Growing SMEs

The sensitivity of investment and employment to the cost of debt financing*

Diana Bonfim Banco de Portugal, Católica Lisbon SBE

Cláudia Custódio Imperial College Business School, CEPR, ECGI

Clara Raposo ISEG Lisbon School of Economics and Management, ADVANCE/CSG

This version: December 22, 2020

Abstract

How sensitive is the growth of small firms to the cost of borrowing? This paper uses variation in the access to a credit certification program in Portugal to estimate the sensitivity of small and medium sized firms (SMEs)' investment and employment to the cost of debt financing. The program was implemented during the global financial crisis to prevent small firms from becoming credit constrained. The targeted program provides a credit certification as well as a loan guarantee by the Portuguese government to firms with a minimum credit quality. The program design and implementation allows for a multidimensional regression discontinuity methodology to estimate its real effects over a decade. When comparing firms around cutoff points, we find that eligible firms increase their borrowing, and borrow at significantly lower rates than non-eligible firms. Targeted firms also increase investment and employment when compared to non-certified firms. The program was effective in ensuring small firms continued to grow during the financial crisis, while the certification effects matter mostly in the post-crisis period.

Keywords: Credit Rating, Credit Access, Certification

[.]

^{*}Bonfim: Banco de Portugal, Lisbon, Email: dbonfim@bportugal.pt; Custódio: Imperial College Business School, 53 Prince's Gate, South Kensington Campus, London, UK, E-mail: c.custodio@imperial.ac.uk; Raposo: ISEG, Rua do Quelhas 6, 1200-781 Lisbon, Portugal, E-mail: clararaposo@iseg.ulisboa.pt. We thank António Antunes, Miguel Cruz, Ralph de Haas, Christopher Hansman, Daniel Ferreira, Miguel Ferreira, Juanita Gonzalez-Uribe (discussant), Isabel Horta Correia, Nicholas Kozeniauskas, Ana Cristina Leal, Beatriz Mariano, Adrien Matray, Diogo Mendes, Maria Soledad Martinez Peria, Matthijs Oosterveen, Daniel Paravisini, Susana Peralta, Andre Silva, João Valle Azevedo, and conference and seminar participants at Banca d'Italia, Banco de Portugal, Católica Lisbon, CEMFI, Dansmark Nationalbank, EBRD, Imperial College, La Trobe University, LBS Summer Conference, London School of Economics, NOVA SBE, University of Bath, University of Groningen, and University of Surrey. We thank Pedro Moreira, Bernardo Mendes, Carolina Miguel and Gonçalo Moreira for excellent research assistance. These are our views and do not necessarily reflect those of the Bank of Portugal or the Eurosystem. The authors gratefully acknowledge financial support from the Fundação para a Ciência e Tecnologia (Grant PTDC/EGE-OGE/28603/2017) and from the Fundação Francisco Manuel dos Santos. Custódio acknowledges financial support from the European Research Council Grant (project 852677 - grow).

1. Introduction

During financial crises, when supply of credit is limited, firms might become financially constrained, especially small ones (Brown and Earle, 2017, Campello et al. 2010, Carbó-Valverde et al. 2016, Carpenter and Petersen, 2002, DeYoung et al. 2016). Mutual guarantee programs, where governments offer a guarantee on bank loans, are common stimulus measures to the economy (Bach, 2013, Bartoli et al., 2013, Beck, 2014, Blasio et al. 2018, Columba et al. 2010, D'Ignazio and Menon, 2013, Lelarge et al. 2010, Gonzalez-Uribe and Wang (2020)). Through these programs, governments offer (partial) guarantees on loans granted by financial institutions to small firms, with the purpose of subsidizing the cost of borrowing and alleviating potential financing constraints to promote their growth. Despite the popularity of this type of programs among governments and policy-makers (for instance during the COVID19 pandemic these were again commonly used across countries), the real effects of these programs remain understudied and the existing evidence on its impact is mixed.

We exploit a targeted stimulus program adopted in Portugal for small and medium enterprises (SMEs) with a minimum credit quality. This program offers firms both a loan guarantee and a credit certification (rating) issued by a government agency. Under the 'SME-Leader Program', eligible firms have access to subsidized bank credit and to a credit rating that may potentially reduce information asymmetries, especially during economic downturns. SMEs are typically opaque, which makes the process of collecting information and establishing a relationship with creditors long and expensive (Beck and Demirguc-Kunt, 2006). Moreover, unlike large and public firms, these firms do not benefit from the certification mechanism offered by the main credit rating agencies.

We use this program, introduced at the beginning of the great recession in 2008, to study how sensitive are small firms' investment and employment to the cost of bank debt financing. A relevant feature of the program is that certification and top rating criteria are multiple and change on a yearly basis. This allows for a Multidimensional Regression Discontinuity Design (MRDD)

to estimate its real effects. We estimate these effects both during the financial crisis and the postcrisis period. Because the program certifies eligible firms with one of two ratings, we also exploit variation around the top rating cut-off to isolate the impact of an additional credit notch for SMEs. The richness of the data on the population of Portuguese firms make possible a detailed analysis of financing conditions and usage of the borrowed funds.

Firms apply to the program through a sponsor bank. Eligibility is based on financial information reported on the previous fiscal year. The criteria for eligibility are announced only after the financial information has been reported, which means that firms cannot be sure ex-ante whether they will be part of the program in a given year. If approved, the certification is then valid for a year. Because firms have discretion and endogenously choose whether to apply to the program, we estimate the intention to treat effect (ITT), i.e., we compare eligible firms' outcomes with the ones of non-eligible firms. The multidimensional criteria design has the advantage of estimating the intention-to-treat effect using different groups of firms around different cut-off points. This improves on the external validity of unidimensional regression discontinuity designs, which usually rely on a limited and small number of observations around a single cut-off point. In order to define a single running variable based on multiple criteria and thresholds we follow Ferreira, Ferreira and Mariano (2018). We first determine the binding criteria for each firm-year and then standardize the distance to threshold across criteria. For our baseline estimates, we make use of Calonico, Cattaneo and Tituinik (2014) approach to choose the optimal bandwidth around the cutoff points and order of polynomials for the functional form.

We first document that firms that are eligible to participate in the program have access to significantly lower costs of debt financing and increase their borrowing. This effect is perhaps not surprising, as certified firms are offered subsidized loans. When comparing firms around the cutoff point for the program, we find that eligible firms have access to credit that is between 2.0 and 2.6 percentage points cheaper than non-eligible firms on the year of the certification. We also document that eligible firms increase their borrowing by more than non-eligible firms during the crisis period. This is not observed during the post-crisis period.

We then test if eligible firms make use of borrowed firms during the crisis period for investment purposes. We find that during the crisis eligible firms invest more in fixed capital, working capital and hire more employees than non-eligible firms. A 1% decrease in the cost of bank lending through the program leads eligible firms to increase capital expenditures to assets ratio (CAPEX) by 3% and employment by 8.5%, which evaluated at the mean represents 2.5 employees. These effects are much smaller in the period after the crisis.

We also find a positive impact of the program on firm growth and performance during the crisis period. We find some evidence of a positive impact on firm's sales growth one year after the certification, but no persistent effects beyond that point. Growth in sales is 0.6 percentage points higher for eligible firms when compared to non-eligible around the threshold one period after certification. We then check whether eligible firms increase their exports. We find that these firms export significantly more than non-eligible firms around the eligibility threshold. This effect is positive and economically significant. Program eligible firms export up to 5.1 percentage points more when compared to others over the two periods after being eligible. The effect on accounting earnings is also positive and persistent over the two first years of being eligible. Eligible firms have 0. 7 percentage points higher EBITDA as proportion of assets than non-eligible firms on the year of certification, and 0. 5 on the following year. Overall, our results suggest that this program has a positive impact on firm growth and performance, with real effects in terms of firm investment and employment. Noteworthy, these are mostly present during the crisis period and are much less salient in the post-crisis period.

The SME-Leader Program assigns two different credit ratings to SMEs (SME Leader and SME Excellence), which allows to identify the impact of reducing informational frictions through the provision of a public rating. When comparing firms with different levels of rating, in order to evaluate the value of an extra notch in certification, we find significant results on firm growth and performance, suggesting that the overall impact of the program is not limited to the improved access to credit but also due to the certification itself. Nevertheless, the effects arising from access to subsidized credit seems to dominate those arising from decreasing information asymmetries

about firm quality during the crisis, as evidence of a credit rating effects is mostly present in the post-crisis period.

Our paper contributes to the literature on financial constraints faced by SMEs. Small firms have limited access to equity capital markets (Ferrando et al., 2015), so typically their most important source of external finance are bank loans. During the global financial crisis, banks were forced to significantly adjust their portfolios in response to negative shocks, implying that SMEs' access to credit was highly constrained (Carbó-Valverde et al., 2016; Ferrando et al., 2015). These credit-constrained firms are limited in their ability to grow (Beck and Demirguc-Kunt, 2006). Cressy and Olofsson (1997) claimed that lack of access to both finance and expertise represented the biggest constraint for small and medium companies. We contribute to this literature by showing that a targeted program designed to alleviate the financial constraints of good quality SMEs allows them to keep on investing and growing even through a profound economic and financial crisis.

Our paper also contributes to the literature that examines how information asymmetries can be mitigated to improve firms' access to finance. Faulkender and Petersen (2006), Tang (2009), and Sufi (2009) show that credit ratings are helpful in mitigating information asymmetries. A credit rating may serve as a signal of a firm's quality (Kisgen, 2006) or a benchmark for debt issuing (Boot, Milbourne and Schmeits, 2006). Ratings have been mainly assessed through their impact on firm's bond yields, changes in yields and corporate leverage for large and public firms (Kisgen and Strahan, 2010). It has been documented that firms with higher ratings make more capital investments and grow faster than their lower rating counterparts, who make fewer investments and accumulate more cash (Tang, 2009). Sufi (2009) evaluated the impact of the introduction of credit ratings and showed that, for the rated firms, asset growth and cash acquisition doubled with the presence of the rating. However, credit ratings are available only for large companies. We document the effects of offering credit ratings to small firms, who are especially affected by information asymmetries and show that this certification mechanism is helpful to improve firm outcomes, most notably after a financial crisis.

Finally, our paper contributes to the literature examining how government interventions can address the market failures that make SMEs become financially constrained. These constraints arise from vulnerability to information problems, as well as from the market power of the banks (Carbó- Valverde et al., 2009; Ryan et al., 2014). Government and national financial structures affect credit availability mainly through lending technologies (Berger and Udell, 2006), so several measures have been developed to improve the SMEs' access to finance through bank loans at different levels. Gonzalez-Uribe and Paravisini (2016) study the Seed Enterprise Investment Scheme in the UK, which consists of an exemption on capital gains and income tax relief offered to individual investors in small entrepreneurial firms. They find that this program had positive impact on investment. Aghion, Bergeaud, Cette, Lecat and Maghin (2019) exploit a change in Eurosystem's Additional Credit Claims (ACC) program to perform a differences-in-differences analysis on the supply of credit to firms. They find that firms with easier access to credit (i.e. with higher credit ratings) experience higher productivity growth, but they also find that incumbent firms with easier credit access experience lower exit rates, particularly the least productive firms. Our paper contributes to this literature by estimating the causal impact of access to subsidized bank credit on firm growth and performance, as well as documenting the real economic effects in terms of investment and employment.

Our results have relevant policy implications. SMEs represent an extremely large part of the European economy: according to the "Annual Report on European SMEs" by the European Union (EU) in 2016 they represented almost all (98%) of non-financial enterprises, two-thirds (66%) of total EU employment and accounted for almost three-fifths (57%) of the value added generated by the non-financial sector. Because of their importance in the economy these firms are given particular attention by researchers and policy-makers, who recognize the challenges associated to SME credit access. Our research design helps us to understand how relevant financial and informational frictions are on hampering firms' access to credit and performance, leading to different outcomes in terms of investment on physical and human capital. This allows policy-

makers to understand the potential impacts of enacting policies to alleviate financial and informational constraints on SMEs, notably for the best performing ones. This can be particularly relevant during financial crises, or other economic distress events such as the recent COVID19 pandemic. While in the first wave of the pandemic governments around the world hurriedly offered indiscriminate support to small firms to offset the impacts of lockdowns and demand shocks, as it became clearer that the pandemic would have lasting and uncertain effects, a consensus emerged on the fact that support has to be targeted, so as to avoid the proliferation of zombie firms, unmanageable public finances imbalances and to promote the efficient reallocation of resources in the economy. This paper offers causal evidence that supporting the best quality small firms during a financial crisis has positive and lasting effects on investment and growth.

The paper proceeds as follows. In Section 2 we describe the program and in Section 3 we describe the data and the empirical strategy adopted. In Section 4 we analyze the impacts of the program on the cost of debt financing, on revenue growth and firm performance, and on real outcomes (investment and employment). Section 5 summarizes some extensions and robustness tests and Section 6 concludes the paper.

2. Institutions, Data, and Descriptive Evidence

2.1 The SME-Leader Program

The SME-Leader program was introduced in 2008 with the main objective of ensuring that the best performing SMEs had access to financing during the global financial crisis. The governmental agency in charge of the program, IAPMEI, defines every year a set of eligibility criteria for firms to be classified as SME-Leaders (or *PME-Líder*, in the original denomination, in Portuguese). The criteria are defined with the goal of identifying small firms with more potential for growth and that offer less credit risk to their lending institutions. A firm that gets the title of SME-Leader has

access to bank loans from a sponsor bank with a government guarantee, and a certification as SME-Leader, i.e., a 'stamp' that certifies that it passed a hurdle that others did not.

The eligibility criteria are mainly based on past accounting performance. Across all years of the program, these financial criteria included financial ratios such as total assets, number of employees, total sales, net income, EBITDA, net income/assets, net income/equity, equity/assets, EBITDA/sales, debt/EBITDA, sales growth and EBITDA growth. An example of criteria for 2012 and 2013 is provided in Figure 1. A relevant feature of the program is that the criteria have changed on an annual basis, becoming more demanding over time. Thus, a firm that is SME-Leader in a certain year might not necessarily be eligible in the following year.

The program also includes a top rating certification for those SME-Leaders that meet a tighter set of criteria. Those better performing SME obtain the top rating of SME-Excellence that is also attributed on an annual basis. For SME-Excellence firms the formal benefits of access to government guarantees are unchanged (i.e., there are no lower established interest rates for SME-Excellence when compared to SME-Leader). The benefits accrue from having a higher rating, signaling the superior quality of the firm.

To get a certification, the firm must apply through a bank that sponsors its application. The bank has to confirm if the firm fulfills the eligibility criteria, assess its credit quality, and submit the application to the government agency. The criteria are based on accounting data that is reported before the criteria are announced every year, thus making it unfeasible for firms to manipulate their accounts in order to meet the requirements.³ Applications are typically submitted until the

³ To investigate if there was systematical manipulation in financial ratios to meet eligibility criteria, we examined the empirical distributions of all the ratios used as criteria, to search for bunching around thresholds. The only instance in which there is some evidence on bunching pertains to EBITDA, around zero. A significant number of firms reports positive, albeit extremely low, profits. This pattern of earnings management has been extensively documented in the accounting literature (Burgstahler and Dichev, 1997). Having positive earnings is an eligibility criteria in several years of the paper. However, it is always one of the many criteria used, making it unlikely that this bunching affects our findings. To be sure, we exclude observations where EBITDA would be the binding criteria in the multidimensional regression discontinuity design and the results remain broadly consistent.

beginning of the 4th quarter of each year and the benefits are valid until the end of the following year.

Besides the financial criteria, firms must meet a set of more general qualifying criteria that are the same every year. These include being officially classified as an SME firm by IAPMEI (this is solely based on firm size measured by number of employees, revenue and assets), have three consecutive years of complete financial statements, and have no conflicting situations (e.g. late payments) with the Portuguese tax authorities, IAPMEI or the social security.

The main benefits for SME-Leader firms derive from the better borrowing conditions they can have access to. Given that applications are submitted through banks, most firms in the program had access to bank loans before entering the program. Once they enter the program, they gain access to credit lines with partial credit guarantees provided by mutual guarantee societies. This allows firms to borrow at lower rates, with less collateral, and in a more streamlined and standardized process for credit approval.⁴ The sponsor banks obtain a smaller margin on these loans, but benefit from significant regulatory capital savings, given the partial guarantees attached to these credit lines.

Besides the benefits in terms of access to bank loans, firms also benefit from the certification. By being part of the program, the firms can publicize on their websites and other communication platforms that they are among the best performing small firms in the country, what might offer reputational advantages with their customers and stakeholders. Furthermore, there are other fringe benefits, such as access to training and partnerships with service providers.

⁴ The terms and conditions applied vary across credit lines and change throughout the sample period. For illustration purposes, the maximum spread that banks could apply on credit lines granted to SME-Leader firms in 2015 ranged between 2.7 and 3 p.p. over the 6-month Euribor (banks could charge lower spreads). The average spread for new loans under 1 million euros was 3.8 p.p. in the same period. The firms also had to pay a commission for access to the mutual guarantee, which was 0.65% for the most expensive credit lines.

2.2. Data

The government agency responsible for the program (IAPMEI) makes publicly available the list of firms that are certified by the program in each year, as well as the criteria to be certified as SME-Leader and SME-Excellence. We collected data on certified firms and program criteria between 2008 and 2018 from IAPMEI. This allows to know if a firm is classified as SME-Leader or SME-Excellence in a given year. There is also information on which bank filed the application of the firm (sponsor bank).

We merge this data with detailed accounting data on the firms, using their unique fiscal identification number. The Portuguese Central Balance Sheet database covers all non-financial firms operating in Portugal. The data is sourced from *Informação Empresarial Simplificada* (IES), a joint project of the Ministry of Finance, Ministry of Justice, Statistics Portugal and Banco de Portugal. The aim of this project is to integrate most of the information that all Portuguese firms have to report for legal, fiscal and statistical purposes. Banco de Portugal revises the data to enhance its analytical content for economic and statistical purposes (this revised version of the data is the Central Balance Sheet database). We collect this data from 2007 to 2018.

We are thus able to identify all firms that are eligible for the program and each specific rating in each year and the ones that are actually certified. The granular and detailed information in the dataset also allows for an accurate characterization of firms' financial ratios.

We are also able to merge this information with the Central Credit Register dataset, owned and managed by Banco de Portugal. This includes monthly information on all loans outstanding in Portugal, granted by resident credit institutions. The reporting threshold is among the smallest in the world (50 euros). This virtually universal coverage is key for the analysis of SME financing. Indeed, most credit registers worldwide typically have higher reporting thresholds, sometimes excluding smaller firms from the analysis. The information contained in the Credit Register allows us to know if the firm is borrowing from banks other than the one which has submitted the

application for the program. The dataset has information on the total outstanding bank loans of each firm and on the status of each loan (for instance, if it has become overdue or if it was renegotiated). There is also information on unused credit lines, loan products, maturity and collateral.

Finally, we also collect data on interest rates using a database on loan flows, available at Banco de Portugal. For each new loan originated, banks report the interest rate, maturity, existence of collateral and loan amount. However, this dataset is available only since mid-2012, which implies that it cannot be used to fully assess the effects of the program in the entire period.

2.3. Sample and summary statistics

Our main sample comprises 427,493 firm-years from 2007-2018. Table 1 shows summary statistics for all firms in our sample, including those participating in the programme and non-eligible ones. Large firms (non-SME) are excluded from the sample. We also exclude firms in the tourism sector that have their own loan guarantee programme, as well as financial firms, state-owned firms and micro firms (defined as those with less than 5 workers). The average firm in our sample has 29 employees and average sales of 3.2 million euros. Table 2 shows the number of certified firms and the number of firms eligible for Leader and Excellence certification on a given year. The program started in 2008 only with one type of certification (SME Leader) and then it added a second layer of certification in 2009 (SME Excellence). The number of certified companies has increased until 2012, which is possibly associated with greater awareness of the program. The number of eligible and non-certified firms overall decreases over time as the program criteria become tighter and again more visible. After 2012, the average take-up rate is at 63%, while for the years before it was 25%.

Table A1 in the appendix shows the summary statistics for 5 main sub-samples of firms: Leader, Excellence, Leader-Eligible and Excellence-Eligible firms. Overall, Leader and Excellence firms are larger and better performing. This is not surprising as these firms are selected into the program based on accounting performance and size.

3. Methodology

In order to estimate the impact of credit guarantees and credit certification we exploit the discontinuity threshold between firms that are eligible to the program and non-eligible firms. While we observe the firms that are certified and the ones that are not in a given year, we do not have information on applications and therefore we cannot explicitly account for selection into the program. For this reason, we estimate an intention to treat (ITT) effect, i.e., we compare eligible firms with non-eligible firms around different cut-off points, defined by the different eligibility criteria. The list and summary statistics for these criteria is presented in Table 1 (panel A).

In order to estimate the causal impact of an additional credit rating notch we exploit the discontinuity between the top-rated firms (Excellence eligible and certified firms) and the bottom rated firms (Leader eligible and certified firms). All these firms were selected into the program, and around the cutoff arguably differ only on the attributed rating classification.

We use a multidimensional regression discontinuity design to estimate the intention to treat effect of the program and the average treatment effect of being certified with the top rating. The underlying assumption to be able to establish causality is that the assignment of firms close enough to the threshold is as good as random. Therefore, the analysis is restricted to a set of firms that lie around the threshold: to estimate the effect of certification and access to credit we compare firms that became eligible to the SME-Leader program but only met the criteria by a small margin, with the firms that were not eligible to get the certification by a small margin. The 'just below the threshold' firms are used as counterfactual for firms that are 'just above the threshold" (the intended to treat firms). Likewise, to estimate the isolated top rating effect we compare firms that got the SME-Excellence certification just by a small margin with the SME-Leader certified firms that did not get the top rating (Excellence) just by a small margin.

In a one-dimensional regression discontinuity design, the bandwidth definition and distance to threshold is determined by a single criterion. In a multidimensional design, we have multiple criteria and multiple thresholds. Therefore, we need to define a single running variable and threshold. We will define the distance to threshold of a given firm in a given year using the criterion that is the most binding. As an example, to be eligible to the program as SME-Leader in a given year a firm must have: positive net income, positive EBITDA (earnings before interest taxes depreciation and amortization) in two consecutive years, and equity-to-assets ratio greater or equal to 30%. Therefore, a firm is considered to be close to be eligible based on the most binding criteria. We follow the approach of Ferreira, Ferreira and Mariano (2018) to define the binding distance to threshold across criteria. We first calculate the distance to threshold for all criteria. Then we standardize these differences to make them comparable across criteria. Then we define as binding criteria the one that has the furthest distance to threshold. We aggregate the standardized distances to threshold across criteria to define the RD running variable (standardized distance to threshold). The econometrics literature on regression discontinuity design provides detailed guidance on the choice of optimal bandwidth (Imbens and Kalyanaraman, 2012); the choice of local polynomial order to include in the regression (Pei, Card, Lee, and Weber, 2018); and the inclusion of covariates (Frölich and Huber, 2019). We follow Calonico, Cattaneo and Tituinik (2014a) for the choice of optimal bandwidth and order of polynomial.⁵

Formally, we estimate the following model:

$$y_{it} = \beta v_{it} + \sum_{p=1}^{P} [\gamma_{p0} + \gamma_{p1} v_{it}] D^p + \varepsilon_{it}$$
(1)

where y_{it} is a firm outcome (eg., interest rate of new loans), v_{it} is an indicator variable that takes the value of 1 if a firm is eligible to be SME-Leader in year t (i.e., $v_{it} = 1$ if $D_{it} > = 0$), and $\sum_{i=0}^{p} [\gamma_{p0} + \gamma_{p1}v_{it}]^p$ is a polynomial of order P of the distance to threshold. The coefficients γ_{p0} and γ_{p1} can differ on the left- and right-hand sides of the threshold.

13

_

⁵ We use the Stata package rdrobust described in Calonico, Cattaneo and Tituinik (2017).

A possible concern with the validity of this method is that firms manipulate their financial statements to meet the program criteria. The design of the program makes it hard to manipulate for the following reasons: 1) the program eligibility criteria for a given year are always based on the financial statements of the previous year and only announced after firms submitted their financial reports to the authorities; 2) the program criteria change on a yearly basis; 3) not only thresholds but performance indicators change overtime, which makes it difficult to firms to predict the requirements. Note as well that in Portugal all firms, irrespective of size, must submit detailed financial statements (balance sheet, income statement and cash flow statement) to the authorities in a timely manner, otherwise they pay a penalty. This also reduces incentives for manipulation.

4. Results

By gaining the certification, all firms benefit from guarantees provided by the mutual guarantee system. This means that banks can offer these firms better loan terms and conditions, as the risk associated with these exposures is now much smaller (thus also entailing savings in terms of banks' risk-weighted assets). The first step in our empirical evaluation of the program is thus to examine the changes on the cost of debt financing in order to confirm that firms indeed have access to cheaper bank financing. Finding that firms have access to less expensive bank loans does not necessarily mean these firms are credit constrained. In order to evaluate if firms increase their borrowing at these rates, or simply replace existing debt with new loans because they are less expensive, we also look at changes in bank loans.

We perform this analysis during the crisis period as well as in the period post-crisis as we conjecture that firms might be mostly constrained during the crisis. We consider that the crisis period covers the years 2008-2013. In 2008, the Portuguese economy suffered the consequences of the failure of Lehman Brothers, which reverberated worldwide. It was precisely to mitigate the

impacts of the crisis that followed that the program studied in this paper was implemented. When the economy was beginning to recover, a second and much larger shock hit the Portuguese financial system and, later, the economy. In the spring of 2010, Portuguese banks lost access to wholesale debt market funding, due to investors' concerns associated with the euro area sovereign debt crisis. Banks became largely reliant on ECB funding and the government faced increased difficulties in access to debt markets, leading up to an international request for financial assistance in the spring of 2011. The country successfully exit this assistance program in 2014. We define the post-crisis period as 2014-2018.

4.1 Cost of debt financing and changes in bank loans

We find that firms that are eligible to participate in the program have access to significantly lower costs of debt financing during the crisis. Table 3 Panel A shows the results using financial conditions variables constructed using data from firm financial statements. When comparing firms around the cutoff point for the program during the crisis period, we find that eligible firms have access to bank credit that is 2.6 percentage points cheaper than non-eligible firms (column 1). In columns (2)-(3) we show that this effect is persistent over time, i.e., one and two years after the certification. In columns (1) to (3) of Panel B we repeat this analysis for the period post-crisis (2014-2018) and find similar results in the specifications with one year and two years lags. These results, despite unsurprising, suggest that the program is being effectively implemented.

We then look at the growth in bank loans. Columns (4)-(6) show the results. We find that firms that are eligible to the program increase their borrowing growth rate when compared to non-eligible ones during the first years of the program. The estimated coefficient for contemporaneous variables is at 0.08, which represents 0.15 of a standard deviation of 0.55. The effect persists for one year. The estimated coefficients are smaller for the period post-2013 at 0.02 for the contemporaneous effect, and 0.027 and 0.026 for the one year and two year lags. Taken together, these results show that the program is effectively improving SMEs' access to credit, allowing them to borrow more and at lower rates, both during a after a crisis period.

We then look at the weight of short-term debt on the total existing debt of the firm. Columns (7)-(9) show the results. Overall we find that the weight of short term debt in the balance sheet of eligible firms increases when compared to non-eligible. This effect is observed beyond the year of certification but mostly observed before 2014. A possible explanation for this effect is that banks are willing to extend financing only through the duration of the program. Given that the certification is valid only for one year, banks possibly prefer to lend in shorter maturities that fall within the duration of the program, even though that is not required in the design of the program.

Table 4 shows the results using loan flow data. While this data allows for a more precise measurement of bank financing costs, it has as pitfall the fact that it is available only since mid-2012. Columns (1)-(3) show the impact of the program on the cost of new loans. Overall, we find consistent results with the ones presented in Table 3. The costs of debt for eligible firms is 0.02 percentage points lower than for non-eligible firms during the period 2008-2013. When using new loans data we do not find an effect during the period beyond 2014, as shown in panel B. As for the maturity of new loans we also find that eligible firms have shorter loan maturity. Results are shown in columns (4)-(6). This effect is persistent over time and present during the whole sample period.

We then look at the establishment of new banking relationships. The program is available through multiple banks and therefore firms might start new bank relationships are a result of the program. Columns (7)-(9) show that the number of relationships increases for eligible firms. The coefficient is at 0.9, which suggests that the program is responsible for a new relationship for eligible firms. This effect is persistent and observed in both sample periods. Through the loan guarantees and the certification effect, the program might actually be a way for firms to break barriers imposed by information asymmetries, such as hold up problems (Petersen and Rajan, 1995).

Last we look at collateral. Columns (10)-(12) show the results. We find the use of collateral in bank loans is greater for eligible firms than non-eligible firms. This is not surprising because all the loans granted through the program have associated a government guarantee, which makes them being classified by the bank and in the data as collateralized.

Overall these results suggest that firms that are eligible to the program benefit from lower costs of debt financing and make use of the program to increase bank loans, as opposed to simply substituting existing ones at a lower cost. We interpret these results as evidence that good small firms face credit constraints, especially during periods of financial crises.

4.2 Investment

In the previous section we show that eligible firms increase their borrowing more than noneligible firms, which points to the existence of credit constraints for these firms. Firms that are credit constrained may differ from unconstrained ones in their usage of newly borrowed funds. We test whether eligible firms grow their investment by more than non-eligible firms.

Table 5 shows the results for investment in fixed capital (columns (1)-(3)) and working capital columns (4)-(6). We find a positive effect of the program on firm investment. Certified firms invest 5.9 percentage points more than non-eligible firms during the crisis. This is a large effect of 60% more investment evaluated at the mean during the year of the award. However, this effect is not very persistent over time. In fact, one year after the award investment is significantly lower for eligible firms at -3.5 percentage points, which partially offsets the initial impact. We find a modest and persistent effect on capital expenditures between 0.3 and 0.5 percentage points in the post-crisis period.

In columns (4)-(6) we show the results for investment in working capital. We find that eligible firms increase their investment in working capital by more than non-eligible firms. The estimated intention to treat coefficient is 5.3 percentage points, which is a 50% increase evaluated at the mean of 0.10. This effect is persistent for one period and more pronounced during the crisis period. Panel B shows the results for the post-crisis, where the coefficient is at 1.8 percentage points for the first year of the program, not significant one year after, and again at 1.5 percentage points two years after certification.

These results suggest that eligible firms increase their investment by more than non-eligible firms, and that these effects are more pronounced during the financial crisis. The improved access

to bank loans in a period of contraction of credit supply ensures that good quality firms continue to invest even during a prolonged and severe crisis (or that, at least, they do not decrease investment as much as other firms that had a similar starting point but that could not benefit from the support program).

Table 6 shows the results for investment in human capital. Columns (1) to (3) show that eligible firms increase their growth in employees when compared to non-eligible firms by an extra 0.4 percentage points during the period of the crisis (in Panel A), and by 0.5 percentage points in the post-crisis period (in Panel B). This effect is persistent for one year after award. Columns (4)-(6) show the effects for the growth rate in wages. Wages in eligible firms grow by 0.3 percentage points more during the crisis period than for non-eligible firms (Panel A). This effect if persistent for one year, but not significant during the period post-crisis, as shown in Panel B.

Overall, we find evidence that potentially credit constrained firms make use of newly borrowed funds through the program to invest in fixed capital, working capital as well as hire new employees.

4.3. Growth: impact on revenue, costs and profits

Table 7 presents evidence on total revenues, costs, exports, and profits. Columns (1)-(3) of show that eligible firms grow their sales by more than non-eligible firms, one year after the year of certification during the crisis period. This effect is not persistent for another year, and not present in the period post-crisis, as shown in Panel B. Columns (4)-(6) show a similar test for growth in costs. We also find an increase in the growth rate of costs one year after the year of reference during the period of the crisis. This effect is again not persistent. Interestingly, during the post-crisis period we find that costs of eligible firms grow by less than the costs of non-eligible firms.

We then look at exports. During the economic crisis of 2008-2013, many Portuguese firms increased their exports, as way to overcome the contraction in domestic demand. We test whether exports grew more for eligible firms during this period. Columns (7)-(9) of Panel A show these results. We find that eligible firms increased their growth in exports by 5.1 percentage points more

than non-eligible firms. This occurs with a one-year lag and is persistent for one year. This is reasonable, taking into account that firms might have to invest or adapt themselves to increase exports. Panel B shows these effects in the period post-crisis. We do no find significant effects in the first two years and we actually find a negative and significant effect with a two year lag. The support offered to SMEs was helpful in promoting exports, most notably when domestic demand was hampered. Firms could use financial support to adapt their activities towards international markets. At the same time, the certification provided by the program possibly facilitated the entry into new international markets and segments, ensuring new customers that the firm was among the best performing in its country of origin.

Last, we focus on profits. Columns (10)-(12) show the results. The impact on profits is positive at 0.007 and persistent for one year during the crises period for eligible firms, as shown in Panel A, but negative and persistent during the post-crisis period, as shown in Panel B. The lower financing costs and improved access to credit were helpful in boosting profitability only during the crisis period.

These results seem consistent with the notion that good small firms can be credit constrained during economic crises and that by alleviating these constraints these firms can then invest and grow their production. We do not find this to be necessarily true during good times.

4.4. The impact of an extra credit rating notch

We now move to test the impact of the certification as *Excellence* firm. Table 8 shows the results. We first focus on financing conditions. Columns (1) and (2) show that there are no significant differences in cost of financing around the threshold between Leader and Excellence firms. This is the case for both the period pre-crisis and post-crisis in panels A and B respectively. This is not unexpected, as the program offers the same financial conditions for Leader and Excellence firms.

When we compare loan growth (Columns (3)-(4)), we find that Excellence firms increase their

borrowing by less than Leader firms. It is possible that having a better credit rating makes these firms less credit constrained in the first place, or able to access other sources of credit such as trade credit for instance.

Columns (5)-(6) show the differences between Excellence and Leader firms for debt maturity. Panel A shows them during the crisis and Panel B during the post-crisis period. While during the crisis we observe no differences, in the post-crisis period we find shorter debt maturity for Excellence firms.

In columns (7)-(12) we examine the impact of the extra rating notch on firm growth. We focus on sales growth, exports growth and profits. During the crisis period we only find significant effects on exports. Excellence firms increase their exports by 15 percentage points more than Leader firms in the year of the certification. The effect is still positive with a one-year lag but not significant. Interestingly, the effect of an extra credit certification notch seems to be more salient in the period after the crisis as shown in Panel B. We find a positive effect on sales growth of 2.3 percentage points in the year of the award, that is persistent at 1.5 percentage points one year after (columns (7) and (8)). We also find a positive effect on exports growth with a 1-year lag of 5.9 percentage points on column (10). Last, we find a positive impact of having the top rating on profits. EBITDA for Excellence firms around the threshold is 2.4 percentage points larger than for Leader firms also close to the threshold.

We conclude that most of the impact of credit certification program during the crisis period is associated to the relaxation of financial constraints through the access to less expensive bank loans and less so to the attributed credit rating. Interestingly we do find an impact on growth and profits associated to having the top credit rating during expansion periods.

4.5. Firm fixed effects estimates.

In this section we present firm fixed effects regressions to estimate the intention to treat effects. We want to be sure that the main results are not driven by methodological choices underlying the use of multidimensional regression discontinuity design. Results are shown in Table 9. Because in firm fixed effects estimates we exploit within firm variation, i.e., firms that become eligible/ineligible to the program, we use the full sample period not to limit this variation. All variables are contemporaneous to the award. The regressions include year dummies as well as firm-level covariates: size, age, leverage and profitability. In column 1 we show the result for financing costs estimated using data from financial statements. We find a negative and significant coefficient at -0.2 percentage points, which is of smaller magnitude than the RDD estimate. In column (2) we show the impact on bank loans growth, which increases by 7.2 percentage points. This result is also consistent with the RD estimate.

In columns (3)-(4) we estimate the impact on investment. While we do not find an effect on CAPEX, we find a positive effect on working capital investment of 1.8 percentage points.

Last, columns (5) and (6) show the results for growth in revenue and exports. We find a positive impact on eligible firms of 1.1 percentage points on sales growth and 2.7 percentage points on export growth.

These fixed effects estimates are overall consistent with the results obtained with the RDD.

4.6. RD Graphs and Robustness

In this section we provide some visual representation of the RD estimates using a fixed bandwidth across all outcomes of -0.25 to 0.25 as well as an order 3 polynomial. Figure 2 shows these results. Consistent with the previous estimates we find a negative effect on interest rate of new loans of approximately 0.03 percentage points. The impact on new loans is also consistent with previous estimates. There is a clear increase in the growth of loans above the eligibility cut-off.

As for investment, we find a positive effect on CAPEX of approximately 7 percentage points, as well as a positive effect on working capital investment. The impact on total revenue and exports is also positive, which is consistent with previous estimates.

5. Conclusion

Small firms often face challenges in access to finance that may limit their ability to grow. This is especially true during crisis periods, when information asymmetries and risk aversion may be more acute. This paper shows how a program targeted at good small firms allows them to borrow more and at lower rates than similar firms that were, by a small margin, not eligible to be part of the program.

The rich design of the program allows for the use of a multidimensional regression discontinuity design. In this setting, we are able to establish a causal effect between access to finance through the program and firm-level outcomes, which has so far proven hard to be achieved in the literature. The unique features of this certification program allows for a quasi-experimental design that elicits the causal effects of this intervention.

The program design also permits a clean measurement the effects of credit certification for small firms. The importance of ratings is well established for large and listed companies but not for private firms, for which it can potentially be more important given higher frictions for these companies when it comes to access external financing.

The detailed and universal firm-level data is very rich, which allows a very thorough and detailed analysis of the channels through which the relation of credit constraints can impact growth. We find that the program of certification has a positive impact on firm growth and performance. The real economic effects are also meaningful. Certified firms show more investing and hire more workers as a result of this program. These effects are more pronounced during the crisis.

These results have relevant policy implications, as they show that government programs promoting access to credit during economic downturns can successfully help firms overcome financial constraints. Similar programs were implemented around the world at the onset of the COVID-19 pandemic. However, most of these programs are not targeted. While this was not a

problem if the shock was short-lived, the lasting and uncertain effects of the pandemic call for more targeted approaches to support small firms. This is important to avoid large fiscal costs, as well as to avoid the proliferation of zombie firms and promote an efficient reallocation of resources in the economy. Our paper offers causal evidence that supporting the best quality small firms during a financial crisis has positive and lasting effects on investment and growth.

References

- Aghion, Philippe, Bergeaud, Antonin, Cette, Gilbert, Lecat, Remy, and Maghin, Helene. 2019. The Inverted-U Relationship between Credit Access and Productivity Growth. *Economica*, 86, 1-31.
- Anginer, Deniz, de la Torre, Augusto, and Ize, Alain. 2014. Risk-bearing by the state: When is it good public policy? *Journal of Financial Stability*, 10, 76-86.
- Arping, Stefan, Lóránth, Gyöngyi, and Morrison, Alan D. 2010. Public initiatives to support entrepreneurs: Credit guarantees versus co-funding. *Journal of Financial Stability*, 6(1), 26-35.
- Bach, Laurent. 2014. Are Small Businesses Worthy of Financial Aid? Evidence from a French Targeted Credit Program. *Review of Finance*, 18(3), 877–919.
- Bartoli, Francesca, Ferri, Giovanni, Murro, Pierluigi, and Rotondi, Zen. 2013. Bank–firm relations and the role of Mutual Guarantee Institutions at the peak of the crisis. *Journal of Financial Stability*, 9(1), 90-104.
- Beck, Thorsten. 2014. Finance, growth, and stability: Lessons from the crisis. *Journal of Financial Stability*, 10, 1-6.
- Beck, Thorsten and Demirguç-Kunt, Asli. 2006. Small and medium-size enterprises: Access to finance as a growth constraint. *Journal of Banking and Finance*, 30(11), 2931-2943.
- Beck, Thorsten, Demirgüç-Kunt, Asli, Martinez Peria, Maria Soledad. 2011. Bank Financing for SMEs: Evidence across countries and bank ownership types. *Journal of Financial Services Research*, 39, 35-54.
- Beck, Thorsten, Klapper, Leora F., and Mendoza, Juan Carlos. 2008. The Typology of Partial Credit Guarantee Funds Around The World, World Bank Policy Research Working Papers.
- Berger, Allen N. and Udell, Gregor F. 2006. A more complete conceptual framework for SME finance. *Journal of Banking and Finance*, 30(11), 2945-2966.
- Blasio, Guido de, Mitri, Stefania De, D'Ignazio, Alessio, Russo, Paolo Finaldi, and Stoppani, Lavinia. 2018. Public guarantees to SME borrowing. A RDD evaluation. *Journal of Banking and Finance*, 96, 73-86.

- Bonfim, Diana, Dai, Qinglei, and Franco, Fracesco. 2018. The number of bank relationships and borrowing costs: The role of information asymmetries. *Journal of Empirical Finance*, 46, 191-209.
- Boot, Arnoud W. A., Milbourne, Todd T., and Schmeits, A. 2006. Credit ratings as coordination mechanisms. *Review of Financial Studies*, 19(1), 81-118.
- Brown, J.D. and Earle, J.S. 2017. Finance and Growth at the Firm Level: Evidence from SBA Loans. *Journal of Finance*, 72, 1039-1080.
- Burgstahler, D. and Dichev, I. 1997. Earnings management to avoid earnings decreases and losses.
- *Journal of Accounting and Economics*, 24(1), 99-126.
- Calonico, S., M. D. Cattaneo and R. Titiunik. 2014a. Robust Nonparametric Confidence Intervals for Regression-Discontinuity Designs. *Econometrica*, 82(6), 2295-2326
- Calonico, S., M. D. Cattaneo and R. Titiunik. 2014b. Robust Data-Driven Inference in the Regression-Discontinuity Design. *Stata Journal*, 14(4), 909-946.
- Calonico, S., M. D. Cattaneo, M. H. Farrell, and R. Titiunik. 2017. rdrobust: Software for Regression Discontinuity Designs. *Stata Journal*, 17(2), 372-404.
- Campello, Murillo, Graham, John R., and Harvey, Campbell R. 2010. The real effects of financial constraints: Evidence from a financial crisis. *Journal of Financial Economics*, 97(3), 470-487.
- Carbó-Valverde, Santiago, Rodríguez-Fernández, Francisco, and Udell, Gregory F. 2009. Bank Market Power and SME Financing Constraints. *Review of Finance*, 13(2), 309-340.
- Carbó-Valverde, Santiago, Rodríguez-Fernández, Francisco, and Udell, Gregory F. 2016. Trade Credit, the Financial Crisis, and SME Access to Finance. *Journal of Money, Credit and Banking*, 48(1), 113-143.
- Carpenter, Robert E. and Petersen, Bruce C. 2002. Is the Growth of Small Firms Constrained by Internal Finance? *Review of Economics and Statistics*, 84(2), 298-309.
- Cressy, Robert and Olofsson, Christer. 1997. European SME Financing: An Overview. *Small Business Economics*, 9(2), pages 87-96.

- Columba, Francesco, Gambacorta, Leonardo, and Mistrulli, Paolo Emilio. 2010. Mutual guarantee institutions and small business finance. *Journal of Financial Stability*, 6(1), 45-54.
- D'Ignazio, Alessio and Menon, Carlo. 2013. The Causal Effect of Credit Guarantees for SMEs: Evidence from Italy. Bank of Italy Temi di Discussione No. 900.
- DeYoung, R., Gron, A., Torna, G., and Winton, A. 2015. Risk Overhang and Loan Portfolio Decisions: Small Business Loan Supply before and during the Financial Crisis. *Journal of Finance*, 70, 2451-2488.
- Ferrando, Annalisa, Popov, Alexander, and Udell, Gregory F. 2015. Sovereign stress, unconventional monetary policy, and SME access to finance. ECB working paper no 1820
- Ferreira, Daniel, Ferreira, Miguel, and Mariano, Beatriz. 2018. Creditor Control Rights and Board Independence. *Journal of Finance*, 63, 2085–2121.
- Frölich, Markus and Huber, Martin. 2019. Including Covariates in the Regression Discontinuity Design. *Journal of Business and Economic Statistics*, 37(4), 736-748.
- Gonzalez-Uribe, Juanita and Paravisini, Daniel. 2019. How Sensitive is Young Firm Investment to the Cost of Outside Equity? Evidence from a UK Tax Relief. Working paper, London School of Economics.
- Gonzalez-Uribe, Juanita and Wang, Su. 2020. The Effects of Small-Firm Loan Guarantees in the UK: Insights for the COVID-19 Pandemic Crisis. Working paper, London School of Economics.
- Hernández-Cánovas, Ginés and Martínez-Solano, Pedro. 2010. Relationship lending and SME financing in the continental European bank-based system. *Small Business Economics*, 34(4), 465-482.
- Imbens, Guido and Kalyanaraman, Karthik. 2012. Optimal Bandwidth Choice for the Regression Discontinuity Estimator. *Review of Economic Studies*, 79(3), 933–959.
- Kisgen, Darren J. 2006. Credit ratings and capital structure. Journal of Finance, 61(3), 1009-1550.
- Kisgen, Darren J. and Strahan, Philip E. 2010. Do Regulations Based on Credit Ratings Affect a Firm's Cost of Capital? *Review of Financial Studies*, 23(12), 4324-4347.

- Lelarge, Claire, Sraer, David, and Thesmar, David. 2010. Entrepreneurship and Credit Constraints: Evidence from a French Loan Guarantee Program *in* Lerner, Josh and Schoar, Antoinette, International Differences in Entrepreneurship, University of Chicago Press.
- Pei, Zhuan, Card, David, Lee, David, and Weber, Andrea. 2018. Local Polynomial Order in Regression Discontinuity Designs. Working paper, Cornell University
- Petersen, M. and Rajan, R. 1995. The Effect of Credit Market Competition on Lending Relationships. *Quarterly Journal of Economics*, 110(2), 407–443.
- Ryan, Robert M., O'Toole, Conor M., and McCann, Fergal. 2014. Does bank market power affect SME financing constraints? *Journal of Banking and Finance*, 49, 495-505.
- Sufi, Amir. 2009. The real effects of debt certification: Evidence from the introduction of bank loan ratings. *Review of Financial Studies*, 22(4), 1659-1691.
- Tang, Tony T. 2009. Information asymmetry and firms's credit market access: Evidence from Moody's credit rating format refinement. *Journal of Financial Economics*, 93(2), 325-351.
- Udell, Gregory F. 2015. SME Access to Intermediated Credit: What Do We Know, and What Don't We Know? Working paper, Reserve Bank of Australia.

Table 1: Summary statistics

	Mean	Std. Dev.	Min	Median	Max	Obs
Panel A: Criteria						
Assets (000)	4,407	52,200	1	1,073	9,230,000	427,493
Employees	29	32	6	17	249	427,493
Sales (000)	3,160	7,081	10	1,118	409,000	427,493
Net income (000)	95	3,947	-462,000	13	959,000	427,493
Ebitda (000)	290	4,081	-317,000	72	962,000	427,493
Net income-to-assets	0.02	0.08	-0.21	0.02	0.17	427,493
Net income-to-equity	0.11	0.28	-0.54	0.07	0.83	427,493
Equity-to-assets	0.32	0.26	-0.23	0.31	0.79	427,493
Ebitda-to-assets	0.08	0.10	-0.14	0.08	0.29	427,493
Ebitda-to-sales	0.07	0.10	-0.16	0.07	0.28	427,493
Debt-to-ebitda	2.92	4.68	-5.72	1.80	15.17	361,340
Sales growth	0.07	0.28	-0.37	0.03	0.84	427,493
Ebitda growth	0.52	338.62	-17,452.62	-0.06	208,339.10	427,477
Panel B: Debt and cost of debt.	·					
Bank financing costs	0.32	0.64	0.00	0.06	2.59	278,405
Δ Log(Bank loans)	0.06	0.55	-0.99	-0.01	1.40	301,086
Short term debt (%)	0.52	0.39	0.00	0.48	1.00	347,397
Interest rate (new loans)	0.08	0.06	0.02	0.06	0.24	160,177
Loan maturity	4.70	1.42	2.20	4.55	7.36	122,464
Number of bank relationships	3.68	2.63	1.00	3.00	26.00	354,113
Collateral (0/1)	0.78	0.41	0.00	1.00	1.00	160,177
Panel C: Other firm variables	,					
Capex-to-assets	0.10	0.21	0.00	0.00	0.74	413,072
Δ Log(Working Capital)	0.10	0.41	-0.70	0.05	1.08	210,208
Δ Log(Employees)	0.01	0.14	-0.27	0.00	0.32	380,247
Δ Log(Wages)	0.02	0.13	-0.24	0.02	0.29	380,245
Δ Log(Sales)	0.01	0.22	-0.48	0.02	0.45	380,298
Δ Log(Costs)	0.02	0.22	-0.45	0.02	0.46	377,981
$\Delta \text{ Log(Exports)}$	0.04	0.84	-1.79	0.04	1.90	153,190

Note: This table shows the summary statistics for the full sample of firms. EBITDA is defined as earnings before interest, taxes, depreciations, and amortization. Bank financing costs are defined as total interest expense during year t divided by average total bank loans in years t-t1 and t1. Short-term debt is reported as percentage of total debt. Interest rate on new loans, loan maturity and collateral are computed with information available only from mid-2012 onwards.

Table 2: Certification awards per year

Year	Leader	Leader eligible, non-rated	Excellence	Excellence eligible, non-rated	Non- eligible	Take-up	Obs.
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
2008	2,612	12,889	0	0	24,599	16.9%	40,100
2009	4,443	18,241	324	2,619	12,980	18.6%	38,607
2010	4,992	17,090	932	1,552	13,394	24.1%	37,960
2011	4,768	7,948	1,238	1,490	20,771	38.9%	36,215
2012	6,201	5,488	1,091	924	19,413	53.2%	33,117
2013	5,276	2,588	913	486	22,273	66.8%	31,536
2014	5,422	3,428	1,562	788	20,547	62.4%	31,747
2015	5,080	3,493	1,277	1,198	21,943	57.5%	32,991
2016	4,615	2,545	1,471	341	25,098	67.8%	34,070
2017	4,489	2,614	1,459	434	26,179	66.1%	35,175
2018	4,819	3,121	1,766	578	25,653	64.0%	35,937
Obs	52,717	79,445	12,033	10,410	232,850	41.9%	427,493

Note: This table shows the number of awards of "Leader" and "Excellence" certifications in each year of the program. It also shows the number of firms in each year that meet the criterion for "Leader" certification and are not certified ("Leader eligible, non-rated"), and the number of firms in each year that meet the criterion for "Excellence" certification and are not certified ("Excellence eligible, non-rated"). All firms not included in these four categories are classified as non-eligible. Take up corresponds to the percentage of eligible firms (columns 1 to 4) that are certified (columns 1 and 3).

Table 3: Bank financing costs and bank loans

Intention to treat (ITT) – Regression discontinuity regressions

	Baı	nk financing c	osts	Δ	Log(Bank lo	ans)	Shor	Short-term debt (%)		
	T	T+1	T+2	Т	T+1	T+2	Т	T+1	T+2	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Panel A:	Period 2008-	2013								
Eligible	-0.026***	-0.047***	-0.027***	0.083***	0.079***	-0.029***	0.018***	-0.003	0.037***	
	[-3.499]	[-6.122]	[-3.120]	[8.056]	[9.704]	[-2.781]	[3.233]	[-0.593]	[6.738]	
Observ.	162,869	141,950	125,708	139,814	128,095	118,320	146,412	134,559	126,892	
Bandw.	0.202	0.212	0.195	0.084	0.173	0.108	0.169	0.279	0.197	
Panel .	B: Period 201	4-2018								
Eligible	0.005	-0.055***	-0.047***	0.020*	0.027**	0.026*	0.017*	-0.001	0.009	
	[0.510]	[-3.671]	[-2.919]	[1.769]	[2.205]	[1.773]	[1.845]	[-0.144]	[0.899]	
Observ.	85,789	59,067	36,688	109,104	78,628	53,955	110,614	80,328	55,887	
Bandw.	0.0937	0.0664	0.0783	0.0640	0.0733	0.0728	0.0436	0.0515	0.0695	

Note: This table uses financial statements data to report intention to treat estimates for the impact of firm certification as Leader/Excellence on the cost of debt financing (columns (1)-(3)), growth in bank loans (columns (4)-(6)) and proportion of short-term debt on total debt (columns (7)-(9)). Bank financing costs are defined as total interest expense during year t divided by average total bank loans in years t-t1 and t2. Panel A reports results for the period 2008-2013 and Panel B reports results for the period 2014-2018. All regressions include a polynomial order of 2. Columns (1), (4), and (7) show estimates where the dependent variable is observed at the year of award, columns (2), (5), and (8) one year after the award and columns (3), (6), and (9), two years after the award.

Table 4
Impact on other financing conditions (loan flow data)
Intention to treat (ITT) – Regression discontinuity regressions

	Intere	est rate (new	loans)	I	oan maturity	7	Number	per of bank relationships			Collateral (0/1)	
	Т	T+1	T+2	Т	T+1	T+2	T	T+1	T+2	T	T+1	T+2
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Panel A: Period 2	012-2013											
Eligible	-0.020***	-0.021***	-0.018***	-0.333***	-0.202***	-0.015	0.878***	0.946***	0.961***	0.099***	0.096***	0.077***
	[-8.818]	[-10.849]	[-15.435]	[-4.912]	[-3.897]	[-0.438]	[22.048]	[21.080]	[19.853]	[6.952]	[11.723]	[0.570]
Observations	36,192	51.04	65.804	26,835	36,192	87,577	166,240	36,192	26,835	36,192	51,040	65,804
Bandwidth	0.067	0.058	0.188	0.061	0.063	0.147	0.0917	0.0882	0.0848	0.09	0.087	0.197
Panel B: Period 2	014-2018											
Eligible	0.001	-0.001	-0.004***	-0.265***	-0.179***	-0.153**	0.953***	1.046***	1.054***	0.051***	0.043***	0.061***
	[0.570]	[-0.998]	[-2.705]	[-4.867]	[-3.145]	[-2.506]	[11.723]	[11.839]	[11.399]	[4.381]	[3.805]	[4.356]
Observations	87,223	63.772	65.804	68,416	50,179	34,272	87,577	60,427	37,979	87,223	63,772	44,095
Bandwidth	0.0476	0.038	0.053	0.0313	0.0370	0.0476	0.029	0.0326	0.0458	0.09	0.087	0.197

Note: This table shows intention to treat estimates for the impact of firm certification as Leader/Excellence on loan interest rates (columns (1)-(3)), loan maturity (columns (4)-(6), number of bank relationships (columns (7)-(9)), and collateral (columns (10)-(12)). Interest rate on new loans, loan maturity and collateral are computed with information available only from mid-2012 onwards. Panel A reports results for the period 2008-2013 and Panel B reports results for the period 2014-2018. All regressions include a polynomial order of 2. Columns (1), (4), (7), and (10) show estimates where the dependent variable is observed at the year of award, columns (2), (5), (8), and (11) one year after the award and columns (3), (6), (9), and (12) two years after the award.

Table 5

Fixed capital and working capital investment

Intention to treat (ITT) – Regression discontinuity regressions

		100 110 111)	110810001011 0100					
		CAPEX		Δ Log(Working Capital)				
	T	T+1	T+2	T	T+1	T+2		
	(1)	(2)	(3)	(4)	(5)	(6)		
Panel A: Period 2	2008-2013							
Eligible	0.059***	-0.035***	0.006***	0.053***	0.072***	-0.046***		
	[19.620]	[-12.419]	[10.296]	[5.546]	[10.053]	[-5.794]		
Observations	180,173	157,183	142,061	83,357	88,287	92,495		
Bandwidth	0.089	0.072	0.150	0.066	0.139	0.134		
Panel B: Period 2	2014-2018							
Eligible	0.003***	0.004***	0.005***	0.018**	0.008	0.015*		
	[3.501]	[4.608]	[4.970]	[2.361]	[1.264]	[1.893]		
Observations	119,707	88,415	62,581	95,335	69,296	47,858		
Bandwidth	0.0532	0.0693	0.081	0.052	0.085	0.079		

Note: This table shows intention to treat estimates for the impact of firm certification as Leader/Excellence on CAPEX (columns (1)-(3)) and growth in working capital (columns (4)-(6)). Capex is defined as capital expenditure over total assets. Panel A reports results for the period 2008-2013 and Panel B reports results for the period 2014-2018. All regressions include a polynomial order of 2. Columns (1) and (4) show estimates where the dependent variable is observed at the year of award, columns (2) and (5) one year after the award and columns (3) and (6) two years after the award.

Table 6
Employment and wages
Intention to treat (ITT) – Regression discontinuity regressions

		Δ Log(employ	rees)		\(\Delta\) Log(Wage:	s)
		T+1	T+2	<u>_</u>	T+1	T+2
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: Period 200	08-2013					
Eligible	0.004**	0.010***	-0.008***	0.003*	0.003**	-0.003*
-	[2.444]	[6.053]	[-4.501]	[1.691]	[1.999]	[-1.895]
Observations	180,180	157,183	139,855	180,178	157,183	139,855
Bandwidth	0.201	0.243	0.243	0.054	0.058	0.065
Panel B: Period 201	4-2018					
Eligible	0.005**	0.007**	0.004	-0.003	-0.002	-0.001
C	[1.963]	[2.566]	[1.379]	[-1.267]	[-1.020]	[-0.573]
Observations	119,707	88,415	61,946	119,707	88,415	61,946
Bandwidth	0.055	0.076	0.057	0.042	0.046	0.051

Note: This table shows intention to treat estimates for the impact of firm certification as Leader/Excellence on employment growth (columns (1)-(3)) and wage growth (columns (4)-(6)). Panel A reports results for the period 2008-2013 and Panel B reports results for the period 2014-2018. All regressions include a polynomial order of 2. Columns (1) and (4) show estimates where the dependent variable is observed at the year of award, columns (2) and (5) one year after the award and columns (3) and (6) two years after the award.

Table 7
Growth
Intention to treat (ITT) – Regression discontinuity regressions

					, ,	•	•	_				
		Δ Log(Sal	es)		Δ Log(Cos	ts)		∆ Log(Expo	rts)		Ebitda	
	T (1)	T+1 (2)	T+2 (3)	T (4)	T+1 (5)	T+2 (6)	T (7)	T+1 (8)	T+2 (9)	T (10)	T+1 (11)	T+2 (12)
Panel A: Period	2008-2013											
Eligible	0.001	0.006**	-0.020***	-0.001	0.009***	-0.019***	-0.004	0.051***	0.050***	0.007***	0.005***	-0.002
	[0.495]	[2.216]	[-5.789]	[-0.488]	[3.441]	[-5.717]	[-0.262]	[3.237]	[2.961]	[4.464]	[3.308]	[-1.585]
Observations	157,183	139,855	179,193	156,257	138,957	138,957	66,401	62,294	59,181	180,180	157,183	142,061
Bandwidth	0.252	0.264	0.120	0.201	0.223	0.139	0.300	0.344	0.297	0.086	0.144	0.191
Panel B: Period	2014-2018											
Eligible	0.000	0.000	-0.014***	-0.006*	-0.002	-0.013***	0.024	0.017	-0.071**	-0.009***	-0.004*	-0.005*
C	[0.109]	[0.029]	[-2.968]	[-1.821]	[-0.509]	[-2.794]	[1.297]	[0.720]	[-2.406]	[-3.839]	[-1.647]	[-1.743]
Observations	119,707	88,415	61,953	118,770	87,691	61,429	56,328	42,224	29,771	119,707	88,415	62,581
Bandwidth	0.083	0.061	0.074	0.074	0.087	0.06	0.081	0.072	0.077	0.029	0.034	0.036

Note: This table shows intention to treat estimates for the impact of firm certification as Leader/Excellence on sales growth (columns (1)-(3)), cost growth (columns (4)-(6)), exports growth (columns (7)-(9)), and Ebitda (columns (10)-(12)). Panel A reports results for the period 2014-2018. All regressions include a polynomial order of 2. Columns (1), (4), (7), and (10) show estimates where the dependent variable is observed at the year of award, columns (2), (5), (8), and (11) one year after the award and columns (3), (6), (9), and (12) two years after the award.

Table 8
Credit certification
Average Treatment Effect on the Treated- Regression discontinuity regressions

			Fin	ancing					Gro	wth		
		nancing osts	Δ Log(Bank loans)			Short-term debt (%)		Δ Log(Sales)		Δ Log(Exports)		ΓDA
	T	T+1	T	T+1	T	T+1	T	T+1	T	T+1	T	T+1
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Panel A: Period 20	009-2013											
Excellence	-0.026	-0.014	-0.081**	-0.090***	0.01	0.003	0.009	-0.014	0.149*	0.077	0.006	0.001
	[-1.023]	[-0.431]	[-2.015]	[-2.704]	[0.418]	[0.116]	[0.784]	[-1.269]	[1.819]	[1.185]	[1.069]	[0.091]
Observations	23,416	22,374	22,128	21,614	22,691	22,035	23,906	22,935	14,227	14,352	23,906	22,935
Bandwidth	0.285	0.208	0.221	0.282	0.232	0.216	0.280	0.277	0.157	0.245	0.151	0.148
Panel B: Period 2	014-2018											
Excellence	-0.002	0.014	0.010	0.003	-0.030***	-0.017*	0.023***	0.015***	-0.011	0.059**	0.024***	0.021***
	[-0.212]	[1.163]	[0.751]	[0.230]	[-3.074]	[-1.885]	[5.171]	[2.955]	[-0.589]	[2.546]	[12.703]	[10.036]
Observations	45,809	39,164	48,988	42,801	49,796	43,532	52,321	45,676	32,663	29,235	52,321	45,676
Bandwidth	0.274	0.314	0.320	0.315	0.152	0.33	0.108	0.125	0.300	0.215	0.114	0.166

Note: This table shows regression discontinuity estimates for the differential impact of firm certification as Excellence when compared to Leader on bank financing costs (columns (1)-(2)), loan growth (columns (3)-(4)), short-term debt (columns (5)-(6)), sales growth (columns (7)-(8)), exports growth (columns (9)-(10)), and EBITDA (columns (11)-(12)). Bank financing costs are defined as total interest expense during year *t* divided by average total bank loans in years *t-1* and *t*. Panel A reports results for the period 2008-2013 and Panel B reports results for the period 2014-2018. All regressions include a polynomial order of 2. Columns (1), (3), (5), (7), (9), and (11) show estimates where the dependent variable is observed at the year of award, columns (2), (4), (6), (8), (10), and (12) one year after the award.

Table 9
Financing, Investment and Growth
Intention to treat - Firm fixed effects regressions

	Financ	ing	Inv	estment	Growth		
	Bank financing costs (1)	ΔLog(Bank loans) (2)	(3)	ΔLog(Workin g Capital) (4)	$\frac{\Delta}{\text{Log(Sales)}}$ (5)	$\frac{\Delta}{\text{Log(Exports)}}$ (6)	
Panel A: Period 2008-	2018						
Eligible	-0.002*** [-6.222]	0.072*** [24.249]	-0.000 [-0.894]	0.018*** [7.927]	0.011*** [10.892]	0.027*** [4.247]	
Observations R-squared	144,233 0.143	275,567 0.087	341,260 0.693	201,344 0.219	341,268 0.113	140,673 0.019	

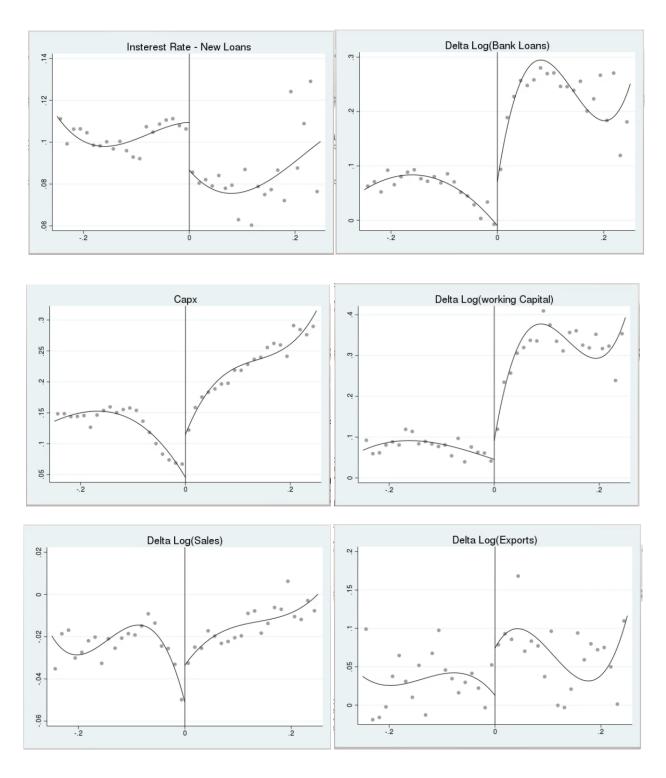

Note: This table shows firm fixed effects estimates for the effect of being eligible to the program on bank financing costs (columns (1)), loan growth (columns (2)), capex(column (3)), working capital growth (column (4), sales growth (columns (5), and exports growth (columns (6). Bank financing costs are defined as total interest expense during year t divided by average total bank loans in years t-1 and t. All regressions include year dummies and the following covariates: firm size, firm leverage, profitability and firm age.

Figure 1
Program Criteria

PME	Líder 2012	PME Excelência 2012
	a) SME certified (online application) b) 3 complete financial years (2009, 2010, 2011)	
Soft criteria	c) top 3 ratings with the sponsor bank - standardoized by Sistema Nacional de Garantia Mútua (ratings AAA, AA e	
	A). d) Regular situation with Tax authorities, social security, IAPMEI/ TurismodePortugal	
	1.Net Income > 0 2. Positive EBITDA growth*	1. Top 2 ratings in Sistema de Garantia Mútua (AAA e AA) in 2011
		2. meet 4 out of the following criteria: a) to d)
Financials criteria	OR Positive sales growth	a) Equity/Assets>= 35% (30%) b) Dales growth >= 5% from 2010 to
	3.Equity/Assets>=20% 4.Sales>= 500 000 euros in 2011	2011 (-5%) c) Net income/Equity>=10% (8%)
	5. Number of employees >= 5	d) Net income/Assets >= 3%
		Relaxed expost: 1 out of 3 criteria a),
		b), c) can be relaxed to above levels in red
PME	Líder 2013	PME Excelência 2013
	a) SME certified (online application)	
	b) 3 complete financial years (2010, 2011, 2012)	
	c) top 3 ratings with the sponsor bank	
Soft criteria	- standardoized by Sistema Nacional de Garantia Mútua (ratings AAA, AA e	
	A).	
	d) Regular situation with Tax authorities, social security, IAPMEI/ TurismodePortugal	
	1.Net Income > 0	1. Top 2 ratings in Sistema de Garantia
	Or Positive EBITDA growth, with	Mútua (AAA e AA) in 2011
	positive ebitda in two consecutive years (2011 2012)	2. meet 4 out of the following criteria: a) to d)
	OR Positive sales growth in two	
Financials criteria	consecutive years (2011 and 2012)	a) Equity/Assets $= 35\% (30\%)$ b) Dales growth >= 5% from 2010 to
	3.Equity/Assets>=25% 4.Sales>= 750 000 euros in 2011	2011 (-5%)
	4. Sales>= 750 000 euros in 2011 5. Number of employees >= 10	c) Net income/Equity>=10% (8%) d) Net income/Assets >= 3%
	20	Relaxed expost: 1 out of 3 criteria a), b), c) can be relaxed to above levels in red

Note: This figure shows the criteria to be eligible to the program as Leader firm and Excellence firm in 2012 and 2013.

Figure 2. Regression Discountinuity Plots

Note: This figure shows RD plots for firm-level outcomes. The bandwidth is fixed at -0.25 to +0.25 for all variables. The order of the polynomial used is 3.

Appendix

Table A1. Summary Statistics by Firm Category

	Leader	Leader eligible	Excellence	Excellence eligible	Non- eligible
D 11 01					
Panel A: Criteria	4 5 42 207	2 227 190	4716204	2 507 112	£ £00 020
Assets	4,543,207 39.38	3,337,189 31.92	4,716,284 42.85	3,507,112 34.64	5,588,838 28.24
Employees Sales	39.38 4,966,029	31.92	5,525,464	4,253,886	3,031,093
Net income	149,075	167,720	408,126	386,910	57,182
Ebitda	399,754.90	375,836.20	714,560.40	649,569.70	264,305.70
Net income-to-assets	0.03	0.04	0.08	0.08	0.00
Net income-to-equity	0.03	0.09	0.14	0.18	0.09
Leverage	0.46	0.44	0.57	0.55	0.25
Ebitda-to-assets	0.09	0.11	0.15	0.17	0.06
Ebitda-to-sales	0.09	0.10	0.13	0.13	0.05
Debt-to-ebitda	3.34	2.50	1.65	1.19	3.23
Sales growth	0.04	0.01	0.05	0.01	0.03
Ebitda growth	0.07	-0.05	0.06	-0.10	0.78
Panel B: Debt and cost of de	ebt:				
Bank financing costs	0.20	0.29	0.21	0.2	5 0.36
Δ Log(Bank loans)	0.05	0.13	0.03	0.1	2 0.01
Short term debt (%)	0.45	0.56	0.40	0.5	4 0.49
Interest rate (new loans)	0.06	0.07	0.05	0.0	7 0.09
Loan maturity	4.59	4.96	5.05	5.0	4 4.58
Number of bank relationships	s 5.17	3.55	4.04	2.9	7 3.70
Collateral (0/1)	0.87	0.75	0.80	0.7	1 0.79
Panel C: Other firm variabl	'es				
Capex-to-assets	0.04	0.17	0.03	0.1	1 0.07
Δ Log(Working Capital)	0.09	0.17	0.13	0.1	
Δ Log(employees)	0.02	0.01	0.04	0.0	
$\Delta \log(\text{Wages})$	0.02	0.02	0.02	0.0	
$\Delta \operatorname{Log}(\operatorname{Sales})$	0.01	-0.02	0.03	-0.0	
$\Delta \operatorname{Log}(\operatorname{Costs})$	0.02	0.00	0.04	0.0	
$\Delta \log(\text{Exports})$	0.05	0.02	0.08	0.0	

Note: This table shows the summary statistics for subsamples of firms. Besides Leader and Excellence firms, the table also reports summary statistics for firms that meet the criterion for "Leader" certification and are not certified ("Leader eligible"), and firms that meet the criterion for "Excellence" certification and are not certified ("Excellence eligible"). All firms not included in these four categories are classified as non-eligible. EBITDA is defined as earnings before interest, taxes, depreciations, and amortization. Bank

financing costs are defined as total interest expense during year t divided by average total bank loans in years t-t and t. Short-term debt is reported as percentage of total debt. Interest rate on new loans, loan maturity and collateral are computed with information available only from mid-2012 onwards.

Figure A1. First-time certified firms

Note: This figure shows the number of firms certified as Leader/Excellence