

Robust Inference in Time-Varying Structural VAR models: The DC-Cholesky Multivariate Stochastic Volatility Model

Benny Hartwig (Goethe University Frankfurt and Deutsche Bundesbank)

Disclaimer: The views expressed in this paper are those of the authors and do not necessarily coincide with the views of the Deutsche Bundesbank or the Eurosystem.

Motivation

- Cholesky multivariate stochastic volatility (CMSV) model commonly used to specify dynamic covariance matrices of a *n*-dimensional vector y_t :
 - $y_t \sim N(0, \Sigma_t),$ assume $\Sigma_t = A_t^{-1} D_t D_t' A_t^{-1'}$ $\Rightarrow y_t = A_t^{-1} D_t \epsilon_t, \quad \epsilon_t \sim N(0, I_n)$
- i.e. Σ_t implicitly modelled by specifying A_t^{-1} and D_t • **But:** estimates of Σ_t may be sensitive to the ordering variables in y_t , see e.g., Primiceri (2005) \Rightarrow inference may hinge on a chosen variable ordering \Rightarrow majority of applied literature ignores this property

On the Cholesky MSV model

Let y_t be a 2-dimensional vector (tractability)

How does the CMSV structure affect dynamics of Σ_t ?

- CMSV model: $\Sigma_t = A_t^{-1} D_t D_t A_t^{-1'}$
- a_t off-diag. of A_t and g_t log-vol. process of D_t
- a_t and g_t are Gaussian random walk (RW)

Properties of Σ_t under CMSV

• the ratio of volatilities $\frac{\sigma_{22,t}}{\sigma_{11,t}}$ is time-varying **2** the correlation ρ_t evolves nonlinearly

Monte Carlo Simulation

DGP: Correlations from Engle (2002) w/o SV (1) Fitting correlations with CMSV model (wo SV)

	$ ho_t$	$a_t - \tilde{a}_t$	a _t	ã _t
const	0.008	0.084	0.018	0.019
sine	0.022	0.086	0.035	0.034
fsine	0.016	0.070	0.020	0.020
step	0.010	0.076	0.018	0.018
ramp	0.023	0.087	0.037	0.037

Table: Mean absolute distance (MAD) without stochastic volatility

• MAD lowest for ρ_t ($R_t = \Sigma_t^{*-1/2} \Sigma_t \Sigma_t^{*-1/2}$)

- **Illustration:** Effect of alternative variable orderings on dynamics of Σ_t in Primiceri's (2005) application \Rightarrow volatilities similar, covariances differ in stagflation

$$\rho_t = \rho_{t-1} \frac{\exp\left(\eta_{1,t}^g\right)}{\exp\left(\eta_{2,t}^{g**}\right)} + \epsilon_t^a \frac{\sigma_{11,t}}{\sigma_{22,t}}$$

 \bullet the contemporaneous relation a_t evolves linearly • the dynamic structure of Σ_t cannot be generated by an analogously setup CMSV model for \tilde{y}_t odynamic restrictions increase in the variability of idiosyncratic volatility patterns

Comparison to separated volatilities and correlations? • DC-MSV model: $\Sigma_t = D_t R_t D'_t$ (Yu and Meyer, 2006) - h_t log-vol. process of D_t and ρ_t correlation of R_t - $\rho_t(m_t) = \frac{\exp(m_t)-1}{\exp(m_t)+1}$, m_t and h_t are Gaussian RW - applicable only to $n \leq 3$ (psd of R_t not guaranteed)

Properties of Σ_t under **DC-MSV**

the ratio of volatilities time-varying or constant **2** the correlation ρ_t evolves approximately linearly \Im the contemp. relation a_t evolves nonlinearly

 \Rightarrow implied ρ_t almost ordering insensitive

(2) Fitting covariances (with SV)

	High Vol		LOW VOI	
	CMSV	DC-CMSV	CMSV	DC-CMSV
const	0.207	0.037	0.153	0.026
sine	0.179	0.021	0.081	0.023
fsine	0.210	0.012	0.049	0.015
step	0.169	0.021	0.089	0.019
ramp	0.183	0.023	0.085	0.025

Table: Mean absolute distance (MAD) with stochastic volatility

• CMSV: MAD of $\sigma_{12,t}$ increases for high vol. DGP \Rightarrow DC-CMSV: almost insensitive to alt. DGPs

Empirical Application

(1) Evolution of US monetary policy (Primiceri, 2005) • unchanged or more aggressive response? \Rightarrow ambiguous with CMSV model \Rightarrow DC-CMSV model suggest that the Fed counteracted π and UR more aggressively!

Research questions

- Role of variable ordering on the dynamics of Σ_t ?
- Variable ordering important for conclusions?
- How to mitigate the ordering sensitivity?

Contributions and Results

- Ordering sensitivity not negligible in CMSV model! \Rightarrow volatility pattern impose alternative restrictions
- Propose a robust modelling alternative
- \Rightarrow dynamic correlation Cholesky MSV (DC-CMSV)
- ³ Monte Carlo simulation to fit Σ_t
- \Rightarrow Estimated correlations almost ordering insensitive when there is no volatility (CMSV & DC-CMSV) \Rightarrow Estimated covariances of CMSV model more distinct when there are stronger idiosyncratic volatility clusters, while covariances hardly affected

- Fit Σ_t with CMSV, when y_t generated by DC-MSV?
- nonlinear transformation of a_t as volatilities switch position $(a_t = \rho_t \frac{\exp(h_{2,t})}{\exp(h_{1,t})}, \ \tilde{a}_t = \rho_t \frac{\exp(h_{1,t})}{\exp(h_{2,t})})$ • systematically different paths of the covariance $(a_t \text{ underestimated in one ordering, while})$ mechanically overestimated in reverse ordering) Special cases:

 $\rho_t = \rho, \forall t$: effect more severe (no offsetting by η_t^{ρ}) $h_t = h, \forall t: a_t$ is almost ordering insensitive

The DC-Cholesky MSV model

• Let y_t be a *n*-dimensional vector with $y_t \sim N(0, \Sigma_t)$ • DC-CMSV model: $\Sigma_t = D_t R_t D'_t$ $\Rightarrow y_t = D_t \epsilon_t, \epsilon_t \sim N(0, R_t)$ \Rightarrow estimate auxiliary matrix $Q_t = A_t^{*-1} D_t^* D_t^{*'} A_t^{*'-1}$ using the CMSV model on stand. data $\epsilon_t = D_t^{-1} y_t$

Figure: Estimated long-run US systematic interest rate response

(2) Properties of US inflation-gap persistence (Cogley, Primiceri, and Sargent, 2010)

- decline after great inflation or unchanged? \Rightarrow ambiguous with CPS-TVPSV-VAR model; driven by CMSV heteroskedasticity in TVP
- without CMSV in TVP, unambiguous conclusion! \Rightarrow persistence declined after 1980s

Conclusion

Variable ordering in CMSV model important!

by alternative volatility pattern under DC-CMSV

• Inference may hinge on a ordering for estimating $\Sigma_t!$

(1) US monetary policy during stagflation

 \Rightarrow unchanged or more aggressive response?

(2) Predictability of US inflation-gap \Rightarrow gradual or abrupt improvement in predictability? \Rightarrow estimate correlations via Engle's (2002) formulas $R_t = Q_t^{*-\frac{1}{2}}Q_tQ_t^{*-\frac{1}{2}}, \qquad Q_t^* = \mathsf{diag}[\mathsf{vecd}(Q_t)]$

where vecd(Q_t) selects the diagonal of Q_t .

Further assumptions

• State dynamics: RW, stationary or combination Independent innovations of volatility and correlation \Rightarrow volatility pattern imposes restrictions

 \Rightarrow ambiguous conclusions in applications

 \Rightarrow idiosyncratic volatility pattern not uncommon

• DC-CMSV model as robust alternative

 \Rightarrow estimates almost ordering invariant \Rightarrow nonlinear contemporaneous relations

