfies (14), then since induction hypothesis implies that λk represents pk,

we get for each S ∈ Ωk and x ∈ S, p(x, S) = λk+1
(
{[�j ] ∈ Pk+1 : x = max(S,�j)}

)
.

Next, we show that λk+1 can be constructed such that (14) holds, and for each

S ∈ Ωk+1\Ωk, λk+1 represents pk+1(S). To see this, pick any S ∈ Ωk+1\Ωk. It follows

that |S| = n − k. Let S = {x1, , .., xn−k} and X \ S = {y1, y2, ∙ ∙ ∙ yk}. Recall that

each [�k] ∈ Pk linearly orders a fixed set of k-many alternatives. Let {�k} denote

the set of k alternatives ordered by �k. Now, there exist k!-many [�k] ∈ Pk such

that {�k} = X \ S. Let
{
[�k

1], ∙ ∙ ∙ , [�k
k!]
}

be the collection of all such classes. Each

ordering that belongs to one of these classes is a different ordering of the same set of
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k alternatives.

Now, let I = {1, . . . , k!} and J = {1, . . . , n − k}. For each i ∈ I and j ∈ J ,

suppose that �k+1
ij linearly orders X \ S as in �k

i and ranks xj in the k + 1th position.

Consider the associated equivalence class [�k+1
ij ]. Next, we specify λk+1([�k+1

ij ]), the

signed weight of [�k+1
ij ], such that the resulting λk+1 represents pk+1. To see this, we

proceed in two steps.

Step 1: First, we show that for each S ∈ Ωk+1\Ωk, if the associated {λk+1
ij }ij∈I×J

satisfies the following two equalities for each i ∈ I and j ∈ J ,

∑

j∈J

λk+1
ij = λk([�k

i ]) (RS)

∑

i∈I

λk+1
ij = q(xj, S) (CS)

then λk+1 represents pk+1(S). For each S ∈ Ω and xj ∈ S, q(xj , S) is as defined in (9)

by using the given RCF p.

For each S ∈ Ω and a ∈ S, let B(a, S) be the collection of all orderings at which

a is the top-ranked alternative in S, and for each k ∈ N such that n − k ≤ |S|,

Bk+1(a, S) be the set of associated equivalence classes in Pk+1, i.e. B(a, S) = {� ∈

P : a = max(S,�)} and Bk+1(a, S) = {[�k+1] ∈ Pk+1 : [�k+1] ⊂ B(a, S)}. To prove

the result we have to show that for each xj ∈ S,

p(xj , S) =
∑

{[�k+1]∈Bk+1(xj ,S)}

λk+1([�k+1]). (15)

To see this, for each � ∈ P and a ∈ X, let W (�, a) denote the set of alternatives that

are worse than a at � and a itself, i.e. W (�, a) = {x ∈ X : a � x} ∪ {a}. For each

S ∈ Ω with a ∈ X. Let Q(a, S) be the collection of all orderings such that W (�, a)

is exactly S ∪ {a} and for each k ∈ N such that n − k ≤ |S|, Qk+1(a, S) be the set of

associated equivalence classes in Pk+1, i.e. Q(a, S) = {� ∈ P : W (�, a) = S ∪ {a}}

and Qk+1(a, S) = {[�k+1] ∈ Pk+1 : [�k+1] ⊂ Q(a, S)}. Note that, for each xj ∈ S,

we have Q(xj , S) =
⋃

i∈I [�k+1
ij ]. Moreover, it directly follows from the definitions of

Q(xj , ∙) and B(xj , ∙) that

B(xj , S) =
⋃

S⊂T

Q(xj , T ). (16)
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It follows from this observation that the right-hand side of (15) can be written as

∑

S⊂T

∑

{[�k+1]∈Qk+1(xj ,T )}

λk+1([�t+1]). (17)

i. Since (CS) holds, we have

q(xj , S) =
∑

{[�k+1]∈Qk+1(xj ,S)}

λk+1([�k+1]). (18)

ii. Next, we argue that for each T ∈ Ω such that S ( T ,

q(xj , T ) =
∑

{[�k+1]∈Qk+1(xj ,T )}

λk+1([�k+1]). (19)

To see this, recall that by definition of q(xj , T ) (9), we have

q(xj , T ) =
∑

T⊂T ′

(−1)|T
′|−|T |p(xj , T

′). (20)

Since by the induction hypothesis, λk represents pk, we have

p(xj , T
′) =

∑

{[�k]∈Bk(xj ,T ′)}

λk([�k]). (21)

Next, suppose that we substitute (21) into (20). Now, consider the set collection

{B(xj , T
′)}{T⊂T ′}. Note that if we apply the principle of inclusion-exclusion to this set

collection, then we obtain Q(xj , T ). It follows that

∑

T⊂T ′

(−1)|T
′|−|T |

∑

{[�k]∈Bk(xj ,T ′)}

λk([�k]) =
∑

{[�k]∈Qk(xj ,T )}

λk([�k]). (22)

Since (RS) holds, we have

∑

{[�k]∈Qk(xj ,T )}

λk([�k]) =
∑

{[�k+1]∈Qk+1(xj ,T )}

λk+1([�k+1]). (23)

Thus, if we combine (20)-(23), then we obtain that (19) holds.

Now, (17) combined with (18) and (19) imply that the right-hand side of (15)

equals to
∑

S⊂T q(xj , T ). Finally, it follows from Lemma 6 that

p(xj, S) =
∑

S⊂T

q(xj , T ). (24)
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Thus, we obtain that (15) holds.

In what follows we show that for each S ∈ Ωk+1\Ωk, there exists k! × (n − k)

matrix λ = [λk+1
ij ] such that both (RS) and (CS) holds, and each λk+1

ij ∈ [−1, 1]. To

prove this we use Lemma 5. For this, for each i ∈ I let ri = λk([�k
i ]) and for each

j ∈ J let cj = q(xj, S). Then, let R = [r1, . . . , rk!] and C = [c1, . . . , cn−k]. In Step 2, we

show that the sum of C equals the sum of R. In Step 3, we show that for each k > 1,

2k! ≥
∑k!

i=1 |ri| +
∑n−k

j=1 |cj|.

Step 2: We show that the sum of C equals the sum of R, i.e.

∑

j∈J

q(xj , S) =
∑

i∈I

λk[�k
i ]. (25)

First, if we substitute (9) for each q(xj , S), then we get

∑

j∈J

q(xj , S) = 1 +
∑

j∈J

∑

S(T

(−1)|T |−|S|p(xj , T ). (26)

Now, let F (xj) be the collection of orderings � such that there exists T ∈ Ω such that

S ( T and xj is the �-top-ranked alternative in T , i.e. F (xj) = {� ∈ P : max(T,�

) = xj for some S ( T}. For each k ∈ N such that n − k ≤ |S|, let F(xj) be the set of

associated equivalence classes in Pk. Next, we show that for each xj ∈ S,

∑

S(T

(−1)|T |−|S|+1p(xj , T ) =
∑

{[�k]∈F(xj)}

λk([�k]). (27)

To see this, first, since by the induction hypothesis, λk represents pk, we can re-

place each p(xj , T ) with
∑

{[�k]∈Bk(xj ,T )} λk([�k]). Next, consider the set collection

{B(xj , T )}{S(T}. Since ∪{S(T}B(xj , T ) = F (xj), it follows from the principle of

inclusion-exclusion that (27) holds. Next, when we substitute (27) in (26), we obtain

∑

j∈J

q(xj , S) = 1 −
∑

{[�k]∈F(xj)}

λk([�k]). (28)

Then, since, by the induction hypothesis, λk represents pk, we can replace 1 with
∑

{[�k]∈Pk} λk([�k]). Finally, note that an equivalence class [�k] /∈ ∪j∈JF(xj) if and

only if {�k} ∩ S = ∅. This means Pk \ ∪j∈JF(xj) = {[�k
i ]}{i∈I}. It follows that (25)

holds.
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Step 3: To show that the base of induction holds, we showed that for k = 1 and

k = 2, the desired signed weight functions exist. To get the desired signed weight

functions for each k + 1 > 2, we will apply Lemma 5. To apply Lemma 5, we have to

show that for each k ≥ 2,
∑k!

i=1 |ri| +
∑n−k

j=1 |cj| ≤ 2k!. In what follows we show that

this is true. That is, we show that for each S ∈ Ωk+1 \ Ωk

∑

i∈I

|λk([�k
i ])| +

∑

j∈J

|q(xj, S)| ≤ 2k!. (29)

To see this, first we will bound the term
∑

i∈I |λ
k([�k

i ])|. As noted before, each i ∈

I = {1, . . . , k!} corresponds to a specific linear ordering of X \ S. For each y /∈ S,

there are k − 1! such different orderings that rank y at the kth position. So, there are

k − 1! different equivalence classes in Pk that rank y at the kth position. Let I(y) be

the index set of these equivalence classes. Since {I(y)}y/∈S partitions I, we have

∑

i∈I

|λk([�k
i ])| =

∑

y/∈S

∑

i∈I(y)

|λk([�k
i ])|. (30)

Now, fix y /∈ S and let T = S ∪ {y}. Since for each i ∈ I(y), [�k
i ] ∈ Qk(y, T ) and vice

versa, we have
∑

i∈I(y)

|λk([�k
i ])| =

∑

[�k
i ]∈Qk(y,T )

|λk([�k
i ])|. (31)

Recall that by the definition of q(y, T ), we have

q(y, T ) =
∑

[�k
i ]∈Qk(y,T )

λk([�k
i ]). (32)

Next, consider the construction of the values {λk([�k
i ]}{i∈I(y)} from the previous step.

For k = 2, as indicated in showing the base of induction, there is only one row; that is,

there is a single {[�k
i ]} = Qk(y, T ). Therefore, we directly have |λk([�k

i ])| = |q(y, T )|.

For k > 2, we construct λk by applying Lemma 5. It follows from iii of Lemma 5 that

∑

[�k
i ]∈Qk(y,T )

|λk([�k
i ])| ≤ |q(y, T )| +

(k − 1)!

n − k + 1
. (33)

Now, if we sum (33) over y /∈ S, we get

∑

y/∈S

∑

[�k
i ]∈Qk(y,S∪y)

|λk([�k])| ≤




∑

y/∈S

|q(y, S ∪ y)|



+
k!

n − k + 1
. (34)
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Recall that by definition, we have Qk(y, S ∪ y) = Qk(y, S) and q(y, S ∪ y) = q(y, S).

Similarly, since each j ∈ J = {1, . . . , n} denotes an alternative xj ∈ S, we have
∑

x∈S |q(x, S)| =
∑

j∈J |q(xj , S)|. Now, if we add
∑

j∈J |q(xj , S)| to both sides of (34),

then we get

∑

i∈I

|λk([�k
i ])| +

∑

j∈J

|q(xj , S)| ≤
∑

x∈X

|q(x, S)| +
k!

n − k + 1
. (35)

Since by Lemma 7,
∑

x∈X |q(x, S)| ≤ 2k, we get

∑

i∈I

|λk([�k
i ])| +

∑

j∈S

|q(xj , S)| ≤ 2k +
k!

n − k + 1
. (36)

Finally, note that since for each k such that 2 < k < n 2k ≤ (2n−2k+1)k!
n−k+1

holds, we

have 2k + k!
n−k+1

≤ 2k!. This, together with (36), implies that (29) holds. Thus, we

complete the inductive construction of the desired signed weight function.
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