
Limit Points of Endogenous Misspecified Learning∗

Drew Fudenberg† Giacomo Lanzani‡ Philipp Strack§

First posted version: March 10, 2020

This version: December 15, 2020

Abstract

We study how a misspecified agent learns from endogenous data when their prior

belief can assign probability 0 to a neighborhood of the true model. We show that

only uniform Berk-Nash equilibria can be long-run outcomes, and that all uniformly

strict Berk-Nash equilibria have an arbitrarily high probability of being the long-run

outcome for some initial beliefs. When the agent believes the outcome distribution

is exogenous, every uniformly strict Berk-Nash equilibrium has positive probability of

being the long-run outcome for any initial belief. We generalize these results to settings

where the agent observes a signal before acting.
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1 Introduction

We study the joint evolution of an agent’s actions and beliefs when their action can influence

the distribution of outcomes, and their prior may be misspecified in the sense that it assigns

probability 0 to a neighborhood of the true data generating process. Given the complexity

of the real world, such misspecification is plausible in many settings, and has been studied

in a wide range of applications.

We consider a general environment with finite actions and outcomes and – unlike most

past work – do not restrict the agent’s prior belief to have a finite support or any specific

functional form. In this environment, the agent’s prior is a belief over the set of action-

contingent outcome distributions, and the agent is misspecified if they assign probability 0

to a neighborhood of the true map from actions to distribution over outcomes. Especially, the

agent’s prior determines how they perceive the correlation between the outcome distributions

induced by different actions, which we show is a key determinant of the long-run outcome

of the learning process.

Our results characterize the possible limit points of the agent’s action and their stability

properties. First, Theorem 1 shows that regardless of the agent’s discount factor, if play

converges to an action a, that action is a uniform Berk-Nash equilibrium. Uniform Berk-

Nash equilibrium, which we introduce in this paper, is a refinement of Berk-Nash equilibrium

(Esponda and Pouzo, 2016). Berk-Nash equilibrium requires that the action is myopically

optimal against some belief that minimizes the Kullback-Leibler (KL) divergence between

the subjective and true outcome distributions given that the agent plays a— that is, a best

response to a “KL minimizer”. Uniform Berk-Nash equilibrium strengthens this by requiring

that the action is a best response to any beliefs with support on these KL minimizers.

Intuitively, limit points correspond to myopic optimization even when the agent is not myopic

because play will not converge until the agent no longer perceives an “experimentation

value” from non-myopic play; the intuition for the uniformity requirement is that when play

converges, the agent’s beliefs oscillate over all of the KL-minimizing beliefs.

We then investigate sufficient conditions for two alternative definitions of what it means

for an action to be a long-run outcome. We say that an action is stable if play converges

to it with arbitrarily high probability for some open set of initial beliefs. Theorem 2 shows

that every uniformly strict Berk-Nash equilibrium is stable, regardless of the agent’s dis-

count factor, where “strict” indicates that the action is the strict myopic best response to

the agent’s beliefs, and “uniformly” requires that this is true for all of the KL-minimizing

outcome distributions (as opposed to being true for at least one of them).
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We say that an action is positively attractive if there is positive probability that it is

the limit outcome under every optimal policy for every full-support prior belief. When the

agent believes (either rightly or wrongly) that the distribution of outcomes is “exogenous”,

i.e. the same for all actions, or in a “subjective bandit” problem, where the agent believes

that the outcomes observed when playing one action are uninformative about the outcome

distributions induced by other actions, we obtain partial converses to Theorem 1: All uni-

formly strict Berk-Nash equilibria are positively attractive. Moreover, in subjective bandit

problems that are weakly identified (Esponda and Pouzo, 2016) we can relax uniformly strict

to strict.

To prove these results, we first prove in Proposition 1 that beliefs concentrate exponen-

tially fast around the KL minimizers.1 We use Proposition 1 to guarantee that the agent

starts to play the equilibrium action with positive probability. We then use the stability

result from Theorem 2 to show that, with positive probability, the agent uses the action

forever. We also observe that in a supermodular decision problem, extreme uniformly strict

equilibria are positively attractive. In this setting, the additional structure of the problem

lets us dispense with the first step of the proof.

We also generalize our results to a setting in which the agent observes a signal before

taking an action. Here too a limit action must be a uniform Berk-Nash equilibrium. More-

over, if the agents ignore the predictive value of the signals, i.e., the signals are subjectively

uninformative, every uniformly strict Berk-Nash equilibrium is positively attractive.

We illustrate our findings in three economic examples: a monopolist that is misspecified

about the demand function, a central bank choosing an exchange-rate policy, and a seller

that observes a signal and then decides whether to make an investment.

1.1 Related Work

Berk (1966) shows that the beliefs of a misspecified agent asymptotically concentrate on the

set of models that minimize the KL divergence from the true data generating process when

this process is exogenous. In many economic applications, actions and associated signal

distributions aren’t fixed but change endogenously over time depending on an action taken

by the agent, so the agent’s misspecification has implications for what they observe and

thus for their long-run beliefs. Arrow and Green (1973) gives the first general framework

1This result is in the spirit of Diaconis and Freedman (1990), but it is more special as it does not hold
uniformly over all empirical distributions. The result of Diaconis and Freedman does not apply, as its
assumptions rule out both misspecification and finite-support priors.
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for this problem, and Nyarko (1991) points out that the combination of misspecification and

endogenous observations can lead to cycles.

There has been a surge of theoretical work on misspecified learning since the seminal work

of Esponda and Pouzo (2016), which defines Berk–Nash equilibrium. This is a relaxation

of Nash equilibrium that replaces the requirement that players’ beliefs are correct with the

requirement that each player’s belief minimizes the Kullback–Leibler divergence to their

observations on the support of their prior. They show that Berk-Nash equilibrium is a

necessary property for limit points when the payoff function is subject to small i.i.d. random

shocks as in Fudenberg and Kreps (1993), and that it is sufficient if in addition the agent is

willing to incur asymptotically negligible optimization losses.

Fudenberg, Romanyuk, and Strack (2017) and Bohren and Hauser (2020) provide nec-

essary and sufficient conditions for actions to converge when the support of the agent’s

prior contains only two points.2 Heidhues, Kőszegi, and Strack (2018b) and He (2019) pro-

vide conditions for global convergence of play of a non-myopic agent in a environments with

additively separable payoffs that satisfy strong supermodularity restrictions, where the Berk-

Nash equilibrium is unique. Heidhues, Kőszegi, and Strack (2018a) establishes convergence

to a Berk-Nash equilibrium in environments with a normal prior and normal signals. Molavi

(2019) studies misspecification in a temporary equilibrium model of macroeconomics; his

leading example is where agents mistakenly think that some variables have no impact.

The most closely related papers are Esponda, Pouzo, and Yamamoto (2019) (henceforth

EPY) and Frick, Iijima, and Ishii (2020) (henceforth FII). EPY uses stochastic approximation

to establish when the agent’s action frequency converges in an environment with finitely

many actions and fairly general priors. We provide a sharper characterization of when play

converges to a single action in the long run, but our results do not characterize the long-run

distribution when this convergence does not occur. Corollary 3 in the Appendix combines our

results with theirs to derive new results about the limiting action frequencies. FII provides

conditions for local and global convergence of the agent’s beliefs without explicitly modelling

the agent’s actions when the agent’s prior has finite support.3

Our paper complements the literature on long-run behavior in misspecified models in

three ways: First, we establish that without the asymptotically vanishing payoff pertur-

bations of Esponda and Pouzo (2016), play never converges to a non-uniform Berk-Nash

2Bohren and Hauser (2020) considers myopic agents in discrete time; Fudenberg, Romanyuk, and Strack
(2017) analyzes a continuous time model with Brownian noise without assuming myopia.

3Neither model nests the other. FII assumes finite priors, and impose a continuity assumption that our
model can but need not satisfy. Conversely, we rule out the continuum of actions assumed by FII.
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equilibrium. (This uniformity refinement has no analog in Frick, Iijima, and Ishii (2020)

because it is is with respect to the optimality of actions.) Second, we introduce conditions

under which an action has positive probability of being the long-run outcome from any ini-

tial belief. Finally, we provide the first necessary and sufficient conditions for the choices of

forward-looking misspecified agents to converge to a myopic best reply to their beliefs.4

Misspecified agents are featured in work in a wide range of fields. There are many exam-

ples in behavioral economics, such as the “law of small numbers,” the “hot-hand fallacy,” the

winner’s curse, and the link between overconfidence and prejudice. (Kagel and Levin (1986),

Rabin and Vayanos (2010), and Heidhues, Kőszegi, and Strack (2019).) Macroeconomists

have been interested in misspecified learning both in the form of misspecified least-squares

predictions as well as more sophisticated models of updating and inference.5 In organiza-

tional economics, misspecification has been used to explain e.g. the role of corporate culture

and the low rate and low number of minority inventors. In public economics, misspecifi-

cation helps explain over or under reaction to changes in tax schedules. And in political

economy, misspecification has been used to explain the recurrence of populism and political

polarization.6 There is also a related literature on misspecified social learning.7

In addition to papers that consider misspecified Bayesian agents, there is also a literature

that studies the long-run outcomes under learning heuristics that might be used when people

are unable to formulate a probabilistic assessment of the data generating process. Many of

these heuristics feature a form of neglect of the relevant elements of the environment, similar

to the ones we consider in our Section 4 (see, e.g., Tversky and Kahneman, 1973, Rabin and

Schrag, 1999, and Jehiel, 2018).

2 The Model

2.1 Setup

Actions, Utilities and Objective Outcome Distributions In each period t P t1, 2, 3, . . .u

an agent chooses an action from the finite set A. This choice has two effects. First, each ac-

4Theorem 4 of Esponda and Pouzo (2016) shows that Berk-Nash is necessary under weak identification and
payoff perturbations. Other work either assumes myopia or don’t obtain convergence to myopic best reply.

5Bray (1982), Bray and Savin (1986), Cho and Kasa (2015), Cho and Kasa (2017), Molavi (2019).
6See Gibbons, LiCalzi, and Warglien (2019) and Bell et al. (2019) for organizational economics, Rees-Jones
and Taubinsky (2016) and Morrison and Taubinsky (2019) for public economics, and Levy, Razin, and
Young (2020) and Eliaz and Spiegler (2018) for political economy.

7E.g. Bohren (2016), Bohren and Hauser (2020), Frick, Iijima, and Ishii (2019), Gagnon-Bartsch (2016), and
Mailath and Samuelson (2019).
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tion a P A induces an objective probability distribution p˚a P ∆pY q Ă R|Y | over the finite set

of possible outcomes Y .8 Second, the action, paired with the realized outcome, determines

the flow payoff of the agent via the utility function u : Aˆ Y Ñ R.

Subjective Beliefs of the Agent The agent correctly believes that the map from actions

to probability distributions over outcomes is fixed and depends only on their current action,

but they are uncertain about the distribution each action induces. Let P “
Ś

aPA ∆pY q Ă

R|Y |ˆ|A| be the space of all action-dependent outcome distributions, and let pa P ∆pY q denote

the a-th component of p P P. We endow P with the sup-norm topology, and denote by Bεppq

the ball of radius ε around p P P .9

The agent’s uncertainty is captured by a prior belief µ0 P ∆
`

P
˘

, where ∆
`

P
˘

denotes

the metric space of Borel probability measures on P endowed with the topology of weak

convergence of measures.

Definition 1. The conceivable outcome distributions are the elements of Θ “ suppµ0. The

agent is correctly specified if p˚ P Θ, i.e. the objective distribution is conceivable.

Throughout the paper, we will maintain the following assumption:

Assumption 1 (Regularity).

(i) For all p P Θ and a P A, papyq ą 0 if and only if p˚apyq ą 0.

(ii) The prior µ0 has subexponential decay : there is Ψ : R` Ñ R such that for every p P Θ

and ε ą 0 we have µ0pBεppqq ě Ψpεq with lim ΨpK{nq exppnq “ 8 for all K ą 0.

Assumption 1(i) requires that the set of outcomes that the agents thinks are possible

coincides with the set of outcomes that objectively have positive probability. This assumption

guarantees that Bayes rule is always well defined.10 Assumption 1(ii) extends Diaconis and

Freedman (1990)’s notion of φ-positivity to the misspecified case, and adds the requirement

that the bounding Ψ vanishes at a subexponential rate around 0. It is always satisfied by

priors with a density that is bounded away from 0 on their support, and by priors with finite

support.11

8We denote objective distributions with a superscript ˚.
9For every finite dimensional vector v, we let ||v|| “ maxi vi denote the supremum norm.
10Assumption 1(i) is satisfied in most applications but it is stronger than necessary. We explain in Online

Appendix B.1 how our results extend to weaker assumptions on the support of the agent’s prior beliefs.
11Dirichlet priors also satisfy Assumption 1(ii), even though they do vanish at the edge of their support.

Fudenberg, He, and Imhof (2017) shows by example that even correctly specified Bayesian updating can
behave oddly when the prior vanishes exponentially quickly.
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Our specification allows the agent’s subjective uncertainty to be correlated across ac-

tions. For example, in subjectively exogenous problems, the agent has a belief about action-

contingent distributions that is perfectly correlated: they are certain that every action gen-

erates the same outcome distribution.

Updating Subjective Beliefs We assume throughout that the agent updates their beliefs

using Bayes rule. Denote by µtp¨ | pa
t, ytqq the subjective belief the agent obtains using Bayes

rule after action sequence at “ pasq
t
s“1 and outcome sequence yt “ pysq

t
s“1,

µtpC | pa
t, ytqq “

ş

pPC

śt
τ“1 paτ pyτ qdµ0ppq

ş

pPP

śt
τ“1 paτ pyτ qdµ0ppq

. (Bayes Rule)

Since the agent’s prior has support Θ, their posterior belief does as well. We sometimes

suppress the dependence of the posterior belief on the realized sequence and just write µt.

Behavior of the Agent A (pure) policy π :
Ť8

t“0A
t ˆ Y t Ñ A specifies an action for

every history. We assume that the agent’s objective is to maximize the expected discounted

value of per-period utility with discount factor β P r0, 1q, and restrict to optimal policies.

Throughout, we let at`1 “ πpat, ytq denote the action taken in period t. The objective

action-contingent probability distribution p˚ and a policy π induce a probability measure Pπ
on paτ , yτ q

8

τ“1.12 Standard results guarantee that there is an optimal policy π that depends

on the history only through the agent’s beliefs; we restrict attention to policies that satisfy

this restriction.

Given a belief ν P ∆pΘq we denote by νa the belief over outcome distributions associated

with action a, i.e. νapCq “
ş

1paPCdνppq for all Borel sets C Ď ∆pY q. We denote by

Epa rfpyqs “
ř

yPY fpyqpapyq the expectation of f : Y Ñ R under the outcome distribution

pa. A
m pνq denotes the set of myopically optimal actions given belief ν, i.e.,

Am pνq “ argmax
aPA

ż

∆pY q

Epa rupa, yqs dνappaq.

2.2 Forms of Misspecification

Our model encompasses many sorts of misspecified learning, including the following:

12We spell out the details of this measure at the start of the Appendix.
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Subjectively Exogenous Problems We say that there are subjectively exogenous out-

comes when the agent believes that the realized outcome is not affected by the chosen action.

More formally:

Definition 2. Outcomes are subjectively exogenous if for every a, a1 P A and every p P Θ,

we have pa “ pa1 .

Note that the agent can believe in exogenous outcomes independent of whether or not

the action really does influence the distribution; if the action does influence the outcome

and the agent ignores this we say the agent exhibits causation neglect. An agent who

thinks the outcome distribution is exogenous updates their beliefs as if they faced an i.i.d.

environment. We will establish that the beliefs in this setting concentrate on the conceivable

outcome distributions closest to the empirical average. We use this result to show that if a

is a uniformly strict Berk-Nash equilibrium, it is positively attractive.

Subjective Bandit Problems The other extreme case encompassed by our setup is where

the agent thinks that they face a bandit problem, i.e. they believe that the distributions

over outcomes induced by different actions are independent. This corresponds to the case

where the agent’s prior µ0 is a product measure.

Definition 3 (Bandit Problem). We say that an agent faces a subjective bandit problem if

µ0 “
Ś

aPA µ0,a P p∆ p∆ pY qqq
A.

We show that uniformly strict Berk-Nash equilibria are positively attractive in this setting

as well, provided that the agent is sufficiently patient.

One Dimensional Problems In one-dimensional problems, the agent’s uncertainty is

summarized by a parameter γ P R. The parameter determines the distribution over outcomes

through a function φ which maps parameters to action-dependent outcome distributions.

Formally, the support of the agent’s prior µ0 is contained in the image of this function φ.

Definition 4 (One-Dimensional Problems). The problem is one-dimensional if there exists

Γ Ď R and a function φ : Γ Ñ P such that Θ Ď tφpγq : γ P Γu. A one-dimensional problem

is supermodular if A can be ordered such that pγ, aq ÞÑ Eφpγqarupa, yqs is supermodular.

EPY provides a sufficient condition for actions to converge in one-dimensional problems

that are supermodular. Heidhues, Kőszegi, and Strack (2018b) shows that a unique Berk-

Nash equilibrium is globally attracting in supermodular problems where the outcomes are
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real numbers and φ is an additive shift. Our Example 9 shows that their result does not

hold in our more general setting: a unique (and uniformly strict) Berk-Nash equilibrium

may not be positively attractive. Under a stronger version of supermodularity, our positive

attractiveness results do extend to extremal uniformly strict Berk-Nash equilibria.

Finite Support Another common assumption is that the support of the prior is finite.

With a finite-support prior, if behavior converges to an action a, a is a best reply to all

outcome distributions that minimize the Kullback-Leibler divergence from p˚a, so it is a

uniform Berk-Nash equilibrium. However, Example 6 shows that non uniform Berk-Nash

equilibria can be limit points when the support of the prior is infinite if Assumption 1(ii) is

not satisfied.

Signals Here we suppose that each period the agent observes a signal s P S before taking

an action a P A. The signal may convey information about the outcome distribution, and it

may also directly enter the payoff function.

We allow the agent to be uncertain about the outcome distributions induced by various

signals and actions. Let P “ p∆pY qqAˆS Ă RYˆAˆS be the space of all signal and action

dependent outcome distributions. The agent’s belief is a probability measure µ over P ,

where ps,apyq denotes the probability under p P P of outcome y after observing signal s

playing action a. Extending the model to signals lets us incorporate the stochastic payoff

perturbations assumed in EP. It also lets us model cases where the agent mistakenly thinks

that some information they observe is uninformative.

3 Limit Points and Berk-Nash Equilibria

We are interested in when the agent’s actions converge, and their possible limit points. Note

that these are different questions than whether the agent’s beliefs converge: Beliefs can

oscillate when actions are fixed, as in Berk’s example where the agent doesn’t have an action

choice, and conversely actions can oscillate with fixed beliefs if the agent is indifferent.13

We say that the action process converges to action a if there exists a time period T P N
such that at “ a for all time periods t ą T . Action a is a limit action if the action process

converges to a with positive probability under some optimal policy π.14 Note that there may

13The fact that beliefs can oscillate under a fixed action is the driving force behind the uniformity requirement
in several of our results, such as Theorem 1.

14Formally, there exists a measurable set C Ď A8 ˆ Y 8 with PπrCs ą 0 such that at converges to a in C.
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be several optimal policies for a given prior; which policy is used can influence whether the

action process converges and if so to which points.

The concept of Berk-Nash Equilibria (Esponda and Pouzo, 2016) will play a key role in

our analysis. Intuitively, a Berk-Nash equilibrium is an action a such that there exists a

belief for which a is myopically optimal, and which assigns positive probability only to the

conceivable outcome distributions that best match the objective outcome distribution p˚a.

Formally, given two distributions over outcomes q, q1 P ∆pY q we define

H pq, q1q “ ´
ÿ

yPY

qpyq log q1pyq.

Note that ´Hpq, q1q is the expected log likelihood of an outcome under subjective distribution

q1 when the true distribution is q, so q1 with smaller Hpq, q1q better explain q. The Kullback-

Leibler (KL) divergence between p˚a and pa is given by Hpp˚a, paq ´Hpp
˚
a, p

˚
aq, so any pa that

minimizes H pp˚a, pq also minimizes the KL divergence between p˚a and pa.

Recall pa denotes the outcome distribution that p assigns to action a. For each a, let

Θ̂paq “ argmin
pPΘ

H pp˚a, paq Ď Θ (1)

denote the set of conceivable action-contingent outcome distributions that minimize the KL

divergence relative to the true distribution p˚a given that the agent plays a. Note that the

elements of Θ̂paq specify an outcome distribution for each action a1 P A, even though Θ̂paq

only depends on the distributions corresponding to a. We call Θ̂paq the set of KL minimizers

for action a.15

Berk (1966) established that the agent’s beliefs concentrate on Θ̂paq if they always play

a. This motivates Esponda and Pouzo (2016)’s notion of a Berk-Nash equilibrium. We

introduce variations of this concept to capture different senses in which an action is or is not

a long-run outcome of the agent’s learning process.

Definition 5. Two action-contingent outcome distributions p and p1 are observationally

equivalent under action a if pa “ p1a. We denote by Eappq Ď Θ the set of action-contingent

outcome distributions in Θ that are observationally equivalent to p under a.

Definition 6 (Equilibrium concepts).

15Note that if p˚ P Θ then each minimizing p explains the observed outcome distribution perfectly, pa “ p˚a .
In particular this is true if µ0 has full support.
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(i) Action a P A is a Berk-Nash equilibrium (BN-E) if for some belief ν P ∆pΘ̂paqq, a is

myopically optimal given ν, i.e. a P Ampνq.

(ii) Action a is a strict BN-E if for some belief in ν P ∆pΘ̂paqq, a is the unique myopically

optimal action, i.e. tau “ Ampνq.

(iii) Action a is a uniform BN-E if for all KL minimizers p P Θ̂paq there exists a belief

ν P ∆ pEappqq such that a P Ampνq.

(iv) Action a is a uniformly strict BN-E if for every belief ν P ∆pΘ̂paqq, a is the unique

myopically optimal action, i.e., tau “ Ampνq.

Uniformity requires that for each class of observationally equivalent KL minimizers for

action a, there is a belief concentrated on that class for which a is the myopically optimal

choice.16 The difference between BN-E and uniform BN-E disappears in the correctly spec-

ified case, where both concepts coincide with self-confirming equilibrium. In settings where

the KL minimizer is unique, the uniformity requirement has no bite. However, in frameworks

with additional structure, such as symmetry or parametric restrictions, multiple KL mini-

mizers can arise naturally. For example, suppose that agent’s payoff depends on the color y

of a ball drawn from an urn, and the agent’s action is to bet on the color of the drawn ball.

The agent correctly believes their action has no impact on the distribution of outcomes. The

urn has 6 balls: 4 of them white, 1 red, 1 blue. Here there is a finite number of possible

outcome distributions corresponding to the possible urn composition. If the agent wrongly

believes that at most half of the balls share the same color, i.e., ppyq ď 1{2 for y P twhite,

red, blueu, the two KL minimizers are (3 white, 2 blue, 1 red) and (3 white, 1 blue, 2 red).

The following result motivates our definition of uniform BN-E. It holds regardless of the

agent’s discount factor, and for all optimal strategies. The same is true for all subsequent

results except those where the dependence on the discount factor is made explicit.

Theorem 1. Every limit action is a uniform BN-E.

One implication of Theorem 1 is that limit actions must be BN-E. In outline, this follows

from the fact that if actions converge to an action then eventually the agent always plays that

action, and Berk (1966)’s result that the agent’s beliefs converge to the set of KL minimizers

when their observations are a sequence of i.i.d. signals.

16Notice that when Eappq is not a singleton for some p P Θ̂paq, uniformity does not require that the equilibrium
action is a best reply to every KL minimizer in Θ̂paq. The only other equilibrium refinement we know of
that, like uniform BN-E, tests for optimality against all beliefs in a non-singleton set is Fudenberg and
He (2020), which studies non-equilibrium learning in a steady-state model where the agents are correctly
specified Bayesians. They do not study the dynamics away from the steady state.
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More strongly, Theorem 1 shows that a limit action must be a uniform BN-E. When

a is not a uniform BN-E, there is an equivalence class of KL minimizers such that a is

not a myopic best reply when beliefs concentrate on that class. The proof of Theorem 1

works by contradiction: Consider an action a which is not a uniform BN-E. If play converges

to a with positive probability there must exist a history after which it is optimal in every

future period to play a. We thus study the agent’s belief process under the assumption

that a is played in every period. As we prove in Proposition 1 in the Appendix, the agent’s

beliefs concentrate around the set of Kullback-Leibler minimizers relative to the realized

outcome frequency exponentially fast. This result allows us to determine the agent’s long

run actions from the long-run frequency of outcomes. If a is not a uniform BN-E, there

is a KL minimizer p1 under which action a is not optimal. Moreover, the number of times

each outcome is realized is a random walk, and by the Central Limit Theorem the outcome

frequency converges to objective outcome frequency p˚a at rate 1{
?
t. This implies that the

probability with which the outcome frequency will be in a ball of radius 1{
?
t centered around

p˚a p1´ 1{
?
tq ` p1a p1{

?
tq in a given period t converges to a constant. These balls are chosen

in the direction of the outcome frequency p1a such that the action a is not optimal for large

enough t when the agent’s belief is in these balls. We then apply the Kochen-Stone Lemma

which implies that the probability that the agent’s outcome frequency will be in such a

ball infinitely often is non-negative and the Hewitt-Savage zero-one law implies that it must

equal one. Thus with probability one, the outcome frequency will eventually be such that

the agent takes an action different from a. Thus, a can not be a limit action if it is not a

uniform BN-E.

The same technique can be applied to obtain a starker result in subjective bandit prob-

lems. There Corollary 2 shows that if an action performs poorly under some KL minimizer,

the agent will stop to play it in finite time with probability 1, even if the action is objec-

tively optimal and the agent is very patient. Example 6 in the Online Appendix shows that

Theorem 1 can fail without Assumption 1(ii). Here the agent’s prior has countable support

and assigns vanishingly low probability to distributions that are close to one of the KL min-

imizers. However, Assumption 1(ii) does not ensure that a uniform BN-E exists, as shown

in the following example. As a consequence, actions need not converge.

Example 1 (Non-existence of Uniform BN-E). A monopolist is uncertain about the demand

for their product. Every period it posts a price a P t3, 4, 5, 6, 7u, and then a randomly selected

consumer observes the price and decides whether to buy py “ 1q or not buy the good py “ 0q.

The monopolist’s maximizes revenue upa, yq “ ay, and the true distribution of customer
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values is uniform on r3, 7s. The monopolist overestimates the variance of consumer values,

and believes that they are either uniformly distributed on r0, 8s or on r2, 10s. As we show

in the Online Appendix, the unique BN-E is nonuniform and strict, with price 5. Both

distributions are KL-minimizing for this price, but price 5 is myopically optimal only if the

valuations are uniformly distributed on the high range r2, 10s. Theorem 1 implies that the

monopolist’s actions do not converge, even though there is a unique and strict BN-E. This

is because when a “ 5, the monopolist eventually sees a sequence of outcomes where few

consumers buy, becomes very confident in the low range of valuations r0, 8s, and switches to

a lower price.

Theorem 1 implies the non-convergence theorem of Nyarko (1991) as a corollary since also

in that setting there is no uniform BN-E. Moreover, in the case of myopic agents, Corollary

3 in the Appendix combines the result with Theorem 2 of Esponda, Pouzo, and Yamamoto

(2019) to show the empirical action frequencies cannot converge to some non-uniform BN-E.

4 Sufficient Conditions for Long-Run Persistence

Theorem 1 shows that play can only converge to a given action a if that action is a uniform

BN-E. This section gives sufficient conditions for a to be a long-run outcome in two different

senses, namely stability and attractiveness.

4.1 Stability

We say that action a is stable if play converges to a with high probability starting from

every belief in a neighborhood of a KL minimizer for a. For ν P ∆pΘq, let Bεpνq “ tν
1 P

∆pΘq|dpν 1, νq ď εu be the set of beliefs over conceivable distributions that are within ε of ν.

Define the set Θ̂εpaq as all outcome distributions whose marginal distribution with respect

to action a is at most ε away from a KL minimizer,

Θ̂ε
paq “ tp P Θ: there exists p1 P Θ̂paq with ||p1a ´ pa|| ď εu . (2)

Definition 7 (Stability).

(i) An action a is stable if for every κ P p0, 1q, there is an ε ą 0 and a belief ν P ∆pΘq

such that for all initial beliefs in Bεpνq, the action prescribed by some optimal policy

converges to a with probability larger than 1´ κ.
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(ii) An action a is uniformly stable if for every κ P p0, 1q, there is an ε ą 0 such that for

all prior beliefs ν P ∆pΘq such that νpΘ̂εpaqq ą 1 ´ ε, the action prescribed by any

optimal policy converges to a P A with probability greater than 1´ κ.

Theorem 1 shows that stable actions must be uniform BN-E. The next theorem shows

that an action is a uniformly strict BN-E if and only if it is uniformly stable.

Theorem 2. An action is uniformly stable if and only if it is a uniformly strict BN-E.

Theorem 2 differs from past work by providing the first if and only if characterization of

the stability of actions under misspecified learning with non-binary priors, and by allowing

the agent to be non-myopic and thus perceive an information value from experimentation.17

Its proof has two parts, corresponding to the two directions of the if and only if statement.

To show that every uniformly strict BN-E is uniformly stable, we first show that if beliefs

assign sufficiently high probability to a neighborhood of the KL minimizers, the only optimal

action is the uniformly strict BN-E a. That such a neighborhood exists for a myopic policy

follows from the definition of uniformly strict BN-E. Under a non-myopic policy, since beliefs

are not degenerate, some actions may have an experimentation value. However, when the

beliefs are sufficiently concentrated around the minimizers, the value of any alternative action

cannot be much higher than its value against the most favorable minimizer, and since a is

a uniformly strict BN-E this value is strictly lower than that of a. Then we combine an

observation from FII with a generalization of the arguments in Fudenberg and Levine (1992)

and the Dubins’ upcrossing inequality to guarantee that if the probability initially assigned

to the neighborhood is sufficiently high, it is unlikely to drop below the threshold that makes

action a suboptimal.

The proof of the converse direction is much simpler: If a is not a uniformly strict BN-E,

there is a distribution p in Θ̂paq that makes some other action b the best response, and if we

set ν to be a point mass on p the agent always plays b.

Theorem 2 is in contrast to the non-convergence in the monopoly pricing example of

Heidhues, Kőszegi, and Strack (2018a), where there is a continuum of actions, and actions

that are sufficiently near the strict best response are best responses to nearby beliefs. As we

explain in Section 6, it is not clear what the right definition of uniform stability is for that

setting.

17Bohren and Hauser (2020) and Fudenberg, Romanyuk, and Strack (2017) characterize stability when the
agent has a binary prior. FII’s Theorem 1 gives a sufficient condition for stability when the agent’s prior
has finite support. The statement of the theorem is for their general model, which takes the evolution of
the belief process as a primitive, and does not describe the agent’s actions, discount factor, or optimization.
The paper’s three applications all assume myopic choice.
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Example 1 shows that Theorem 2 does not extend to strict BN-E that are not uniformly

strict. The next example shows that in Theorem 2 we cannot replace uniformly stable with

stable.

Example 2 (A stable BN-E that is not uniformly strict). Suppose there are 2 actions, a

and b, that induce the same distribution on Y “ t0, 1u and such that upa, ¨q “ upb, ¨q. The

agent has an arbitrary belief supported on tp : pa “ pbu, i.e., they know the actions induce

the same distribution. Here, since the agent is always indifferent, even though action a is

not a uniformly strict BN-E, it is stable under the (optimal) policy that prescribes to always

play a.

In general there is a gap between uniformly strict BN-E and stability, but in sufficiently

rich problems, this gap is absent.

Definition 8. A problem is rich if for every action a, minimizer p P Θ̂paq and ε ą 0 there

exists a p1 P ΘzΘ̂paq with ||p´ p1|| ď ε such that

Epa rupa, yqs ´ max
bPAztau

Epb rupb, yqs ą Ep1a rupa, yqs ´ max
bPAztau

Ep1b rupb, yqs .

In words, a problem is rich if for every KL minimizer for every action a, the agent’s prior

includes a nearby distribution under which a performs relatively less well.18 This rules out

the previous example and also rules out finite-support priors.

Theorem 3. If a problem is rich, the following are equivalent:

(i) a P A is a uniformly strict BN-E.

(ii) a P A is stable.

Richness guarantees that if a is not a uniformly strict equilibrium, there is a KL minimizer

for action a that can be approximated with a sequence of outcome distributions ppnqnPN under

which action a is strictly suboptimal. To prove this theorem, for every ν we build a sequence

of beliefs pνnqnPN that have have pn has the unique KL minimizer for action a, and combine

this with Theorem 1 to show that the probability that the actions converge to a starting

from νn is 0. To summarize our stability results,

Uniformly Strict BN-E “ Uniformly Stable Ď Stable Ď Uniform BN-E,

where the first inclusion is an equality if the problem is rich.

18Note that “relatively less well” allows the action to be a best response to all distributions near p.
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4.2 Positive Attractiveness

The previous section gave sufficient conditions for an action to be played in the long-run

with high probability for some initial beliefs. Another natural notion of a being a long-run

outcome is that for every initial belief with support Θ there is strictly positive probability

that the agent’s action converges to a.

Definition 9 (Positively attractive). The action a P A is positively attractive if for every

optimal policy π and every initial belief ν with supp ν “ Θ,

Pπ
”

lim
tÑ8

at “ a
ı

ą 0 .

Below we give sufficient conditions for uniformly strict BN-E to be positively attractive.

Benäım and Hirsch (1999) obtains a similar conclusion for the linearly stable Nash equilibria

of stochastic fictitious play.19 These arguments rely on Proposition 1 in the Appendix, which

shows that beliefs about the outcome distribution concentrate around the distributions that

best fit the empirical frequency of outcomes. Importantly, our result applies pathwise and

does not require that either actions or empirical frequencies converge.

Our results on positive attractiveness cover three different cases: subjectively exogenous

outcomes, subjective bandit problems, and strongly supermodular problems. In the first two

cases we are able to identify a particular empirical distribution that is sufficient for analyzing

convergence. With subjectively exogenous outcomes, the agent only tracks a single empirical

distribution. In subjective bandit problems, the agent does consider multiple empirical

distributions, but it is sufficient to study the distribution corresponding to the action in

question. In supermodular problems, we instead show that certain outcome realizations can

lead the agent to lock on to the highest or lowest action.

4.2.1 Subjectively Exogenous Problems

In subjectively exogenous problems, the agent believes that the distribution over outcomes

is the same for all actions. This is a fairly stark assumption; more typically the agent

might believe that their action influences some dimensions of the outcome but not others.

We present the case where the agent believes the action has no effect at all because the

extension to “partially exogenous” outcomes does not bring any additional insight.

19The Bayesian foundation of fictitious play (Fudenberg and Kreps, 1993) assumes that the players believe
that the environment is stationary. Away from a steady state the players are misspecified, but when the
system converges to a steady state the stationarity assumption is asymptotically correct. In our setting,
“substantial” misspecification can persist even when behavior converges.
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Theorem 4. Suppose outcomes are subjectively exogenous. If a is a uniformly strict BN-E

such that p˚a is absolutely continuous with respect to p˚a1 for all a1 P A, then it is positively

attractive.

Example 9 in the Online Appendix shows that outside of subjectively exogenous problems,

uniformly strict equilibria need not be positively attractive, even when they are the unique

BN-E. To prove the result, we first use Proposition 1 to show that beliefs concentrate around

the distributions that minimize the KL divergence from the empirical frequency on every

path of outcome realizations. We then use this concentration to show there is a finite

sequence of outcomes that has positive probability and leads the agent to play a. Since a is

a uniformly strict BN-E, if beliefs concentrate around the minimizers, a becomes the unique

best reply. While using a, the relative probability the agent assigns to distributions in Θ̂paq

increases in expectation, so we can combine Dubins’ upcrossing inequality with the fact that

a is the unique myopic best reply to beliefs concentrated in Θ̂paq to show that, with positive

probability, the agent will stick to action a forever.

Corollary 1. Suppose that outcomes are subjectively exogenous, and that the true outcome

distribution p˚ has full support. Then every uniformly strict BN-E is positively attractive.

Proposition 4 in EPY shows that for every uniformly strict BN-E a, there exists at least

one prior with support equal to Θ under which the policy converges to a with positive

probability. FII provides sufficient conditions for the system to converge with probability 1

to a specific BN-E from any initial belief. Our Theorem 4 concludes that every uniformly

strict BN-E has positive probability of being the limit behavior starting from every initial

prior without imposing conditions that imply global convergence to a specific outcome.

Example 3 (Stackelberg game perceived as Cournot). The agent is a seller who every period

faces a competing seller randomly drawn from a large population. The agent first chooses

whether to produce low output, a “ qL “ 1, or high output, a “ qH “ 2. The competitor

sets their quantity y at qL or qH after observing the agent’s action: If the agent chooses low

output the competitor produces high output with probability 2{3, while if the agent chooses high

output competitor produces an high quantity with probability 1{3.20 The agent believes that the

competitor chooses output without observing the agent’s action, and that they choose an high

output with some unknown probability p: Θ “ tp P ∆ptqL, qHuq
tqL,qHu : pqH pqHq “ pqLpqHqu.

The true distribution is p˚qH pqHq “ 1{3 “ p˚qLpqLq.

20The randomness could arise from a distribution over production costs in the population of competitors.
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The demand function of the consumers is linear, and the agent has no production cost; the

utility function of the agent is upa, yq “ ap4.5´a´ yq. High output is objectively optimal for

the agent, and this is also a uniformly strict BN-E. However, low output is also a uniformly

strict BN-E, supported by the wrong belief that the observed high level of production of the

competitor would be the same even if the agent increased output. By Theorem 4 both actions

have a positive probability of arising as limit outcomes starting from every initial prior.

Without the assumption of subjectively exogenous outcomes, uniformly strict BN-E need

not be positively attractive, even if one maintains the full support assumption.

Example 4 (A uniform BN-E that is not positively attractive). A central bank decides

whether to keep a flexible exchange rate, a “ f , or peg the currency to the dollar, a “ c. The

outcome has two binary components, y “ pye, ysq, where ye says whether the economy is in a

boom, and ys whether there is a speculative attack on the currency. The bank only cares about

the outcome. It likes booms and dislikes speculative attacks: u pf, yq “ ye, u pc, yq “ 3
2
ye´ ys.

The bank correctly believes that whether there is a speculative attack is independent of the

state of the economy. Furthermore, the bank knows that if they maintain a flexible exchange

rate, the probability of a currency attack is 0, and believes that the probability of a currency

attack under a fixed exchange rate is either 20% (the true value) or 90%. The bank correctly

believes that pegging the currency to the dollar increases the probability of a boom by 33.3̄%

over a baseline probability, which the bank believes is either 33.3̄% or 66.6̄%. In truth the

baseline is 50%, so the bank is misspecified.21

Here pegging the currency to the dollar is a uniformly strict BN-E, but it is not positively

attractive: For any discount factor, if the prior assigns sufficiently high probability to the

states where a currency attack happens with probability 90% if the currency is not pegged to

the dollar, the bank starts out choosing a flexible exchange rate, and sticks with that action

forever. To see why, note that when the currency is floating the bank does not update its

beliefs about the likelihood of a currency attack under a pegged exchange rate.

4.2.2 Subjective Bandit Problems

Recall that in a subjective bandit problem (Definition 3), the agent believes that the out-

come distribution is independent across actions. An argument similar to that for subjectively

exogenous problems shows that uniformly strict BN-E are positively attractive in subjective

21That is, the bank believes that the probabilities of a boom with or without peg are either p100%, 66.6̄%q
or p66.6̄%, 33.3̄%q, respectively, while in truth they are p83.3̄%, 50%q.
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bandit problems if the agent is sufficiently patient. However, uniformly strict BN-E is very

demanding concept in subjective bandit problems, as the Kullback-Leibler divergence be-

tween the true and subjective outcome distributions induced by an action does not constrain

the “off-path” beliefs about the consequences of other actions, and very optimistic off-path

beliefs can make some other action a better reply.

However, in these problems we can replace the uniformity requirement with the require-

ment that the equilibrium is weakly identified introduced in Esponda and Pouzo (2016).

Definition 10. A BN-E a is weakly identified if for all p, p1 P Θ̂paq we have pa “ p1a.

Weak identification guarantees that once behavior stabilizes on action a, there is no ad-

ditional updating about the relative likelihood of the KL-minimizing outcome distributions.

When the agent thinks the outcome distribution is exogenous, the equilibrium can only be

weakly identified if the KL minimizer is unique. Weak identification is significantly weaker in

subjective bandits, as it only requires the existence of a unique conceivable outcome distri-

bution qa that best matches p˚a, without imposing any restrictions on what the agent believes

about the consequences of other actions.

Theorem 5. For every subjective bandit problem there is a β̄ ă 1 such that if the discount

factor β ě β̄, then every weakly identified strict BN-E is positively attractive.

The proof uses the fact that patient agents experiment with actions that they believe

might give them a higher payoff. The conclusion of the theorem is false for myopic agents even

in the correctly specified case, where the BN-E correspond to the self-confirming equilibria,

and with probability 1 the agent may always play whichever action is myopically optimal

given their initial beliefs.

In subjective bandit problems, we can sharpen the conclusion of Theorem 1 for actions

that perform poorly under one of the KL minimizers. We say that action a is quasi-dominated

if there are p̂ P Θ̂paq and b P A such that for all p P Θ Ep̂a rupa, yqs ă Epb rupb, yqs . That is,

there is a KL minimizer p̂ for action a such that the utility of a under p̂ is lower than that

of action b under any of the p in the support of the prior. Quasi-dominated actions are not

uniform BN-E, so play cannot converge to them with positive probability.

In a subjective bandit problem even more is true; quasi-dominated actions can be played

only a finite number of times.

Corollary 2. In a subjective bandit problem, any quasi-dominated action is almost surely

played only a finite number of times.
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In particular, in two-armed subjective bandit problems where one action is quasi-dominated,

play converges to to the other one. Note that this result does not depend on the discount

factor, and is true even if the quasi-dominated action is objectively optimal and the agent

assigns positive probability to it being optimal. In contrast, the probability that a correctly

specified agent locks on to an incorrect action goes to 0 as the discount factor goes to 1.

4.2.3 Strongly Supermodular problems

Definition 11. We say that the problem is strongly supermodular if we can strictly order

the space of actions pA,ąq, outcomes pY,ąq, and the set of conceivable distributions pΘ,ąq

so that:

(i) u is strictly supermodular in a and y;

(ii) if p, p1 P Θ and p ą p1, then for all a P A and y P Y zȳ, we have pa pty
1 : y1 ą yuq ą

p1a pty
1 : y1 ą yuq, where ȳ denotes the highest action.

Theorem 6. In a strongly supermodular problem, if p˚a (resp. p˚ā) has full support, and the

highest action ā (resp. the lowest action a) is a uniform and strict BN-E, then ā (resp. a)

is positively attractive.

Strong supermodularity implies that the agent will use action ā if they observe the highest

y’s sufficiently often. Moreover, the antisymmetric ordering of the elements of Θ guarantees

that every uniform and strict BN-E is uniformly strict, and so Theorem 2 guarantees that

there is positive probability that once the agent plays ā they will stick to it forever.

Example 5 (Under-investment trap). Each period the agent decides how much effort a P

t0, 1, 2u to exert on a task. The effort can be either successful, y “ 1 ,or unsuccessful, y “ 0.

Higher effort makes success more likely: p˚2p1q “ 9{10 ą p˚1p1q “ 1{2 ą p˚0p1q “ 1{10.

Moreover, higher effort also increases the benefit of a success: upa, yq “ ay ´ a{2. Thus the

objectively optimal action is to exert high effort, a “ 2.

The agent mistakenly believes that the probability of success depends on their effort and

their intrinsic skill ψ, and Θ is consists of all p such that p2p1q “ 2{3`ψ ą p1p1q “ 1{2`ψ ą

p0p1q “ 1{3` ψ for some ψ P r´1{4, 1{4s.

Here there are two BN-E: a “ 0 and a “ 2. In the bad equilibrium a “ 0, the KL-

minimizing outcome distribution corresponds to the lowest possible skill level ψ “ ´1{4,

which leads the agent to exert the low effort. Since both BN-E are uniformly strict and the

problem is strongly supermodular, Theorem 6 implies that both the Nash equilibrium and the

bad equilibrium with low effort are positively attractive.
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5 Signals

Suppose each period before taking an action the agent observes a signal s from a compact

set S, equipped with its Borel sigma algebra. Thus the analog of an action in the previous

sections is now a strategy, i.e. a measurable map σ : S Ñ A from signals to actions. Signals

may be payoff relevant, so now utility is a map u : A ˆ Y ˆ S Ñ R, and signals may also

be useful for predicting the outcome distributions, so now pa,s P ∆pY q depends both on this

period’s action and on the signal observed at the start of the period. A policy πpat, yt, st`1q

specifies the action in each period t as a function of past actions, outcomes and signals.

To complete the model we also need to specify the objective distribution of signals. We

focus on the case where the distribution of s is fixed (iid) with distribution ζ that is known

to the agent, as in Esponda and Pouzo (2016).22

Subjective Beliefs The agent correctly believes that the map from actions and signals to

probability distributions over outcomes is fixed, but they are uncertain about the distribution

each signal and action pair induces. Let P “ ∆pY qAˆS be the space of all signal and action

dependent outcome distributions. The agent’s uncertainty is captured by a prior belief

µ0 P ∆
`

P
˘

, again with Θ “ suppµ0.

Assumption 11.

(i) For all p P Θ, a P A, and s P S, pa,spyq ą 0 if and only if p˚a,spyq ą 0.

(ii) The prior µ0 has subexponential decay : there is Ψ : R` Ñ R such that for every p P Θ

and ε ą 0 we have µ0pBεppqq ě Ψpεq with lim ΨpK{nq exppnq “ 8 for all K ą 0.

Let µtp¨ | ps
t, at, ytqq P ∆pP q denote the agent’s subjective belief obtained using Bayes

rule after observing the sequence of signals and outcomes pst, ytq when taking the actions at,

µtpC | ps
t, at, ytqq “

ş

pPC

śt
τ“1 paτ ,sτ pyτ qdµ0ppq

ş

pPP

śt
τ“1 paτ ,sτ pyτ qdµ0ppq

.

We say that two outcome distributions p, p1 P Θ are observationally equivalent under the

strategy σ if pσpsq,spyq “ p1σpsq,spyq for all y P supp p˚σpsq,s, and we let Eσppq denote the outcome

distributions that are observationally equivalent to p under σ. To simplify the analysis, we

make the following assumption, which is satisfied for example if the signals are payoff shocks,

or if there is only finitely many signals.

22A continuum of signals allows payoff shocks that generate continuous best-response distributions.
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Definition 12. The environment is finite dimensional if there is a partition Ξ “ tξ1, ...ξNu

of S into a finite number of measurable sets such that the agent believes the same outcome

distribution applies for all s in ξi: for all p P Θ Y tp˚u, a P A, and s P S, pa,s “ pa,s1 if

ξpsq “ ξps1q.

Under this assumption, we abuse the notation by letting pa,ξi denote the outcome distri-

bution prescribed by p after action a and an arbitrary signal in ξi. With this, the relevant

set of “closest beliefs to the truth” is now

Θ̂pσq “ argmin
pPΘ

ÿ

ξiPΞ

ζpξiqH
`

p˚σpsq,ξi , pσpsq,ξi
˘

.

We use this modified definition of the minimizers to extend the definition of BN-E and

uniformly strict BN-E to this more general setting. The extension to the case of finitely

many signals is almost immediate. We allow for a continuum of payoff-relevant signals to

be able to cover past work. This requires additional compactness arguments that do not

provide additional insight about learning, so the proofs for all of the results of this section

are in the Online Appendix.

Definition 13 (BN-E).

(i) Strategy σ is a BN-E if there exists a belief ν P ∆pΘ̂pσqq such that σ is myopically

optimal given ν.

(ii) Strategy σ is a uniform BN-E if for all p P Θ̂pσq there exists a belief ν P ∆ pEσppqq such

that σ is myopically optimal given ν.

(iii) Strategy σ is a uniformly strict BN-E if σ is the unique myopic best reply to any belief

in ν P ∆pΘ̂pσqq.23

Theorem 11. Suppose the agent’s beliefs are finite dimensional. Then if the strategy pre-

scribed by the policy converges to σ with positive probability, then σ is a uniform BN-E.

The proof of this result is very similar to the proof of Theorem 1. The main difference is

that the relevant random walk is the empirical distribution over joint realizations of signals

and outcomes.

Similarly, we can extend our result on the stability of uniformly strict BN-E. Specifically:

Theorem 21. Suppose σ is a uniformly strict BN-E. Then there is a belief ν P ∆ pΘq such

that for every κ P p0, 1q there exists an ε1 ą 0 such that starting from any prior belief in

23Here uniqueness is up to a set of signals that have zero probability under ζ.
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Bε1 pνq:

Pπ

«

lim
tÑ8

1

t` 1

t
ÿ

r“0

1πpar,yr,sr`1q“σpsr`1q ě 1´ κ

ff

ą 1´ κ .

Example 10 in the Online Appendix illustrates the long-run biases that can be induced

when the agent mistakenly thinks that signals are uninformative. There, a seller receives a

signal about the current period’s market, and decides whether to undertake an investment

that may boost sales. The seller does not realize that when more consumers show up, a

lower fraction of them buy; we show that this can lead to persistent underinvestment when

market attendance is high.

When the agent thinks the signals are uninformative, their prior has support on distri-

butions of y given a that are independent of s. Here the only reason they might influence

the agent’s choices is that they may directly enter their payoff function. The next result

shows that all uniformly strict BN-E are positively attractive when signals are subjectively

uninformative and the true data generating process has full support.

Theorem 41. If signals are finite, subjectively uninformative, outcomes are subjectively ex-

ogenous, and that the true outcome distribution p˚ has full support, then any uniformly strict

BN equilibrium σ is positively attractive.

The proof of this result is similar to that of Theorem 4, because when signals are subjec-

tively uninformative we can apply Proposition 1 to the uncontingent empirical distribution.

6 Concluding Remarks

Learning in Large Population Games The biases we consider are relevant in non-

equilibrium models of learning about the prevailing distribution of strategies. Consider a

finite I player game, and suppose there is a continuum of agents in each player role i P I

who are matched every period to play the game, and observe the actions played in their

matches but nothing else. In a steady state,24 the problem faced by an agent in population

i is equivalent to the one we considered in the previous sections: the agent correctly believes

they are facing a stationary environment, and they realize that they do not affect the next

period’s distribution of opponents’ strategies. Causation neglect corresponds to the bias

of an agent who thinks they are playing a simultaneous-move game, when in reality their

24These models do have steady states when there is a steady outflow of agents balanced by an inflow of new
ones; see e.g. Proposition 3 in Fudenberg and He (2018).
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opponents observe the agent’s choice before moving. Subjective bandit problems arise when

the agent has independent beliefs about the responses to different strategies. In games of

incomplete information, the agent may have signal neglect, and incorrectly believe that the

game has independent private values.

Our results help characterize the possible limit actions in these situations. Of course,

extensive-form games may not have strict equilibria, so some of our results will not apply,

but it may be possible to extend some of our conclusions to equilibria that are on-path

strict in the sense of Fudenberg and He (2020). Also, games need not have pure-strategy

equilibria, but it may be possible to apply our methods to setting where each agent plays

deterministically, and different agents in the same player role chose different actions.25

Markov Decision Problems If the agent’s action influences the signal, then the true

model is a Markov decision problem. Even if the agent ignores this, the evolution of their

beliefs and actions becomes more complicated. And if the agent is aware of the Markov

structure, and tries to solve a Markov decision problem as in Esponda and Pouzo (2019)

then the problem is yet more complex. We hope to have more to say about this in future

work.

Infinitely Many Actions When the agent has a finite number of possible actions or stage-

game strategies, as we have assumed in this paper, an equivalent definition of uniformly strict

BN-E is an action a that is the unique best response to every belief in a neighborhood of

the KL minimizers for a. With infinitely many actions and continuous payoff functions,

actions that are sufficiently near the strict best response incur arbitrarily small losses and

are best responses to nearby beliefs. Here the two definitions of uniformly strict BN-E are

not equivalent. Indeed, as shown by an example in Heidhues, Kőszegi, and Strack, 2018a,

some BN-E that are uniformly strict BN in the sense of Definition 6 may not be positively

attractive. However, we conjecture that the positive attractiveness result continues to hold

under the alternative definition.

Summary and Discussion In many economically relevant settings it seems plausible

that agents misunderstand some aspects of the world. For this reason it is important to

understand what beliefs these agents will develop and how they will behave. This paper

25Alternatively we could consider a model with one agent per player role and payoff perturbations, as in
Fudenberg and Kreps (1993) and Esponda and Pouzo (2016).
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provides sharp characterizations of what actions arise as the long-run outcomes of misspec-

ified learning. We show that all uniformly strict BN-E are stable, and that under a mild

condition only uniform BN-E can be stable. Moreover we show that play can only converge

to uniform BN-E. Our work thus suggests uniformity should be imposed as a refinement of

BN-E. We then provide the first sufficient conditions for an action to be positively attractive

under misspecified learning. Here we highlight the role played by the correlation that the

agent perceives between the outcome distributions associated with different actions.

A Appendix

Section A.1 formally describes the space where our stochastic processes are defined, Sec-

tion A.2 states some preliminary technical lemmas, Section A.3 proves that beliefs con-

centrate around the KL minimizers at and exponential rate, and Section A.4 contains the

results of the main text for the models that do not have signals.

A.1 State Space

We work with the probability space pΩ,F ,Pq. The state space Ω “ pY 8qA consists of infinite

sequences of action dependent outcome realizations pxa,1, xa,2, . . .qaPA, where xa,k determines

the outcome when the agent takes the action a for the k-th time. F is the product sigma

algebra and the probability measure P is the product measure induced by independent draws

from the relevant component of p˚. The outcome observed by the agent in period t after

action at is yt “ xat,k, where k “ |tτ ď t : aτ “ atu| is the number of times the agent has

taken action at up to and including period t.26 The probability measure Pπ over paτ , yτ q
8

τ“1

induced by the policy π is defined as follows: For every t P N and cylinder paτ , yτ q
t
τ“1,

Pπ
“

paτ , yτ q
t
τ“1

‰

“

$

&

%

0, if there exists t1 P t1, ..., tu : at1 ‰ πppaτ , yτ q
t1´1
τ“1 q

śt
τ“1 paτ pyτ q otherwise.

26Several different state spaces lead to the same law for the stochastic processes we are interested in. In
particular, we could have specified the more natural probability space of action-dependent outcome real-
izations pxa,1, xa,2, . . .qaPA but with xa,k denoting the outcome realization if the agent takes action a in
period k. An argument similar to that of Lemma 5 of Fudenberg and He (2017) shows that this choice
would not change our results.
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A.2 Preliminary Lemmas and Definitions

Denote the set of conceivable outcome distributions for action a that best match p˚a by

Θ̂apaq “ argmin
pa:pPΘ

H pp˚a, paq Ă ∆pY q.

Lemma 1. For every a P A and ε ą 0, Θ̂paq defined in (1), Θ̂apaq, Θ̂εpaq defined in (2),

and ∆pΘ̂paqq are compact.

The proof of Lemma 1 is routine and relegated to the Online Appendix.

For every p P P and every policy π let Ep,πr¨s denote the expectation operator over action

and outcome sequences that is induced by policy π under outcome distribution p. We work

with the agent’s normalized value throughout, which is

V pπ, νq “

ş

P
Ep,π

“
ř8

t“1 rβ
t´1upat, ytqs

‰

dνppq

1´ β
.

The set of policy functions is Π “ A
Ť8
t“0 A

tˆY t .

Lemma 2. Π is compact in the product topology, and for all ν P ∆ pΘq, V p¨, νq is continuous

with respect to the product topology.

Lemma 2 is a consequence of the more general Lemma 11 which covers cases where each

period the agent observes a signal before choosing their action. This lemma is proved in the

Online Appendix.

Next we bound the difference between the value of using action a and the value of any

other action in terms of their expected utility given that beliefs are concentrated around

the outcome distributions Θ̂paq. Denote the set of beliefs over conceivable distributions that

assign at least probability 1´ ε to Θ̂εpaq by

Mε,a “ tν P ∆pΘq : νpΘ̂ε
paqq ě 1´ εu.

The following lemma shows that if the agent’s beliefs are sufficiently concentrated on the set

of KL minimizers associated with a uniformly strict BN-E a, the agent will play a, even if

the agent is not myopic.

Lemma 3. If a P A is a uniformly strict BN-E, for every optimal policy π, there exists an

ε̂ ą 0 such that for all ε ă ε̂, ν PMε,a ùñ π pνq “ a.
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Proof. Let πa denote the policy that prescribes to always play a. Define Gpεq as the minimal

gain from playing a forever instead of using (one of) the best policy π̃ that does not play a

at a belief ν in Mε,a

Gpεq “ min
π̃:π̃pνq‰a

min
νPMε,a

pV pπa, νq´V pπ̃, νqq .

Notice that by Lemma 2, the space of the policy functions endowed with the product topology

is compact. Since the subset of policy functions that do not prescribe a at the initial history is

closed, this subset is compact as well, and because β P r0, 1q, the value function is continuous

at infinity, and therefore V pπa, νq´V p¨, νq is a continuous function of the policy. Notice

also that since Ep,π
“
ř8

t“1 rβ
t´1upat, ytqs

‰

is continuous in p, V pπa, ¨q ´V pπ̃, ¨q is continuous

in ν. Therefore, given that ε Ñ Mε,a is an upper hemicontinuous and compact valued

correspondence, we can conclude by the Maximum Theorem that G is continuous in ε. We

have that

Gp0q “ min
π̃:π̃pνq“a

min
νP∆pΘ̂paqq

pV pπa, νq´V pπ̃, νqq

ě min
νP∆pΘ̂paqq

„

V pπa, νq ´ max
π̃:π̃pνq‰a

V pπ̃, νq



ě min
νP∆pΘ̂paqq

«

p1´ βq

ż

P

ÿ

yPY

papyqupa, yq ´max
a1‰a

ÿ

yPY

pa1pyqupa
1, yqdνppq

ff

` β min
νP∆pΘ̂paqq

»

–max
π̃

ř8

t“1 β
t´1

ş

P

”

ř

yPY papyqupa, yq ´ Ep,π̃ rupat, ytqs
ı

dνppq

1´ β

fi

fl ą 0

where the weak inequality follows by the concavity of the minimum and the strict inequality

by the fact the unifom strictness of a. Therefore, there is an ε̂ such that if ε ď ε̂, G pεq ą 0.

This implies that for any optimal policy π it must be such that ν P Mε,a implies that

πpνq “ a, which proves the lemma.

The next Lemma extends an argument of Fudenberg and Levine (1992) to take into

account misspecification. It establishes that if the expectation of the l-th power of the

likelihood ratio between two subjective outcome distributions is greater 1 then the l-th

power of the likelihood ratio of the subjective probability assigned to small environments of

these outcome distributions is a sub-martingale.
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Lemma 4. Let p, p1, p˚ P ∆ pY q, and l P p0, 1q be such that

ÿ

yPY

p˚pyq

ˆ

ppyq

p1pyq

˙l

ă 1. (3)

Then there is ε1 ą 0 such that for all ν P ∆ p∆ pY qq, if we let νpC | yq “
ş

qPC qpyqdνpqq
ş

qP∆pY q qpyqdνpqq
, then

ÿ

yPY

p˚pyq

«

ˆ

νpBε1 ppq | yq

νpBε1 pp1q | yq

˙l
ff

ď

ˆ

νpBε1 ppqq

νpBε1 pp1qq

˙l

.

Proof. The lemma is trivially true if νpBε pp
1qq “ 0 for some ε. Therefore, without loss of

generality, we can assume that νpBε pp
1qq ą 0 for all ε. Let ε̂ be such that ||q´p1|| ď ε̂ implies

that qpyq “ 0 only if ppyq “ 0. Let Cε “ ∆pBε ppqqˆ∆pBε pp
1qq and define G : r0, ε̂

2
s Ñ R by

Gpεq “ max
pν̄,ν1qPCε

ÿ

yPY

p˚pyq

˜ ş

Bεppq
q̄pyqdν̄ pq̄q

ş

Bεpp1q
qpyqdν 1 pqq

¸l

.

By the Maximum Theorem, the compactness of ∆ pBε pp
1qq and ∆ pBε ppqq and the fact that

Gp0q ă 1 by equation (3), there is ε1 ą 0 such that for all ν 1 P ∆ pBε1 pp
1qq, ν̄ P ∆ pBε1 ppqq

ÿ

yPY

p˚pyq

˜ ş

Bε1 ppq
q̄pyqdν̄ pq̄q

ş

Bε1 pp
1q
qpyqdν 1 pqq

¸l

ď 1. (4)

Then

ÿ

yPY

p˚pyq

ˆ

νpBε1 ppq | yq

νpBε1 pp1q | yq

˙l

“
ÿ

yPY

p˚pyq

˜ ş

Bε1 ppq
νpBε1 ppqqq̄pyqd

νpq̄q
νpBε1 ppqq

ş

Bε1 pp
1q
ν pBε1 pp1qq qpyqd

νpqq
νpBε1 pp

1qq

¸l

“
ÿ

yPY

p˚pyq

˜ ş

Bε1 ppq
q̄pyqd νpq̄q

νpBε1 ppqq
ş

Bε1 pp
1q
qpyqd νpqq

νpBε1 pp
1qq

¸l
ˆ

νpBε1 ppqq

ν pBε1 pp1qq

˙l

ď

ˆ

νpBε1 ppqq

ν pBε1 pp1qq

˙l

where the inequality follows from equation (4).

Lemma 5. For any action b and sequence of actions at let πb,a
t

be the policy that prescribes

action at at period t and action b at all periods τ ą t. If, for every t, every sequence of actions
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at, and every optimal policy π̃ almost surely the belief process under the policy πb,a
t

arrives

at a belief µτ , τ ě t where π̃ does not prescribe b, i.e. Pπb,at rb “ π̃pµτ q for all τ ě ts “ 0

then b is not a limit action.

Proof. Fix an arbitrary optimal policy π̃ and an history pat, ytq with Pπ̃pat, ytq ą 0 such

that b “ π̃pµtp¨|pa
t, ytqqq. Let τ “ mints ą t : b ‰ π̃pµtqqu be the first time after pat, ytq

when π̃ does not prescribe b. Note that since π̃pas, ysq “ b “ πb,a
t
pas, ysq for all s P rt, τ ´ 1s

the agent’s belief until period τ is the same under πb,a
t

and π̃. As Pπ̃pat, ytq ą 0 implies

Pπb,at pat, ytq ą 0, the probability that the agent takes the action b forever (i.e. τ “ 8)

after history pat, ytq equals 0 by the assumption of the lemma. So, under every arbitrary

optimal policy, after every history where b is played an action different from b is played with

probability 1, and therefore b is not a long-run action.

The next lemma extends Lemma 3 of FII to show that there exists a uniform l such that

all KL minimizers dominate all the distributions that are ε away from the minimizers in the

sense that the expectation of the l-th power of the likelihood ratio is lower than 1.

Lemma 6. Fix an action a and ε ą 0. There exists an l ą 0 such that for all l ď l for every

KL minimizer q P Θ̂paq and every outcome distribution p1 R Θ̂εpaq

fl pq, p
1
q :“

ÿ

yPY

p˚apyq

ˆ

p1apyq

qapyq

˙l

ă 1 .

Proof. As noted by FII in their Lemma 3, (i) for each KL minimizer q P Θ̂paq and every

outcome distribution p1 R Θ̂paq there exists an l pq, p1q such that flpq, p
1q ă 1 for all l ď l pq, p1q

and (ii) for all q, q1 P Θ, if l̂ ą l and flpq, q
1q ě 1, then fl̂pq, q

1q ě 1. We will now prove that

there exists a uniform l that works for every q P Θ̂paq and p1 R Θ̂εpaq.

Suppose by way of contradiction that there was no l ą 0 such that for all l ď l, flpq, p
1q ă 1

for all q P Θ̂paq and p1 R Θ̂εpaq. Then define a sequence pqn, p
1
nq such that f 1

n
pqn, p

1
nq ě 1.

Sequential compactness of Θ̂paq ˆ cltp P ∆pΘq : pa R Θ̂εpaqqu guarantees that this sequence

has an accumulation point pq, p1q with q P Θ̂paq and p1 R Θ̂paq.27 However, for n ą 1
lpp̄,p1q

,

f 1
n
pqn, p

1
nq ě 1 implies flpq,p1qpqn, p

1
nq ě 1, and the continuity of flpq,p1q at pq, p1q leads to a

contradiction with flpq,p1q pq, p
1q ă 1.

27We denote the closure of a set by cl.
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A.3 Exponential Concentration of Beliefs

We show here that repeated use of action a implies that the beliefs about the outcome

distribution induced by a concentrate at an exponential rate around the distributions that

best fit the empirical frequency of observed outcomes. Importantly, this result does not

require that either actions or empirical frequencies converge. It will be important in what

follows that these results apply pathwise, as they do in the correctly specified case studied by

Diaconis and Freedman (1990), although unlike their result ours only applies for empirical

distributions that are near the true distribution p˚. For brevity, we limit our analysis to

this set of distribution, since this is enough for our results. In a separate note, Fudenberg,

Lanzani, and Strack (2020), we provide a result that resembles more closely the original

result in Diaconis and Freedman (1990).

For every a P A, η P p0, 1q and q P ∆pY q, let fη,q “ p1 ´ ηqp˚a ` ηq, ηt “ 2t´
1
2 , and

D “ min tpp1apyq{papyqq : p, p1 P Θ, a P A, y P Y, p˚apyq ą 0u .

Proposition 1. Let pai, yiq
τ
i“1 be a history with positive probability, and suppose that only

action a is played in periods pτ `1, ..., τ ` tq. For every q̂ P Θ̂apaq, there exist I, K̂,K 1 P R``
such that if the empirical outcome frequency ft “

1
t

řτ`t
i“τ`1 1yi“y satisfies ||fηt,q̂ ´ ft|| ă

||q̂ ´ p˚a||t
´ 1

2 {K 1 then

µτ`t ptp P Θ: @y P supp p˚a, |papyq ´ q̂pyq| ă εuq

1´ µτ`t ptp P Θ: @y P supp p˚a, |papyq ´ q̂pyq| ă εuq
ě DτΨ

ˆ

K̂ε2 2

It
1
2

˙

exp
´

2K̂t
1
2 ε2

¯

.

To establish Proposition 1 we first prove a sequence of auxiliary results. Given two

outcome distributions q, q1 P ∆pY q, η P p0, 1q, and ε ą 0, let

Uεpq, q
1, ηq “ tq2 P ∆pY q : ||ηq ` p1´ ηqq1 ´ q2|| ď εu

denote the ball of radius ε around ηq` p1´ ηqq1. The next result establishes a form of local

Lipschitz continuity of the function minq1PC Hp¨, q
1q ´ Hp¨, qq for suitably chosen q P ∆pY q

and compact C Ď ∆pY q.

Lemma 7. Fix q P ∆ pY q with supp q Ď supp p˚a and a compact set C Ď ∆ pY q that contains

a q̃ with supp p˚a Ď supp q̃. Then there exists a K ą 0 such that for every f 1 P Uεpq, p
˚
a, ηq

with supp f 1 Ď supp p˚a

|min
q1PC

H pp1´ ηqp˚a ` ηq, q
1
q ´H pp1´ ηqp˚a ` ηq, qq ´min

q1PC
H pf 1, q1q `H pf 1, qq | ď Kε .
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Let χ P ∆p∆pY qq be a belief over probability distributions on Y , let

Qε,χpq̄q “

"

q1 P ∆pY q : Dq2 P argmin
qPsuppχ

H pq̄, qq , ||q1 ´ q2||8 ă ε

*

be the distributions that are within ε of a distribution q
2

that minimizes the Kullback-Leibler

divergence with the given q̄, and let

g pp1, εq “ min
pRQε,χ0 pp

1q
H pp1, pq ´ min

pPsuppχ0

H pp1, pq ą 0

be the minimal increase of the relative entropy from p1 when it is minimized over Qε,χ0

instead of suppχ0.

Lemma 8. Let χ0 P ∆p∆pY qq and suppose that for every t P N, C Ď ∆pY q, and sequence

of outcomes yt P Y t

χtpC | y
t
q “

ş

qPC

śt
τ“1 qpyτ qdχ0pqq

ş

qP∆pY q

śt
τ“1 qpyτ qdχ0pqq

.

Then for all ε ą 0

p1pyq “

řt
τ“1 1yτ“y
t

ùñ
χt pQε,χ0 pp

1q | ytq

1´ χt pQε,χ0 pp
1q | ytq

ě χ0

ˆ

Q gpp1,εq

2Rpp1,εq
,χ0
pp1q

˙

e.5tgpp
1,εq

where

Rpp1, εq “ sup
q,q1PQε,χ0 pp

1q

|Hpp1, qq ´Hpp1, q1q|

||q ´ q1||
.

Proof. Let p1pyq “
`
řt
τ“1 1yτ“y

˘

{t, fix ε ą 0 and for any ε̄ ą 0, let Qpε̄q “ Qε̄,χ0 pp
1q.

By definition of Rpp1, εq, minpRQpεqH pp
1, pq ´max

pPQ
´

gpp1,εq

2Rpp1,εq

¯H pp1, pq ě .5g pp1, εq . From the

definition of χt we have that for all yt where the empirical distribution is p1,

χt pQpεq | y
tq

1´ χt pQpεq | ytq
“

ş

Qpεq

ř

yPY qpyq
tp1pyq p1´ qpyqqtp1´p

1pyqq dχ0pqq
ş

suppχ0zQpεq

ř

yPY qpyq
tp1pyq p1´ qpyqqtp1´p

1pyqq dχ0pqq

ě

ş

Q
´

gpp1,εq

2Rpp1,εq

¯ expp´tH pp1, qqqdχ0pqq

expp´tminpRQpεqH pp1, pqq

“

ż

Q
´

gpp1,εq

2Rpp1,εq

¯

exppt min
pRQpεq

H pp1, pq ´ tH pp1, qqqdχ0pqq

ě χ0

ˆ

Q

ˆ

gpp1, εq

2Rpp1, εq

˙˙

e.5tgpp
1,εq,
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where the first inequality follows from gpp1, εq{2Rpp1, εq ď ε.

Lemma 9. For ε ą 0 and η P p0, 1q, if q “ pa, p P Θ̂paq then g pp1´ ηqp˚a ` ηq, εq ě 2ηε2.

Proof. H is linear in its first argument, so for η P p0, 1q, argminpa:pPΘHpp1´ηqp
˚
a`ηq, paq “

tqu . Then

g pp1´ ηqp˚a ` ηq, εq

ě inf
q1P∆pY qzBεpqq

ÿ

yPY

rp1´ ηqp˚a pyq ` ηq pyqs log q1 pyq ´
ÿ

yPY

rp1´ ηqp˚a pyq ` ηq pyqs log q pyq

ě p1´ ηq inf
q1P∆pY qzBεpqq

ÿ

yPY

p˚a pyq rlog q1 pyq ´ log q pyqs

` η inf
q1P∆pY qzBεpqq

ÿ

yPY

q pyq rlog q1 pyq ´ log q pyqs

ě 0` η inf
q1P∆pY qzBεpqq

ÿ

yPY

q pyq rlog q1 pyq ´ log q pyqs ě 2ηε2,

where the first inequality follows from the definition of g and the fact that the RHS minimizes

over a larger set, the second inequality follows from concavity of the minimum, the third

from the fact that q is a KL minimizer, and the fourth from Corollary 3.5 and Proposition

4.7 in Diaconis and Freedman (1990).

Remark 1. Observe that after every finite time t, the posterior µt almost surely satis-

fies the regularity assumption. That (i) is satisfied follows from the fact that suppµt Ď

suppµ0. For (ii), let Ψ : R` Ñ R be the function whose existence is guaranteed by

the regularity assumption (ii). Bayesian updating implies that for every p P Θ, ε ą

0, µtpBεppqq ě µ0pBεppqqD
t ě ΨpεqDt a.s. Therefore, by defining Ψt “ DtΨ we have

limnÑ8 ΨtpK{nq exppnq “ limnÑ8 ΨpK{nq exppnqDt “ 8 for all K ą 0, so (ii) is satisfied.N

Proof of Proposition 1. Set I “ Rpfηt,q̂, εq. If fηt “
řτ`t
i“τ`1 1yi“y

t
there exists an I P R`

such that

µτ`t ptp P Θ: @y P supp p˚a, |papyq ´ q̂pyq| ă εuq

1´ µτ`t ptp P Θ: @y P supp p˚a, |papyq ´ q̂pyq| ă εuq

ě µτ

ˆ

tp P Θ: @y P supp p˚a, |papyq ´ q̂pyq| ă
gpfηt,q̂, εq

2I
u

˙

e.5tgpfηt,q̂ ,εq

ě µτ

ˆ

tp P Θ: @y P supp p˚a, |papyq ´ q̂pyq| ă ε2 2

It
1
2

u

˙

exp
`

tηtε
2
˘

ě DτΨ

ˆ

ε2 2

It
1
2

˙

exp
´

2t
1
2 ε2

¯

,
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where the first inequality follows from Lemma 8, the second from Lemma 9, and the third

from Assumption 1(ii), and Remark 1.

By Lemma 7 there exists a K̂,K 1 ą 0 such that if ||fηt,q̂ ´ ft|| ă ||q̂ ´ p
˚
a||t

´ 1
2 {K 1 then

µτ`t ptp P Θ: @y P supp p˚a, |papyq ´ q̂pyq| ă εuq

1´ µτ`t ptp P Θ: @y P supp p˚a, |papyq ´ q̂pyq| ă εuq
ě DτΨ

ˆ

K̂ε2 2

It
1
2

˙

exp
´

2K̂t
1
2 ε2

¯

.

A.4 Proof of Results Stated in the Text

Proof of Theorem 1. We prove the statement by contraposition. Suppose that a is a limit

action under the optimal policy π, and let pai, yiq
τ
i“1 be a history with positive probability.

We show that if the agent plays a at every period after pai, yiq
τ
i“1 almost surely the belief µt

reaches a region where no optimal policy prescribes a. By Lemma 5 this is enough to obtain

the desired conclusion. Since a is not a uniform BN-E, then there is p1 P Θ̂paq such that if

supp ν Ď Eapp1q, then a R Ampνq. We set q “ p1a throughout this proof.

Claim 1. There exists ε ą 0 such that if

ν ptp P Θ: @y P supp p˚a, |papyq ´ qpyq| ă εuq

1´ ν ptp P Θ: @y P supp p˚a, |papyq ´ qpyq| ă εuq
ą

1´ ε

ε
,

then π pνq ‰ a.

Proof. Suppose that for every n there exists a νn such that

νn ptp P Θ: @y P supp p˚a, |papyq ´ qpyq| ă 1{nuq

1´ νn ptp P Θ: @y P supp p˚a, |papyq ´ qpyq| ă 1{nuq
ě

1´ 1{n

1{n

and a P π pνnq. Because ∆ pΘq is sequentially compact, pνnqnPN has a converging subsequence

pνniqiPN Ñ ν˚.

To show that this leads to a contradiction, defineG pνq “ maxπ̃V pπ̃, νq´maxπ̃:π̃pνq“aV pπ̃, νq .

We claim that if supp ν Ď tp P Θ: @y P supp p˚a, papyq “ qpyqu, then G pνq ą 0. This is be-

cause the definition of q implies supp ν Ď Eapp1q, so a R Ampνq, and supp ν Ď Eapp1q implies

that the experimentation value of a is 0.

Next note that as shown in Lemma 2, the space of policy functions endowed with

the product topology is compact and V p¨, νq´V p¨, νq is a continuous function of the pol-

icy. Since for every policy π̃, Ep,π̃
“
ř8

t“1 rβ
t´1upat, ytqs

‰

is continuous in p, and V pπ̃, ¨q is
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continuous in ν, so from the Maximum Theorem G is continuous. So if the claim is

false, ν˚ ptp P Θ: @y P supp p˚a, papyq “ qpyquq “ 1 and G pν˚q “ 0, which would imply that

a P π pν˚q, a contradiction.

In what follows, fix such an ε. Also, fix an outcome y0 P supp p˚a, and let f̃t be the

empirical frequency of the other | supp p˚a| ´ 1 outcomes in the support of p˚a. Denote by p̃˚a

the true probabilities of the same | supp p˚a| ´ 1 outcomes.

Claim 2. f̃t ¨ t´ p̃
˚
at is a | supp p˚a| ´ 1 dimensional random walk under the distribution p̃˚a,

and the covariance matrix of its increments is nonsingular.

Proof. Let y P supp p˚azty
0u. The increment of the y dimension at time t` 1 is equal to

f̃t`1pyq ¨ pt` 1q ´ p˚apyq ¨ pt` 1q ´ f̃tpyq ¨ t´ p
˚
apyq ¨ t “ 1yt`1“y ´ p

˚
apyq

and has expected value 0. Therefore, f̃t ¨ t´ p̃
˚
at is a | supp p˚a| ´ 1 dimensional random walk.

The covariance matrix for the increments is given by Σy,y1 “ ´2p̃˚apyqp̃
˚
apy

1q if y ‰ y1 and

2p̃˚apyqp1´ p̃
˚
apyqq if y “ y1.28 If we let D be the identity matrix in part M35 of Theorem 2.3

of Berman and Plemmons (1994), for every y1 P Y , we have that

2p̃˚apy
1
qp1´ p̃˚apy

1
qq “ 2p̃˚apy

1
q
ÿ

y‰y1

p̃˚apyq ą 2p̃˚apy
1
q

ÿ

y‰y1,y0

p̃˚apyq

so the matrix is diagonal dominant and therefore not singular.

By the Central Limit Theorem pf̃t ´ p̃
˚
aq
?
t converges to a Normal random variable with

mean 0 and covariance matrix Σy,y1 . Let Ft “ B ||q´p˚a ||{K
1

?
t

´

p̃˚a `
1?
t
pq ´ p˚aq

¯

. We have that

P
”

f̃t P Ft

ı

“ P
”?

tpf̃t ´ p̃
˚
aq P B||q´p˚a ||{K1 pq ´ p

˚
aq

ı

Taking the limit tÑ 8 yields that

lim
tÑ8

P
”

f̃t P Ft

ı

“ P
”

Z̃ P B||q´p˚a ||{K1 pq ´ p
˚
aq

ı

where Z̃ is a random variable that is normally distributed with mean ~0 and covariance matrix

28This is verified in Claim 3 of the Online Appendix.
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Σy,y1 . Thus if we let Et denote the event ft P Ft, it follows that
ř8

t“1 P rEts “ 8. Moreover,

lim inf
tÑ8

řt
s“1

řt
r“1 P rEs and Ets

`
řt
s“1 P rEss

˘2 “ lim inf
tÑ8

1
t2

řt
s“1

řt
r“1 P rEs and Ers

`

1
t

ř8

t“1 P rEts
˘2

ď lim inf
tÑ8

1
t2

řt
s“1

řt
r“1 P rErs

`

1
t

řt
s“1 P rEss

˘2 “ lim inf
tÑ8

1
t

řt
r“1 P rErs

`

1
t

řt
s“1 P rEss

˘2

“
1

limtÑ8 P rEts
“

1

P
”

Z̃ P B||q´p˚a ||{K1 pq ´ p
˚
aq

ı .

It then follows from the Kochen-Stone lemma (see Kochen and Stone (1964) or Exercise

2.3.20 in Durrett (2008)) that

P

«

8
č

t“1

8
ď

s“t

Es

ff

ě P
”

Z̃ P B||q´p˚a ||{K1 pq ´ p
˚
aq

ı

ą 0 .

The event
Ş8

t“1

Ť8

s“tEs is invariant under finite permutations of the increments
´

1yt“y1 , ...,1
yt“y| supp p˚a |´1 ´ p

˚
a

¯

with different time indices, so the Hewitt–Savage zero–one

law (see, e.g., Theorem 8.4.6 in Dudley, 2018) implies that the probability of the event
Ş8

t“1

Ť8

s“tEs is zero or one, and since it is strictly positive it must equal one.

This implies that ft P Ft infinitely often with probability 1. So, by Proposition 1 the

agent will eventually take an action different from a.

Proof of Theorem 2. If. Consider a uniformly strict BN-E a, an optimal policy π and

κ P p0, 1q. By Lemma 3, there exists an ε such that if νpΘ̂εpaqq ě 1´ ε, then π pνq “ a.

Recall that for every l P p0, 1q, the function fl : P ˆ P Ñ R̄ is defined by

flpp̄, p
1
q “

ÿ

yPY

p˚apyq

ˆ

p̄apyq

p1apyq

˙l

.

By Lemma 6, since Θ̂εpaq is compact by Lemma 1, and since fl is lower semicontinuous

in its first argument, there exists ε1 P p0, εq such that p̄ P Θ̂ε1paq implies that flpp̄, p
1q ă 1 for

all p1 with p1 R Θ̂εpaq. Let K “
`

ε
1´ε

˘l
. Then

¨

˝

1´ ν
´

Θ̂εpaq
¯

ν
´

Θ̂ε1paq
¯

˛

‚

l

ă K ùñ

1´ ν
´

Θ̂εpaq
¯

ν
´

Θ̂εpaq
¯ ă

ε

1´ ε

ùñ ν
´

Θ̂ε
paq

¯

ą 1´ ε ùñ π pνq “ a.
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Let ε̄ be such that ν
´

Θ̂ε̄paq
¯

ą 1´ ε̄ implies that

¨

˝

1´ ν
´

Θ̂εpaq
¯

ν
´

Θ̂εpaq
¯

˛

‚

l

ă
K p1´ κq

n
.

Then if the agent starts with a belief ν0 with ν0pΘ̂
εpaqq ą ε̄, A pν0q “ tau. Moreover, by

Lemma 4, Dubins’ upcrossing inequality, the compactness of Θ̂εpaq guaranteed by Lemma

1, and the union bound, there is a probability p1´ κq that the positive supermartingale

¨

˝

1´ ν 1t

´

Θ̂εpaq
¯

ν 1t

´

Θ̂εpaq
¯

˛

‚

l

never rises above K, so the action played is always a, and ε̄ satisfies the requirement of the

statement.

Only if. If a is not a uniformly strict BN-E, there exists p P Θ̂paq and b ‰ a such that

tbu P Am pδpq. But then if we let ν “ δp we have that ν
´

Θ̂paq
¯

“ 1. Moreover, there exists

a policy π that prescribes b at belief ν, so that the agent will never update their belief and

will play b forever.

Proof of Theorem 3. piq ñ piiq Immediately follows by Theorem 2.

piiq ñ piq We prove the statement by contraposition. Suppose that a is not a uniformly

strict BN-E, and let ν P ∆ pΘq, ε ą 0. We construct an initial belief νε that is ε close to ν

but such that the actions do not converge to a.

Since a is not a uniformly strict BN-E, there exists p̂ P Θ̂paq with tau ‰ Am pδp̂q. Let

pCε,iq
n
i“1 be a finite collection of open balls of radius ε in ∆

´

∆ pY qA
¯

that covers Θ̂paq and

such that for each Cε,i X Θ̂paq ‰ H. For every Cε,i, choose qε,i P Cε,izΘ̂paq whose existence

follows from the assumption of the theorem.

Define Φε : Θ Ñ 2Θ as

Φε ppq “
!

tqε,i : p P Cε,iu if p P Cε,i for some i

tpu otherwise.

The correspondence Φε is Borel measurable, nonempty, and closed valued, so it has a mea-

surable selection φε by the Kuratowski Selection Theorem (see, e.g., Theorem 18.13 in

Aliprantis and Border, 2013). Define ν̄ε pCq “ ν pφ´1
ε pCqq. Because the problem is rich,
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there is p1 P Θ X Bεpp̂q such that Hpp1a, p
˚
aq ă minpPsupp ν̄ε Hppa, p

˚
aq and a R Ampδp1q. Set

νε “ εδp1 ` p1´ εq ν̄ε. Then νε Ñ ν, but argmin
p1Psupp νε

H pp˚a, p
1
aq “ tp̂u, so by Theorem 1, the

probability of converging to a starting from belief νε is 0.

Proof of Theorem 4. Since the agent believes that actions do not change the outcome

distribution, every p P Θ can be identified with an element of ∆pY q, and every belief ν P ∆pΘq

can be identified with an element of ∆p∆pY qq.

Consider a uniformly strict BN-E a. By Lemma 1, ∆pΘ̂paqq is compact. For every ε̄ ą 0

and q P ∆pY q let Qε̄pqq “ Qε̄,µ0,a pqq. By Theorem 2, there exists ε1 ą 0 such that if ε1 ą ε

and ν pcl pQε pp
˚
aqqq ą 1´ ε implies Am pνq “ tau the probability of playing a forever starting

from belief ν is larger than 1{2. By the Maximum Theorem, the correspondence Qε is

upper-hemicontinuous, so there is a sequence of outcomes yt with corresponding empirical

frequency p̂tpyq “
1
t

řt
i“1 1yi“y sufficiently close to p˚a to have

q̂ P Qε1{2 pp̂tq , q P Qε1{2 pp
˚
aq ùñ ||q̂ ´ q|| ă ε{2.

This implies Qε1{2 pp̂tq Ď Qε1 pp
˚
aq from the triangle inequality. Thus by Lemma 8 there is a

time T such that for all t1 ą T , if the empirical frequency is p̂t1 “ p̂t, the agent assigns a

relative probability higher than K to an ε1 ball around p˚a:

µt1pQε1 pp
˚
aqq

1´ µt1pQε1 pp˚aqq
ě

µt1pQε1{2 pp̂tqq

1´ µt1pQε1 pp˚aqq
ą
K

2
.

Replicating yt sufficiently many times yields a sequence yt
1

with empirical frequency p̂t1 “ p̂t

and t1 ą T . Since p˚a is absolutely continuous with respect to p˚a1 for all a1 P A, this sequence

of outcomes has positive probability, and after it occurs the agent plays a. By Lemma 4 and

the law of iterated expectations, conditional on a being played
´

1´µt1 pQεpp
˚
a qq

µt1 pQε1{2pp̂tqq

¯l

is a positive

supermartingale. Then by Dubins’ upcrossing inequality, there is positive probability that

this positive supermartingale never rises above 1{K l, so a is played forever.

Proof of Theorem 5. Let b be a weakly identified strict BN-E. Then there is ν P ∆pΘ̂pbqq

with b “ Ampνq. Since b is a strict BN-E, and the agent believes the outcome distributions

are independent across actions, we can let ν “ δp where pb “ argmaxp1b:p1PΘ Ep1b rupb, yqs, and

pa “ argminp1a:p1PΘ Ep1a rupa, yqs for a P Aztbu. Let ty pbqiu
8

i“1 be a sequence of outcomes such

that the empirical frequency 1
n

řn
i“1 1yi“y is converging to pb. By Lemma 8, for every ε ą 0,

there exists Kε such that for all t ą Kε, µ0,b

`

Bεppbq | y pbq
t
˘

ą 1´ ε.

36



Because tbu “ Am pνq, there are β̄ P p0, 1q and pεaqaPA P RA
` such that if (i) β ą β̄ and

(ii) the belief ν̄ is such that ν̄b P tµ0,b p¨ | y pbqtq : 0 ď t ď Kεbu
Ť

tν 1b : ν 1b pBεppbqq ą 1´ εu,

and for all a1 ‰ b, νa1
`

Bεa1
ppa1q

˘

ą 1 ´ εa1 , then b has the highest Gittins index. For each

β ą β̄, let εβ ă ε be such that if ν̄b
`

Bεβpppbqq
˘

ą p1´ εβq then the probability of converging

to play action a is larger than 1
2

under any optimal policy given the discount factor β, whose

existence is guaranteed by Lemma 14 and the fact that b is weakly identified.

For every a ‰ b, let n̄a ě na and ty paqiu
na
i“1 be a sequence of outcomes such that the

empirical frequency p̂na paq converges to pa. By Lemma 8, for every a ‰ b there is a finite

na such that after na observations νa pBεappaq | p̂naq ą 1 ´ εa. Finally, let nb “ Kεβ . Then

the array
`

ty paqiu
na
i“1

˘

aPA
has positive probability, so the agent starts to play a after at most

ř

aPA na periods, and with probability 1
2

continues to play a forever.

Proof of Corollary 2. If a is quasi-dominated, there exists ε such that if νaptq : ||q´pa|| ď

εuq ą 1 ´ ε implies πpνq ‰ a. Suppose by way of contradiction that a is played infinitely

many times. Then by the last part of the proof of Theorem 1, since the the problem is a

subjective bandit, if action a is played infinitely many times then there is t such that µaptq :

||q´pa|| ď εu|pat, ytqq ą 1´ ε, so the agent switches to another action b. Since while playing

an action different from a the agent does not update µa, µaptq : ||q´pa|| ď εu|paτ , yτ qq ą 1´ε

for all τ ą t, so they will not switch to a anymore, a contradiction.

Proof of Theorem 6. We prove the statement for ā, the proof for a is analogous. Denote

the optimal policy used by the agent as π. Since the environment is strongly supermodular,

every class of observationally equivalent outcome distributions under action ā is a singleton,

so ā is a uniformly strict BN-E. Theorem 2 and the strong supermodularity of the environ-

ment then imply there is p̄ P Θ and K P p0, 1q such that if ν ptp : p ą p̄uq ą K, then the

probability that a is used forever is larger than 1
2
. Denote the highest outcome as ȳ. Since

the environment is strongly supermodular, for every action b P A,

µt`1 ptp : p ą p̄u | pat, ytq , pb, ȳqq

1´ µt`1 ptp : p ą p̄u | pat, ytq , pb, ȳqq
ą

µt ptp : p ą p̄u | pat, ytqq

1´ µt ptp : p ą p̄u | pat, ytqq
.

Therefore, there exists a finite number n pbq such that if at “ b and yt “ ȳ for all t ď n pbq,

then µt ptp : p ą p̄u | pat, ytqq ě K.

Consider the event E that for all b P A and t ď n pbq, xt,b “ ȳ. This event has strictly

positive probability Pπ rEs. Moreover, if E realizes, after some T̂ ď
ř

b‰ā pn pbq ´ 1q` 1, the

policy of the agent prescribes action ā. Therefore, after T̂ ` n pāq, for all τ ď T̂ ` n pāq ,
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and for all y P Y,P rxτ,ā “ y|Es “ P rxτ,ā “ ys . Therefore, by Theorem 2 the probability of

converging to ā is at least PπrEs
2

.

A.5 Action Frequencies and Mixed Equilibria

By Theorem 1, if action a is not a uniform BN-E, the agent will use a different action b

infinitely often. We can the use a result from of Esponda, Pouzo, and Yamamoto (2019) to

show that if action b’s outcome distribution does not induce a as a myopic best reply, the

agent will spend a nontrivial fraction of time using actions different from a. For every a P A,

let Θ paq “
!

p P Θ̂ paq : a R Am pδpq
)

. Let Ca Ď ∆pΘq be the largest convex set such that

(1) it contains all ν with supp ν “ ΘpaqzΘ paq, and (2) a P Ampνq for all ν P Ca. That is,

Ca contains all the beliefs supported on the “good” KL minimizers for action a that induce

a as a best reply, as well as the beliefs around them that still support a as a myopic best

reply. Also, let Aa “ tb : Dν P Ca, b P A
mpνqu.

Corollary 3. Let β “ 0, and suppose a P A is a non-uniform BN-E. If there is p̄ P Θ paq

such that pp˚b , p̄bq ă H pp˚b , p̂bq for all b P Aa and p̂ P Θz tp̄u, then lim inf
1at“a
t
‰ 1 a.s.

Proof of Corollary 3. Let ε ą 0 be such that if ||p̄ ´ p|| ď ε, then a R Am pδpq . Let

Θε
paq “ tp P Θ : ||p̄´ p|| ď εu. By assumption, there exists ε1 ą 0 such that Θ̂ pαq Ď Θε

paq

for all α P ∆ pAq such that ||α´a|| ă ε1, suppα “ Aa
Ť

tau. Suppose by way of contradiction

that lim inf
1at“a
t

“ 1. Let Wτ pαq Ď ∆pAqrτ,8q be the set of all differentiable functions

γ : rτ,8q Ñ ∆ pAq such that

Bγt
Bt
P ∆

´

Am
´

∆
´

Θ̂ pγtq
¯¯¯

´ γt

and γ0 “ α. Define the random variable α̂t to be the empirical frequency of actions up to

time t, i.e., α̂t pbq “
1at“b
t

for all b P A. For every τ P rt, t` 1s let α̂τ pbq “ α̂t pbq pτ ´ tq `

α̂t`1 pbq pt` 1´ tq. From the convergence result (Theorem 2) of Esponda, Pouzo, and Ya-

mamoto (2019), for all T ą 0 limtÑ8 infγtPWtpα̂tq sup0ďsďT ||α̂t`s paq ´ γt`s paq || “ 0 a.s. By

Theorem 1, for all t1 P N almost surely there is a t̂ ě t1 such that µt̂ R Ca. But then, since

the frequency of action a decreases in a ball of size ε outside Ca, for all γ P Wt̂ pα̂t̂q, we have

||γt̂`ε1 t̂ paq ´ 1|| ą ε1 and limsÑ8 α̂t̂`s “ a, a contradiction.

There are two reasons that multiple actions can be played with positive probability

in a BN-E: Either every action played can be justified with the same belief over the KL
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minimizers, or different beliefs are needed to justify some of them. The first case requires the

agent to be indifferent between the different actions, so here the BN-E cannot be uniformly

strict. However, signals that take the form of payoff perturbations can allow us to obtain

such equilibria as the limit of uniformly strict Berk-Nash equilibria, and the associated

purification can be uniformly stable and positively attractive.

Formally, for every α P ∆ pAq and p P Θ, let

Hα pp
˚, pq “

ÿ

bPA

α pbq p˚b pyq log pb pyq and Θ̂ pαq “ argmin
pPΘ

Hα pp
˚, pq .

Definition 14 (Strongly Uniform Mixed BN-E). The mixed action α P ∆pAq is a strongly

uniform mixed BN-E if all actions a P suppα are myopically optimal for all θ P Θ̂pαq.

Given a problem pA, Y, p˚, u,Θq without signals, a problem with signals pA, Y, S, ζ, p̃˚, ũ, Θ̃q

is its pε, vq perturbation, ε P R`, v : A ˆ Y ˆ S Ñ R, if (i) ũpa, y, sq “ upa, yq ` εvpa, y, sq,

(ii) p̃˚a,spyq “ p˚apyq and (iii) Θ̃ “ tp̃ : Dp P Θ, p̃a,spyq “ papyq, @pa, y, sq P Aˆ Y ˆ Su.

Corollary 4. If α is a strongly uniform mixed BN-E in pA, Y, p˚, u,Θq, there is a sequence

of strategies pσnqnPN such that each σ1{n is a uniformly stable BN-E of a p1{nq-perturbation

of pA, Y, p˚, u,Θq and limnÑ8 ζps : σnpsq “ aq “ αpaq for all a P A. If pA, Y, p˚, u,Θq is

subjectively exogenous and p˚ has full support, there are positively attractive σ1{n.

The proof is in Section B.2 of the Online Appendix.
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B Online Appendix

Lemma 1. For every a P A and ε ą 0, Θ̂paq defined in (1), Θ̂apaq, Θ̂εpaq defined in (2),

and ∆pΘ̂paqq are compact.

Proof. Compactness of Θ̂paq follows from Assumption 1 and Theorem 2.43 of Aliprantis and

Border (2013). Since the projection map is continuous, and Θ̂apaq is the projection of Θ̂paq,

Θ̂apaq is compact as well. Since Θ̂apaq is closed, it immediately follows that Θ̂εpaq is closed

as well, henceforth compact. Given the compactness and separability of Θ̂paq, ∆pΘ̂paqq is

compact by, e.g., Theorem 6.4 in Parthasarathy (2005).

Lemma 7. Fix q P ∆ pY q with supp q Ď supp p˚a and a compact set C Ď ∆ pY q that contains

a q̃ with supp p˚a Ď supp q̃. Then there exists a K ą 0 such that for every f 1 P Uεpq, p
˚
a, ηq

with supp f 1 Ď supp p˚a

|min
q1PC

H pp1´ ηqp˚a ` ηq, q
1
q ´H pp1´ ηqp˚a ` ηq, qq ´min

q1PC
H pf 1, q1q `H pf 1, qq | ď Kε .

Proof. Fix an arbitrary compact C that contains a q̃ with supp p˚a Ď supp q̃. First, notice

that by the Maximum Theorem,

Ĉpη, εq :“
ď

fPUεpq,p
˚
a ,ηq

argmin
q1PC

H pf, q1q

is a compact-valued and upper-hemicontinuous correspondence. So, if we let

Ĉ :“
ď

εPr0,1s

ď

ηPr0,1s

Ĉpη, εq,

there is a K1 ą 0 such that maxyPsupp p˚a maxq1PĈ | log q1 pyq | ă K1.

Then we have that for every η P r0, 1s, ε ą 0, and f P Uεpq, p
˚
a, ηq:

|min
q1PC

H pp1´ ηqp˚a ` ηq, q
1
q ´H pp1´ ηqp˚a ` ηq, qq ´min

q1PC
H pf 1, q1q `H pf 1, qq |

ď |min
q1PC

H pp1´ ηqp˚a ` ηq, q
1
q ´min

q1PC
H pf 1, q1q | ` 2ε max

yPsupp p˚a
| log q pyq |

ď |2K1ε| ` 2ε max
yPsupp p˚a

| log q pyq |,

where the inequalities follows from ||f ´ p1´ ηqp˚a ` ηq|| ď ε, and the definition of K1. Thus

K : “ 2pK1 `maxyPsupp p˚a | log q pyq |q ą 0 satisfies the statement of the lemma.
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Claim 3. Let p̃˚at and f̃t be defined as in the proof of Theorem 1. Then the covariance

matrix for the increments of f̃t ¨ t ´ p̃˚at is given by Σy,y1 “ ´2p̃˚apyqp̃
˚
apy

1q if y ‰ y1 and

2p̃˚apyqp1´ p̃
˚
apyqq if y “ y1.

Proof. To see this, the covariance between 1y and 1y1 is given by:

p̃˚a pyq p1´ E p1yqq p0´ E p1y1qq ` p̃
˚
a py

1
q p0´ E p1yqqp1´ E p1y1qq

` p1´ p̃˚a py
1
q ´ p̃˚a pyqq p0´ E p1yqqp0´ Ep̃˚a p1y1qq

“ p̃˚a pyq p1´ p̃
˚
a pyqq p´p̃

˚
a py

1
qq ` p̃˚a py

1
q p´p̃˚a pyqq p1´ p̃

˚
a py

1
qq

` p1´ p̃˚a py
1
q ´ p̃˚a pyqq p´p̃

˚
a py

1
qq p´p̃˚a pyqq

“ ´p̃˚a pyq p̃
˚
a py

1
q rp1´ p̃˚a pyqq ` p1´ p̃

˚
a py

1
qqs ` p̃˚a py

1
q p̃˚a pyq p1´ p̃

˚
a py

1
q ´ p̃˚a pyqq

“ ´p̃˚a pyq p̃
˚
a py

1
q r2´ p̃˚a pyq ´ p̃

˚
a py

1
qq ` 1` p̃˚a py

1
q ` p̃˚a pyqs “ ´2p̃˚a pyq p̃

˚
a py

1
q .

Computations for Example 1

The monopolist’s payoff function if the valuations are uniformly distributed on r0, 8s is

Erupa, yq|y „ Upr0, 8sqs “ 8´a
8
a, so the unique optimal price from the set t3, 4, 5, 6, 7u equals

a “ 4. If valuations are uniformly distributed on r2, 10s, the payoff function is Erupa, yq|y „
Upr2, 10sqs “ 10´a

8
a, so the unique optimal price is a “ 5.

Let pL “ p8´a
8
qaPt3,4,5,6,7u be the vector of conditional probabilities when the demand is

low and pH “ p10´a
8
qaPt3,4,5,6,7u be the vector of conditional probabilities when the demand is

high. It is easy to check that the KL minimizers are given by

Θ̂p3q “ tpHu Θ̂p4q “ tpHu Θ̂p5q “ tpL, pHu Θ̂p6q “ tpLu Θ̂p7q “ tpLu .

Thus, a “ 5 is the only pure BN-E. Note that a “ 5 is not a uniform BN-E, because at the

low belief the optimal action is 4.

Example 6

Example 6. This example shows that Theorem 1 does not hold without Assumption 1(ii).

Let the action space be ta, bu, the outcome space be Y “ t0, 1u, and suppose the agent correctly

believes that the action has no impact on the outcome distribution, and that p˚ “ 1
2
.
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Assume that the agent assigns positive probabilities to the following countable set:

"

3

4

*

Y

"

1

4
´

1

n2
: n ě 3

*

,

where distributions are indexed by the probability that they assign to outcome 1. Note that 1
4

is in Θ even though it doesn’t exactly correspond to any of the agent’s conceivable outcome

distributions. Let ppnq “ 1
4
´ 1

n2 .

Finally, suppose that the agent’s utility function is given by upa, 0q “ 0 “ upb, 1q, upa, 1q “

1, upb, 0q “ 4{5. Then b is not preferred to a for any beliefs with ν pt3{4uq ą 1{2 and it is

strictly preferred to a if ν pt3{4uq ă 1{3. Then a is a BN-E but not a uniform BN-E, yet play

can converge to it with positive probability from a prior µ0 we specify below.

In the claim below we show that for every n P N there exists a ln ą 0 such that

1 ď p˚ p1q

ˆ 3
4

ppnq p1q

˙ln

` p˚ p0q

ˆ 1
4

ppnq p0q

˙ln

.

Then by Dubins’ upcrossing inequality29, for all K1, and K2 there exists Cn ď
1
n2

2
ř8
n“3

1
n2

such that if µ0 pppnqq ď Cn and µ0

`

3
4

˘

ą 1
2
, the probability that lim supt

µtpppnqq

µtp 3
4q

ą 1
n2K1 is

smaller then 1
n2K2. Let µ0 pppnqq “ Cn and µ0

`

3
4

˘

“ 1 ´
ř8

n“3Cn ą
1
2
, K2 ă

1
ř8
n“3

1
n2

and

K1 ă
1

2
ř8
n“3

1
n2

. By the union bound with probability

1´K2

8
ÿ

n“3

1

n2
ą 0

we have that

lim sup
t

ř8

n“3 µt pppnqq

µt
`

3
4

˘ ď

8
ÿ

n“3

lim sup
t

µt pppnqq

µt
`

3
4

˘ ď K1

8
ÿ

n“3

1

n2
ă

1

2
.

Claim 4. Notice that the outcome distribution most favorable to action b and least favorable

29See, e.g., page 27 of Neveu, 1975
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to action a is pp3q “ 1{4´ 1{9 “ 5{36. Therefore, if νt pt3{4uq ą 1{2,

ż

∆pY q

Ep rupa, yqs dνppq ě
8
ÿ

n“3

ppnqupa, 1qνptppnquq `
3

4
upa, 1qνpt3{4uq

ě
5

36
upa, 1qp1´ νpt3{4uqq `

3

4
upa, 1qνpt3{4uq ą 4{9

and

ż

∆pY q

Ep rupb, yqs dνppq ď

8
ÿ

n“3

p1´ ppnqqupb, 0qνptppnquq `
1

4
upb, 0qνpt3{4uq

ď
31

36
upb, 0qp1´ νpt3{4uqq `

1

4
upb, 0qνpt3{4uq ă 4{9.

If νt pt3{4uq ă 1{3,

ż

∆pY q

Ep rupa, yqs dνppq ď

8
ÿ

n“3

ppnqupa, 1qνptppnquq `
3

4
upa, 1qνpt3{4uq

ď
1

4
upa, 1qp1´ νpt3{4uqq `

3

4
upa, 1qνpt3{4uq ă

5

12

and

ż

∆pY q

Ep rupb, yqs dνppq ě

8
ÿ

n“3

p1´ ppnqqupb, 0qνptppnquq `
1

4
upb, 0qνpt3{4uq

ě
3

4
upb, 0qp1´ νpt3{4uqq `

1

4
upb, 0qνpt3{4uq “

7

15
.

Finally, notice that

1 ď p˚ p1q

ˆ 3
4

ppnq p1q

˙ln

` p˚ p0q

ˆ 1
4

ppnq p0q

˙ln

“
1

2

ˆ 3
4

1
4
´ 1

n2

˙ln

`
1

2

ˆ 1
4

3
4
` 1

n2

˙ln

where

ln “
log

´

1´ 1
4
n2`3

¯

log
´

1
1´ 4

n2

¯

` log 3
ą 0.
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B.1 The role of Assumption 1(i)

All results in the paper except the non-myopic part of Theorem 1 continue to hold under a

weaker version of Assumption 1(i):

Assumption 1(i1q For all p P Θ and ε ą 0, there exists p1 P Θ with ||p1 ´ p|| ă ε such that

for all a P A, if p˚apyq ą 0 then p1apyq ą 0.

Assumption 1(i1) implies that the support of the belief does not change after a finite number

of observations. This is the only consequence of Assumption 1(i) that is used in any of the

proofs, except for establishing Claim 1 in the proof of Theorem 1 when the agent is not

myopic.30

The next example shows that without Assumption 1(i1), limit points need not be BN-E.

Example 7 (Role of Assumption 1(i1)). Suppose there are two actions a and b, and two

outcomes Y “ t0, 1u, and let upa, 0q “ upb, 1q “ 1 ´ upa, 1q “ 1 ´ upb, 0q. Identify the

elements of ∆pY q with the probability they assign to outcome 1, and let p˚a “
2
3

and p˚b “ 1.

Suppose that the agent believes that the outcome distribution does not depend on the action,

and that Θ “ t1
3
, 1u. Here b is the unique BN-E, and it is uniformly strict. However, if

the prior assigns sufficiently high probability to 1{3, the agent will start playing a, and with

positive probability they will observe outcome 0 in the first period. But after this observation,

the posterior assigns probability 1 to p “ 1{3 and the action converges to a.

When we weaken Assumption 1(i) to (i1) and allow the supports the various outcome

distributions to differ, we need to generalize the definition of observational equivalence as

follows:

Definition 15. Two outcome distributions p and p1 are observationally equivalent under

action a if papyq “ p1apyq for all y P supp p˚a.

Thus we now say that two beliefs are observationally equivalent under a if they assign

the same probability to each outcome that realizes with positive probability. This definition

is equivalent to the one in the main text under Assumption 1(i).

The reason Theorem 1 only holds for myopic agents when we weaken (i) to (i1) is that

Claim 1 can fail. The intuition is that even if the agent plays a many times, they may still

think that playing a again will give them a non-trivial amount of information, as in the next

example.

30When the agent is myopic Claim 1 continues to hold under Assumption 1(i1).
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Example 8. Let A “ ta, b, cu, Y “ t0, ȳ, y1u, and Θ “ tp̄, p1u. Suppose that p̄c pȳq “

1´ p̄c p0q “ 0.9 “ 1´ p1c p0q “ p1c py
1q and that u pc, yq “ ´0.1 for all y P Y . Thus, the agent

thinks that by playing c they pay a small cost, and with a very high probability they discover

the correct model for sure, and otherwise receive an uninformative signal.

For action b suppose that p̄b p0q “ 1 “ p1b p0q and u pb, yq “ 0 for all y P Y . That is, the

agent thinks that action b is uninformative but safe.

Finally the agent thinks that action a produces the same information of action c but its

payoffs are riskier: p̄a pȳq “ 1 ´ p̄a p0q “ 0.9 “ 1 ´ p1a p0q “ p1a py
1q u pa, ȳq “ ´100 and

u pa, y1q “ 1.

Here, c is not a a BN-E, because it is weakly dominated by action b, and it is never a

myopic best reply. However, suppose that p˚c p0q “ 1, that the agent starts with a uniform

prior over Θ, and the discount factor β “ 1
2
. Then every optimal policy prescribes starting

with action c to get information, and then switching to a forever after observing y1, to b

forever after observing ȳ and trying c again after observing 0. Since p˚c p0q “ 1, the agent

will continue to use c forever, because the believe that with high probability the true outcome

distribution will be revealed next period.

Assumption 1(i) guarantees that when beliefs concentrate around a set of of outcome

distributions that are observationally equivalent under a, i.e. ν P ∆pEpaqppqq for some

p P Θ, the experimentation value of a is weakly lower than that of some other action.

This fact is used in Claim 1 to show that Gpνq ą 0 for every ν P ∆pEpaqppqq. Claim 1

holds under Assumption 1(i1) for myopic agents because for these agents all actions have 0

experimentation value.

Assumption 1(i1) is still sufficient for all the problems considered in Section 4.2. More

generally, (i1q is sufficient when paired with with this additional assumption:

Assumption 2. p, p1 P Epaqppq ñ papyq “ p1apyq for all y P Y .

This assumption is trivially satisfied if all beliefs in the support of the agent’s subjec-

tive prior assign positive probability only to signals which objectively occur with positive

probability, i.e. papyq ą 0 ñ p˚apyq ą 0 for all p P Θ, a P A.

B.2 Extensions to Signals

Here we expand the probability space of our basic model in the obvious way: The sample

space Ω “ S8ˆpY 8qA consists of infinite sequences of signal and action dependent outcome
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realizations psk, xa,s1,kqkPN,aPA,s1PS and xa,s1,k determines the outcome when the agent takes

the action a for the k-th time after s. Formally, we consider the probability space pΩ,F ,Pq,
where F is the discrete sigma algebra and the probability measure P is the product measure

induced by independent draws (across signal, actions, and time) according to p˚.

We denote the outcome observed by the agent in period t after action at by yt “ xat,st,k,

where k is the number of times the agent has taken action at after signal st up and including

period t. A (pure) policy π :
Ť8

t“0 S
t`1 ˆ At ˆ Y t Ñ A specifies an action for every history

ps1, a1, y1, s2, a2, y2, . . . , st, at, yt, st`1q, and an initial action a1. Throughout, we denote by

at`1 “ πpst`1, at, ytq the action taken in period t where pst`1, at, ytq is a sequence of realized

signals, actions, and outcomes. For every p, p1 P Θ Y tp˚u, denote the supnorm distance

between p and p1:

||p´ p2|| “ max
sPS,aPA,yPY

|pa,spyq ´ p
1
a,spyq|.

Given our finite dimensionality assumption, the maximand depends on s only through the

finite partition Ξ, so the supremum is attained. In this setting, a policy π converges to a

strategy σ if there exists a T such that for all t ě T , ξ P Ξ, p P ΘY tp˚u and y P Y

ÿ

aPA

ζ
` 

s P ξ : π
`

aT , yT , s
˘

“ a
(˘

pa,s pyq “
ÿ

aPA

ζ pts P ξ : σ psq “ auq pa,s pyq

that is, there is finite time convergence over the behavior in the finite dimensional partition

of signals considered by the agent. This restriction is without loss of generality if S is finite.

Lemma 10. For every σ P AS and ε ą 0, Θ̂pσq and Θ̂εpσq are compact.

Proof of Lemma 10. Compactness of Θ̂pσq follows from the generalization of Weierstrass

Theorem to lower-semicontinuous functions (see e.g. Theorem 2.43 in Aliprantis and Border,

2013). Since the projection map is continuous it follows that Θ̂εpσq is closed, so it is compact.

Now we extend Lemma 2 to the case where the agent observes signals and has finite-

dimensional beliefs. Since we restricted the policy function of the agent to be measurable in

their beliefs, the set of policy functions is

Π “
`

AS
˘

Ť8
t“0pA

tˆY tˆΞtq
.
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We endow the set AS of measurable maps from S to A with the metric

dζ pσ, σ
1
q “ ζ pts P S : σ psq ‰ σ1 psquq .

Then Π is the (countable) product space of measurable maps with index set
Ť8

t“0 pA
t ˆ Y t ˆ Ξtq.

Lemma 11. Π is compact in the product topology, and for every ν P ∆pΘq, V p¨, νq is

continuous with respect to the product topology.

Proof. By Tychonoff’s theorem AS is compact in the product topology. Suppose that σn

converges pointwise to σ, and let Cn “ ts P S : @m ě n, σm psq “ σ psqu. We have that

Cn Ò S,

dζpσn, σq “ ζ pts P S : σn psq ‰ σ psquq ď 1´ ζpCnq

and so dζpσn, σq Ñ 0. Thus the product topology is finer than the topology induced by dζ ,

and so AS is also compact in pAS, dζq. Applying Tychonoff’s theorem again, Π is compact

in the product topology. Continuity follows from the fact that for every period t P N the set

pAt ˆ Y t ˆ Ξtq is finite, and discounting.

We next generalize a couple of definitions given in the text to allow for signals. For every

strategy σ and action contingent outcome distribution p, we let

pσ “

ż

S

p˚σpsq,sp¨qdζpsqq

denote the distribution over outcomes induced by the use of strategy σ. Let Θ̂εpσq denote

the conceivable outcome distributions that are ε close to one of the elements of Θpaq:

Θ̂ε
pσq “ tp P Θ : Dp1 P Θ̂pσq, ||p1σ ´ pσ|| ď εu.

Similarly, we denote the set of beliefs over conceivable distributions that assign at least

probability 1´ ε to Θ̂εpσq by

Mε,a “ tν P ∆pΘq : νpΘ̂ε
pσqq ě 1´ εu.

Next we extend Lemma 3 to this setting.

Lemma 12. If σ is a uniformly strict BN-E, then for every optimal policy π and every λ
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there exists an ε̂ ą 0 such that for all ε ă ε̂

ν PMε,σ ùñ |ζ pts P S : π pν, sq “ auq ´ ζ pts P S : σ psq “ auq | ă λ. (5)

Proof. Fix a belief ν P Mε,σ. Let πσ denote the policy that always plays σ, and let Πλ

denote the set of policy functions π̃ such that:

|ζ pts P S : π̃ pν, sq “ auq ´ ζ pts P S : σ psq “ auq | ě λ

Define Gpεq as the gain from playing σ forever instead of using (one of) the best policies

π̃ P Πλ

Gpεq “ min
π̃PΠλ

min
νPMε,a

pV pπa, νq´V pπ̃, νqq .

Notice that by Lemma 11 the space of the policy functions endowed with the product topol-

ogy is compact. Since the subset of policy functions that satisfy 5 is closed, this subset is

compact as well. Moreover, given that β P p0, 1q, the value function is continuous at infin-

ity, and therefore V pπa, νq´V p¨, νq is a continuous function of the policy. Notice also that

since Ep,π
“
ř8

t“1 rβ
t´1upat, ytqs

‰

is continuous in p, V pπa, ¨q ´V pπ̃, ¨q is continuous in ν, so

since ε Ñ Mε,σ is an upper hemicontinuous and compact valued correspondence, from the

Maximum Theorem G is continuous in ε. Since σ is a uniformly strict BN-E, Gp0q ą 0, and

there is an ε̂ such that if ε ď ε̂, G pεq ą 0. This implies that for any optimal policy π it must

be such that ν PMε,σ implies that π satisfies (5), which proves the lemma.

Lemma 13. Fix a strategy σ and ε ą 0. There exists an l ą 0 such that for all l ď l for

every KL minimizer q P Θ̂pσq, every p1 R Θ̂εpσq, and every σ1 P Blpσq we have

fl pσ
1, q, p1q :“

ÿ

yPY

pσ1pyq

ˆ

qσ1pyq

p1σ1pyq

˙l

ą 1 .

Proof. As noted by FII in their Lemma 3, for each KL minimizer q P Θ̂pσq and every

outcome distribution p1 R Θ̂pσq there exists an l pσ, q, p1q such that flpσ, q, p
1q ą 1 for all

l ď l pσ, q, p1q. They also pointed out that for all q, q1 P Θ, and σ1 P AS, if l̂ ą l and

flpσ
1, q, q1q ď 1, then fl̂pσ

1, q, q1q ď 1. We will now prove that there exists a uniform l that

works for every q P Θ̂pσq and p1 P Θ̂εpσq, and every strategy σ1 sufficiently close to σ.

Suppose by way of contradiction that there was no l ą 0 such that for all l ď l,

flpσ
1, q, p1q ą 1 for all q P Θ̂pσq and p1 R Θ̂εpσq, σ1 P Blpσq. Then we can define a sequence
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pσn, qn, p
1
nq such that f 1

n
pσn, qn, p

1
nq ď 1, and σn P B1{npσq. The sequential compactness of

AS ˆ Θ̂pσq ˆ tp P ∆pΘq : pa R Θ̂εpσqqu derived in Lemma 10 guarantees that this sequence

has an accumulation point pσ, q, p1q. However, for, n ą 1
lpp̄,p1q

, f 1
n
pσn, qn, p

1
nq ď 1 implies

flpq,p1qpσn, qn, p
1
nq ď 1, but then the lower semicontinuity of flpq,p1q at pσ, q, p1q leads to a

contradiction with flpq,p1q pσ, q, p
1q ą 1.

Lemma 14. Let p, p1, p˚ P ∆ pY q, and l P p0, 1q be such that

ÿ

yPY

p˚pyq

ˆ

ppyq

p1pyq

˙l

ą 1. (6)

Then there is ε1 ą 0 such that for all ν P ∆ p∆ pY qq, if we let

νpC | yq “

ş

qPC
qpyqdνpqq

ş

qP∆pY q
qpyqdνpqq

,

then
ÿ

yPY

rpyq

«

ˆ

νpBε1 ppq | yq

νpBε1 pp1q | yq

˙l
ff

ě

ˆ

νpBε1 ppqq

νpBε1 pp1qq

˙l

.

for all r P Bε1pp
˚q

Proof. The lemma is trivially true if νpBε pp
1qq “ 0 for some ε. Therefore, without loss

of generality, we can assume that νpBε pp
1qq ą 0 for all ε. Let Cε “ Bε pp

˚q ˆ ∆pBε ppqq ˆ

∆pBε pp
1qq and define G : R` Ñ R by

Gpεq “ min
pr,ν̄,ν1qPCε

ÿ

yPY

rpyq

˜ ş

Bεppq
q̄pyqdν̄ pq̄q

ş

Bεpp1q
qpyqdν 1 pqq

¸l

.

By the Maximum Theorem, the compactness of ∆ pBε pp
1qq and ∆ pBε ppqq (see, e.g, Theorem

6.4 in Parthasarathy, 2005) and the fact that Gp0q ą 1 by equation (6), there is ε1 ą 0 such

that for all r, ν 1, ν̄ P Cε1

ÿ

yPY

rpyq

˜ ş

Bε1 ppq
q̄pyqdν̄ pq̄q

ş

Bε1 pp
1q
qpyqdν 1 pqq

¸l

ě 1. (7)
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Then,

ÿ

yPY

rpyq

ˆ

νpBε1 ppq | yq

νpBε1 pp1q | yq

˙l

“
ÿ

yPY

rpyq

˜ ş

Bε1 ppq
νpBε1 ppqqq̄pyqd

νpq̄q
νpBε1 ppqq

ş

Bε1 pp
1q
ν pBε1 pp1qq qpyqd

νpqq
νpBε1 pp

1qq

¸l

“
ÿ

yPY

rpyq

˜ ş

Bε1 ppq
q̄pyqd νpq̄q

νpBε1 ppqq
ş

Bε1 pp
1q
qpyqd νpqq

νpBε1 pp
1qq

¸l
ˆ

νpBε1 ppqq

ν pBε1 pp1qq

˙l

ě

ˆ

νpBε1 ppqq

ν pBε1 pp1qq

˙l

where the inequality follows from equation (7).

Theorem 11. Suppose the agent’s beliefs are finite dimensional. Then if the strategy pre-

scribed by the policy converges to σ with positive probability, then σ is a uniform BN-E.

Proof. If σ is not a uniform BN-E, there is p̄ P Θ̂pσq such that if supp ν Ď Eσpp̄q, then σ is

not a myopic best reply to ν. We fix such a p̄ throughout this proof.

Claim 5. There exists ε ą 0 such that if

ν
´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă εu
¯

1´ ν
´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă εu
¯ ą

1´ ε

ε
,

then σ is not a myopic best reply to ν.

Proof. Define

G pνq “ max
π
V pπ, νq ´ max

π̃:π̃pνq“σp¨q
V pπ̃, νq .

From the definition of p̄, if

supp ν Ď tp P Θ: @s P S, @y P supp p˚σpsq,s, pσpsq,spyq “ p̄σpsq,spyqu,

then G pνq ą 0. By Lemma 11 the space of policy functions is compact and the value

function is continuous in the policy, so V p¨, νq´V p¨, νq is a continuous function of the policy,

and since Ep,π
“
ř8

t“1 rβ
t´1upat, ytqs

‰

is continuous in p, V pπ, ¨q is continuous in ν. Therefore,

we can conclude by the Maximum Theorem that G is continuous.
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Now suppose that in contradiction to the claim, for every n there exists a νn such that

νn

´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă 1{nu
¯

1´ νn

´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă 1{nu
¯ ě

1´ 1{n

1{n

and σ P π pνnq. Because ∆ pΘq is sequentially compact, pνnqnPN has a converging subsequence

pνniqiPN Ñ ν˚. Thus, ν˚
´

tp P Θ: @s P S, @y P supp p˚σpsq,s, pσpsq,spyq “ p̄σpsq,spyqu
¯

“ 1 and

G pν˚q “ 0, which would imply that σ P π pν˚q, a contradiction.

Now fix such an ε. Because the agent’s beliefs are finite-dimensional, the agent believes

that the outcome distribution depends on the signals only via the partition Ξ. We now define

a finer partition of signals Ξσ such that for every two signals in the same cell i) the agent

thinks they induce the same outcome distribution, i.e., they belong to the same cell of Ξ,

and ii) σ prescribes the same action. Formally, Ξσ is the collection of subsets of signals of

the form

ts P ξi X σ
´1
paq for some ξi P Ξ and a P Au.

With a small abuse of notation, for every ξ P Ξσ let σ pξq denote the action that strategy σ

prescribes after every signal in ξ, and let pa,ξ be the probability distribution over outcomes

induced under p after action a and any signal in ξ. Set W “ Ξσ ˆ Y , and for each p P Θ, let

pσ be the unique probability measure over W that satisfies

pσ pξ, yq “ ζ pξq ppσpξq,ξq pyq @ξ P Ξσ, y P Y.

Finally, define νσ P ∆ p∆ pW qq by

νσ pCq “ ν ptp : p̄ P Cuq @C P B pSq ˆ 2Y .

For every η P p0, 1q, let

fη,q “ p1´ ηqp
˚σ
` ηp̄σ.

Linearity of H in its first argument implies that for every η P p0, 1q,

p P argmin
pPΘ

Hpfη,q, p
σ
q ùñ pσ “ p̄σ.
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Let g be defined as in the main text with W replacing Y . We have

2g pp1´ ηqp˚σ ` ηp̄σ, εq

ě inf
qP∆pW qzBεpp̄σq

ÿ

wPW

rp1´ ηqp˚σ pwq ` ηp̄σ pwqs log q pwq ´
ÿ

wPW

rp1´ ηqp˚σ pwq ` ηp̄σ pwqs log p̄σ pwq

ě p1´ ηq inf
qP∆pW qzBεpp̄σq

ÿ

wPW

p˚σ pwq rlog q pwq ´ log p̄σ pwqs

`η inf
qP∆pW qzBεpp̄σq

ÿ

wPW

p̄σ pwq rlog q pwq ´ log p̄σ pwqs

ě 0` η inf
qP∆pW qzBεpp̄σq

ÿ

wPW

p̄σ pwq rlog q pwq ´ log p̄σ pwqs ě 2η pεq2 ,

where the first inequality follows from the definition of g and the fact that the RHS

minimizes over a larger set, the second inequality follows from concavity of the minimum,

the third from the fact that p̄ is a KL minimizer, and the fourth from Corollary 3.5 and

Proposition 4.7 in Diaconis and Freedman (1990).

For every t P N, let ηt “ 2t´
1
2 . If the empirical frequency is fηt,q after t periods, and only

strategy σ has been used, then from Lemma 8 and part (ii) of Assumption , there exists

ḡ ą 0

µt

´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă εu
¯

1´ µt

´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă εu
¯

“
µ̄t ptp P Θ: @w P supp p˚σ, |p˚σpwq ´ p̄σpwq| ă εuq

1´ µ̄t ptp P Θ: @w P supp p˚σ, |p˚σpwq ´ p̄σpwq| ă εuq

ě µ0

ˆ

tp P Θ: @w P supp p˚σ, |p˚σpwq ´ p̄σpwq| ă ε2 2

ḡt
1
2

u

˙

exp
`

tηtε
2
˘

ě Φ

ˆ

ε2 2

ḡt
1
2

˙

exp
´

t
1
2 ε2

¯

.

By Lemma 7 there exists a K̂,K 1 ą 0 such that if the empirical frequency is ft after t

periods and ||fηt,q ´ ft|| ă ||p̄
σ ´ p˚σ||t´

1
2 {K 1 then

µt

´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă εu
¯

1´ µt

´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă εu
¯ ě Ψ

ˆ

K̂ε2 2

ḡt
1
2

˙

exp
´

K̂t
1
2 ε2

¯

.

Fix an outcome w0 P supp p˚σ, and let ft be the empirical frequency of the other | supp p˚σ|´1

outcomes in the support of p˚σ. Denote by p˚σt the true probabilities of the same | supp p˚σ|´

1 outcomes.
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An argument that mimics the proof of Claim 2 shows that ft ¨ t´ p
˚σt is a | supp p˚σ| ´ 1

dimensional random walk with nonsingular covariance matrix Σw,w1 for the increments.

By the Central Limit Theorem pft´ p
˚σq
?
t converges to a Normal random variable with

mean 0 and covariance matrix Σw,w1 . Let Ft “ B ||p̄σ´p˚σ ||{K1
?
t

´

p˚σ ` 1?
t
pp̄σ ´ p˚σq

¯

. We have

that

P rft P Fts “ P
”?

tpft ´ p̄
˚
q P B||p̄σ´p˚σ ||{K1 pp̄

σ
´ p˚σq

ı

.

Taking the limit tÑ 8 yields that

lim
tÑ8

P rft P Fts “ P
”

Z̃ P B||p̄σ´p˚σ ||{K1 pp̄
σ
´ p˚σq

ı

where Z̃ is a random variable that is Normally distributed with mean ~0 and covariance

matrix Σw,w1 . Consequently, if we denote as Et the event that ft P Ft, it follows that
ř8

t“1 P rEts “ 8. Moreover,

lim inf
tÑ8

řt
s“1

řt
r“1 P rEs and Ets

`
řt
s“1 P rEss

˘2 “ lim inf
tÑ8

1
t2

řt
s“1

řt
r“1 P rEs and Ers

`

1
t

ř8

t“1 P rEts
˘2 ď lim inf

tÑ8

1
t2

řt
s“1

řt
r“1 P rErs

`

1
t

řt
s“1 P rEss

˘2

“ lim inf
tÑ8

1
t

řt
r“1 P rErs

`

1
t

řt
s“1 P rEss

˘2 “
1

limtÑ8 P rEts
“

1

P
”

Z̃ P B||p̄σ´p˚σ ||{K1 pp̄σ ´ p˚σq
ı .

It thus follows from the Kochen-Stone lemma (see Kochen and Stone (1964) or Exercise

2.3.20 in Durrett (2008)) that

P

«

8
č

t“1

8
ď

s“t

Es

ff

ě P
”

Z̃ P B||p̄σ´p˚σ ||{K1 pp̄
σ
´ p˚σq

ı

ą 0 .

The event
Ş8

t“1

Ť8

s“tEs is invariant under finite permutations of the increments
`

1wt“w1 , ...,1wt“w| supp p˚σ |´1 ´ p˚σ
˘

with different time indices, so the Hewitt-Savage zero-one

law (see, e.g., Theorem 8.4.6 in Dudley (2018)) implies that the probability of the event
Ş8

t“1

Ť8

s“tEs must equal zero or one. As the probability is strictly positive it must equal

one.

This implies that ft P Ft infinitely often with probability 1. It follows that the agent will

eventually want to take an action different from σ:

P rat ‰ σ pstq for some ts “ 1 .
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Thus the strategy can not converge to σ with positive probability.

Theorem 21. Suppose σ is a uniformly strict BN-E. Then there is a belief ν P ∆ pΘq such

that for every κ P p0, 1q there exists an ε1 ą 0 such that starting from any prior belief in

Bε1 pνq:

Pπ

«

lim
tÑ8

1

t` 1

t
ÿ

r“0

1πpar,yr,sr`1q“σpsr`1q ě 1´ κ

ff

ą 1´ κ .

Proof. Consider a uniformly strict BN-E σ, an optimal policy π and κ P p0, 1q. By Lemma

12, for every λ P p0, 1q there exists an ε such that if νpΘ̂εpσqq ě 1´ ε, then

|ζ pts P S : π pν, sq “ auq ´ ζ pts P S : σ psq “ auq | ă λ.

For every l P p0, 1q, define the function fl,σ : P ˆ P Ñ R̄ is defined by

flpσ
1, p̄, p1q “

ÿ

yPY

p˚σ1pyq

ˆ

p̄σ1pyq

p1σ1pyq

˙l

.

By Lemma 13, since Θ̂εpσq is compact by Lemma 10, and since fl is lower semicontinuous,

there exists ε1 P p0, εq such that p̄ P Θ̂ε1pσq implies that flpσ, p̄, p
1q ą 1 for all p1 with

p1 R Θ̂εpσq. Let K “
`

ε
1´ε

˘l
. Then

¨

˝

1´ ν
´

Θ̂εpσq
¯

ν
´

Θ̂ε1paq
¯

˛

‚

l

ă K ùñ

1´ ν
´

Θ̂εpσq
¯

ν
´

Θ̂εpσq
¯ ă

ε

1´ ε

ùñ ν
´

Θ̂ε
pσq

¯

ą 1´ ε ùñ π pνq “ a.

By Lemma 10, Θ̂εpσq is compact, so it has a finite cover tp P Θ : ||qia ´ pa|| ď εuni“1, where

qi P Θ̂εpσq.

Let ε̄ be such that ν
´

Θ̂ε̄pσq
¯

ą 1´ ε̄ implies that

¨

˝

1´ ν
´

Θ̂εpσq
¯

ν
´

Θ̂εpσq
¯

˛

‚

l

ă
K p1´ κq

n
.

Then if the agent starts with a belief ν0 with ν0pΘ̂pσqq ą ε̄, σ is the unique best reply ν
1

0.

Moreover, by Lemma 14, Dubins’ upcrossing inequality, and the union bound, there is a
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probability p1´ κq that the positive supermartingale

¨

˝

1´ ν 1t

´

Θ̂εpσq
¯

ν 1t

´

Θ̂εpσq
¯

˛

‚

l

never rises above K, and with probabilty p1´ κq

|ζ pts P S : π pµ1t, sq “ auq ´ ζ pts P S : σ psq “ auq | ď λ,

for all t P N. Then the statement follows from the Hewitt-Savage 0 ´ 1 Law ((see, e.g.,

Theorem 8.4.6 in Dudley, 2018).

Theorem 41. If signals are finite and subjectively uninformative and outcomes are subjec-

tively exogenous, then any uniformly strict BN-E σ is positively attractive.

Proof. Under the assumptions of the theorem, Θ Ď ∆ p∆ pY qq. Consider a uniformly strict

BN-E σ. By an obvious extension of Lemma 1 to the case with signals, ∆
´

Θ̂pσq
¯

is compact.

Similarly, since S is compact and σ is the unique optimal best reply strategy at the beliefs

in ∆
´

Θ̂pσq
¯

, Lemma 3 can be extended to guarantee that there exists ε ě 0 such that if

ν pcl pQε pp̄σqqq ě p1´ εq

then the myopic best reply to ν is σ. By the same argument of the proof of Theorem 2, there

exists an l P p0, 1q and ε1 P p0, ε̂q, such that if p P Qε1 pp̄σq and p1 R Qε̂ pp̄σq then flpp, p
1q ě 1.

Using the Maximum Theorem again we can find a sequence of outcome realizations yt

such that if p̂t is the corresponding empirical frequency, it is sufficiently close to p̄σ to have

Qε̂{2 pp̂tq Ď Qε̂ pp̄σq .

Therefore by Proposition 1, there exists a time period T such that for all t1 ą T , if the

empirical frequency p̂t1 “ p̂t, the agent assigns a relative probability higher than K to an ε̂

Ball around p̄. That is,

µt1pQε̂ pp̄σqq

1´ µt1pQε1 pp̄σqq
ě

µt1pQε̂{2 pp̄σqq

1´ µt1pQε1 pp̄σqq
ą 2

p1´ ε̂q

ε̂
.

Notice that replicating the outcome realizations yt sufficiently many time yields a sequence
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yt
1

such that the empirical frequency p̂t1 “ p̂t and t1 ą T . Since supp p˚a,s “ Y for all

pa, sq P A ˆ S, this sequence of outcomes has positive probability, and after it occurs the

agent plays σ. By Lemma 4 and the law of iterated expectations, conditional on a being

played
´

1´µt1 pQε1 pp̄σqq

µt1 pQε̂pp̄σqq

¯l

is a positive supermartingale.

Then, by Dubins’ upcrossing inequality, there is positive probability that this positive

supermartingale never rises above ε̂
p1´ε̂q

, that in turns imply that µt1pQε1{2 pp̂tqq never goes

below p1´ ε̂q and therefore σ is always played after the sequence yt.

Corollary 4. Let α be a strongly uniform mixed BN-E in a problem pA, Y, p˚, u,Θq. There

is a sequence of strategies pσnqnPN such that each σ1{n is a uniformly stable BN-E of a p1{nq

perturbation of pA, Y, p˚, u,Θq and

lim
nÑ8

ζpts : σnpsq “ auq “ αpaq @a P A.

If pA, Y, p˚, u,Θq is subjectively exogenous and p˚ has full support, the σ1{n can be chosen to

be also positively attractive.

Proof. Let α be a mixed BN-E in a problem pA, Y, p˚, u,Θq. For every n P N, let S “ suppα,

ζpaq “ αpaq, and ũpa, y, sq “ upa, yq ` 1
n
1a“s, and let p̃˚, Θ̃ be as given in part (ii) and (iii)

of the definition of a perturbed environment.

Consider the strategy σpaq “ a. We have that for every p P Θ

ÿ

sPS

ζpsqH
`

p̂˚σpsq,s,Φppqσpsq,s
˘

“
ÿ

aPA

α paq p˚a pyq log pa pyq

by (ii) and (iii) of the definition of a perturbed problem. Therefore, Θ̂pσq “ ΦpΘ̂ pαqq. Fix

a signal s P S, and consider any action a1 ‰ σpsq. Since α is a strongly uniform BN-E

Epσpsq rupσpsq, yqs ě Epa1 rupa
1, yqs @p P Θpαq

and by definition of ũ

Epσpsq rũpσpsq, y, sqs ě Epa1 rũpa
1, y, sqs ` 1{n @p P Θpαq

proving that σ is a strictly uniform BN-E. By construction

ζpts : σnpsq “ auq “ αpaq @a P A.
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Then the result follows by Theorems 21 and 41.

B.3 Additional Examples

Example 9 (A uniformly strict BN-E that isn’t positively attractive). In this example the

prior has support tp1, p2, p3u. Here a “ 3 is the only BN-E and is uniformly strict. However,

if the agent takes an action a P t1, 2u then the subjective likelihood assigned to p3 goes down

and thus play never converges to a “ 3 if the prior assigns sufficiently low probability to p3.

The details are in the following table:

a a “ 1 a “ 2 a “ 3
Hpp˚a, ¨q

Ampδp¨qqy 1 2 3 1 2 3 1 2 3

u 1 0 0 0 1 0 0 0 1 a “ 1 a “ 2 a “ 3

p˚ 0.1 0.9 0 0.9 0.1 0 0.1 0.1 0.8

p1 0.5 0.3 0.2 0.5 0.3 0.2 0.5 0.3 0.2 1.15 0.74 2.03 a “ 1

p2 0.3 0.5 0.2 0.3 0.5 0.2 0.3 0.5 0.2 0.74 1.15 2.03 a “ 2

p3 0.1 0.1 0.8 0.1 0.1 0.8 0.1 0.1 0.8 2.3 2.3 0.64 a “ 3

Example 10 (Signal Neglect). A seller in a physical marketplace can hire one shop assistant

to work for the day aH or not hire anyone aN . The outcome y P Y is the percentage of

consumers in the marketplace that buy the good, with two possibilities, yh ą yl.

Before choosing whether to hire, the agent observes the number of people at the market

that day s P tsh, slu, with sh ą sl. The payoff function is upa, y, sq “ sy ´ 1a“aH . The

seller realizes that the signal is payoff relevant, but falsely believes that it does not provide

any information about the outcome. The agent is uncertain about how useful it is to hire a

shop assistant, and in particular they do not know whether hiring is ineffective, i.e., for all

a P A, y P Y , papyq “ 1{2, or if it is not, i.e., p1aH pyHq “ 3{4 and p1aN pyHq “ 1{4.

The fraction of consumers who buy varies with the signal: On days with fewer consumers,

the ones that actually come to the market are more likely to purchase the good. Formally:

p˚sH ,aH pyHq “ 1{2, p˚sH ,aN pyHq “ 1{4, p˚sL,aH pyHq “ 3{4, p˚sL,aN pyHq “ 1{2.

Let slpyh´ylq
4

ă 1 ă shpyh´ylq
4

, so that it is not objectively optimal to hire a shop assistant

after sL, and it is objectively optimal to hire an assistant after sH . The following argument

OA-18



shows that the only BN-E is that the shop assistant is never hired: If the agent followed

the objectively optimal strategy, they would observe the same frequency of sales in days with

s “ sH and with the shop assistant hired as in days with s “ sL and without the shop

assistant: p˚sH ,aH pyHq “ 1{2 “ p˚sL,aN pyHq. This holds because the shop assistant offsets

the lower per-customer demand on days with high attendance. However, this observation

supports the belief that the shop assistant is useless. Since the myopic best reply to δp is to

never hire the shop assistant, by Theorem 1’ this suboptimal action is the only possible limit

action.
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