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Abstract 

 
In the field of Housing Economics, filtering is the process by which properties, as they age, depreciate in 
quality and hence price and thus tend to be purchased by lower-income households.  This is the primary 
mechanism by which competitive markets supply low-income housing. While at the national level 
filtering is an important long-term source of lower-income housing, this research shows that filtering 
rates for owner-occupied properties vary considerably both across and within metropolitan statistical 
areas (MSAs). Notably, in some markets, properties “filter up” to higher-income households. This paper 
contributes to our understanding of filtering by demonstrating the heterogeneity of filtering rates.  The 
analysis finds strong geographic and temporal variation in filtering rates.  
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Introduction 

In the United States, low-income housing is primarily created through filtering. New homes are largely 

purchased by higher-income households, but over time these homes depreciate and are purchased by 

lower-income households. This research uses a repeat income model, building on Rosenthal (2014), to 

estimate filtering rates at geographically and temporally disaggregated levels for owner-occupied 

properties. It shows that filtering rates for owner-occupied, single-family housing vary widely across and 

within metropolitan statistical areas (MSA) and across time. 

In this paper, properties are said to filter down by 1% if for each new household that moves into the 

property, their real income is lower by 1% per year on average than the prior owner.  Conversely, 

properties are said to filter up by 1% if the new household’s real income increases by 1% per year on 

average.  Rosenthal (2014) found that as owner-occupied properties age and new households move into 

these properties, the average real household income declines by about 0.7% per year (about 30% over 

50 years). The results of this paper show a wide range of filtering rates, from rapid downward filtering in 

Chicago and Detroit to upward filtering in Washington, DC and Los Angeles.  After modifying the repeat-

income model by imposing a linearity assumption on filtering rates, which allows filtering rates to be 

estimated for 180 MSAs, the analysis shows that these filtering rates can range from about a 1.61% 

annual rate of downward filtering for Topeka, Kansas to a 0.71% upward filtering rate for San Francisco, 

California.1  

Economic modeling of filtering in housing markets has a long history.  Early theoretical research is 

presented in Sweeney (1974), which laid the foundation for theoretical models of filtering through 

depreciation offset by the level of maintenance. In contrast to the analytic approach of Sweeney (1974), 

Ohls (1975), in another early work, used numerical methods to solve his model and simulations to 

analyze the effect of government programs. Brueckner (1980) extended the traditional circular city 

model to allow properties to move between high-income and low-income occupants. Braid (1984) 

modified the model and mathematical techniques used by Sweeney to study the impacts of additional 

government interventions, including rent and income subsidies. Bond and Coulson (1989) considered a 

model of filtering where the income of occupants create an externality for the neighborhood. Galster 

and Rothenberg (1991) developed a model where housing markets are segmented by quality and 

household movement is endogenous to the model. Arnott and Braid (1997) further developed the 

model of Sweeney (1974) to include a more realistic maintenance function that allows properties to be 

maintained indefinitely. 

Empirical filtering research has demonstrated the importance of filtering in housing markets. Most of 

the empirical filtering literature did not examine individual units directly but looked for outcomes 

consistent with filtering.  Brueckner (1977) and Phillips (1981) used data to demonstrate factors that 

determine a Census tract’s eligibility for residential succession, such as average effective rent, and the 

property age distribution. Sands (1979) provided the transition matrix among different quality 

properties using Michigan data. Weicher and Thibodeau (1988) studied the relationship between new 

construction and change in occupancy of low-quality housing at the city level.  In rental markets, 

Weicher, Eggers, and Moumen (2016) reported that 45% of the rental units that were affordable to very 

                                                           
1 The highest estimate of upward filtering is for Midland, Texas. This result is driven by the fracking boom since 
2005 and so is not representative of filtering in this market over the sample period. 
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low-income renters in the United States in 2013 had filtered down from owner-occupied or higher rent 

categories in 1985. Recent work from Harvard’s Joint Center for Housing Studies (2015) confirmed that 

filtering has been the primary source for additions to the affordable rental stock.  Rosenthal (2014) 

provided the first direct empirical evidence of filtering by estimating repeat-income models based on 

repeat purchases of the same house by different households, but these estimates were limited to 

national and Census region levels because of sample limitations. 

This paper builds upon Rosenthal (2014) by extending the repeat income model to MSA-level estimates 

and the structural model to various sub samples. It explores the differences in filtering rates for owner-

occupied properties across MSAs by applying the repeat income model detailed in Rosenthal (2014) as 

well as a simplified linear model. This paper estimates the structural model, in which filtering rates are a 

function of depreciation and house price growth, on our data and finds qualitatively similar results to 

those in Rosenthal (2014). These structural model estimates are stable even after stratifying the sample 

by housing supply elasticity,2 as in Saiz (2010), and when stratified by period, except for recent periods 

in which the effects of property age are greatly reduced. An implication of this structural model is that 

the heterogeneity of house price appreciation across MSAs will translate to similar heterogeneity of 

filtering rates across MSAs. 

This paper also examines differential filtering rates within markets, specifically looking at variation in 

filtering rates within MSAs.  A non-parametric analysis shows that filtering rates are far from uniform 

within MSAs. Most of the MSAs examined contain regions with both positive and negative filtering rates.  

The paper finds that the variability within MSAs is substantially larger than the variability across MSAs. 

Such heterogeneity within an MSA implies that even in markets with average upward filtering rates, 

some areas are creating affordable supply through filtering.   

The variability of filtering rates has implications for housing policies. In markets with substantial 

downward filtering rates, filtering will likely be a robust source of supply for low-income housing.  In 

contrast, markets with near-zero filtering rates or in which properties filter up, are likely to experience 

shortages of affordable properties without the construction of new homes for low income occupants.  

In our sample, MSAs with elastic housing supply have faster downward filtering than the national 

average whereas markets with inelastic housing supply have upwards filtering on average.3 Based on our 

estimated structural model most of this difference can be explained by the higher house price growth on 

average in inelastic markets. Thus, to the extent that the barriers to new supply are caused by restrictive 

land use and zoning regulations—such as limiting construction to single-family properties, imposing 

building height limits, requiring minimum lot sizes, or subjecting development to discretionary approval 

processes—then perhaps relaxing these restrictions would be an effective strategy for increasing 

affordable housing.4  

                                                           
2 Supply elasticity measures how responsive supply is to prices: formally, it captures the percentage change in 
supply in response to a percentage change in price. 
3 Using supply elasticity estimates from Saiz (2010), MSAs with elasticity less than 1 are referred to as inelastic; 
those between 1 and 2 are deemed mid-elastic; and those greater than 2 are considered elastic. 
4 Mast (2019) has shown that the cascade of vacancies created from new luxury units also creates affordable 
housing through the chain of households moving into vacated properties. Policies that increase housing supply 
elasticity promote housing affordability by expanding the supply of market-rate housing at all levels.  A substantial 
literature examines policies that are specifically aimed at increasing low-income housing.  See, for example, 



3 
 

The heterogeneity of filtering rates within an MSA also raises policy questions. For example, the 

downward filtering rate in the Atlanta, Georgia MSA is driven by localized downward filtering to the 

south, east, and west of the city center, which offsets the upward filtering rates north of the city center. 

Such heterogeneity in within-MSA filtering rates may be related to greater income segregation in an 

MSA.5 It also suggests that filtering is creating some affordable housing within the market, although in 

many cases this housing may be distant from the city center. It should also be kept in mind that while 

the focus of this paper is on the variability of filtering rates for owner-occupied properties, a more 

complete analysis would include an examination of the variability of filtering in rental units. 

 

Data 

We estimate filtering rates using repeated sales data created from home purchase transactions for 

owner-occupied properties with mortgages funded by Freddie Mac. We include mortgages originated 

from 1993 to 2018 for 1-unit single-family, condo, and townhouse properties built after 1900. Reliable 

income data are available only for loans originated from 1993 forward. We only use sales data where 

the property address was successfully scrubbed and uniquely identified as an actual street address. This 

address exclusion removed about 1.2 million sales from the population of 16.2 million. The key variable 

of interest in this data is the qualifying monthly income of the borrowers for the mortgage, which we 

use as a measure of household income.6 To account for potential data quality issues, we exclude 

transactions with a missing purchase price or a price that exceeds $2 million, as well as those with a very 

low loan-to-value ratio of less than 20%. We also exclude transactions with very low incomes of $1000 

or less per month and loans with a front-end debt-to-income ratio greater than 1 as well as very high 

incomes of $99,999 or more per month. These exclusions reduce the sample to 14.1 million sales.  

We use tax assessor data sourced from CoreLogic© and Black Knight Data & Analytics, LLC for data on 

the year the structure was built and supplement this with the construction year reported by the seller 

from the Freddie Mac mortgage data. After incorporating these data, we had around 13.5 million sales 

for which we could identify the year built from one of these three sources. The CoreLogic tax assessor 

data also contain an effective year built, which accounts for significant additions to the properties, 

which we use in the robustness analysis. We use Consumer Price Index (CPI) data from the Bureau of 

Labor Statistics to convert nominal income to real income, with 2018 as the base year. For properties 

with multiple transactions, we create pairs of consecutive transactions and compute the change in the 

log real income between each pair. Of the 13.5 million sales, 2.53 million sales were for properties with 

two or more sales from which we can make the repeat observations. We then rule out tear-downs: that 

is, for each pair, we require the year built to differ by no more than one year across the sales, to exclude 

those cases in which the building was torn down and a new structure built. We assume that properties 

where the year built differ by a single calendar year refer to construction of the same structure and use 

                                                                                                                                                                                           
Freeman and Schuetz (2017); Malpezzi (2002); Sinai and Waldfogel (2005); Eriksen (2009); and Eriksen and 
Rosenthal (2010). 
5 For impacts of income segregation, see, for example, Chetty, Hendren, and Katz (2016).   
6 In some cases, changes in family structure—for example, through marriage or divorce—might introduce an 
additional factor to the incomes measured.  
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the older of the two reported construction years to compute the age for both sales.7 We also restrict the 

sample to observations with changes in log real income per year between -0.6 and 0.6, which imposes 

approximately a 1 percent trim at each extreme.8 This results in a sample of 1,233,888 repeat 

observations for 1,126,328 unique properties. 

We use Freddie Mac’s House Price Index (FMHPI) as an instrument in estimating structural models of 

filtering. MSAs are defined using ZIP Code data for the 2013 definitions from the Department of Housing 

and Urban Development (HUD). Each ZIP Code is assigned to the MSA containing most of the area of the 

ZIP Code.9 For housing supply elasticity at the MSA level, we use the estimates in Saiz (2010). For data on 

regulatory restrictions on housing supply, we use the Wharton Residential Land Use Regulation Index 

(see Gyourko, Saiz, and Summers 2008). The latitude and longitude coordinates for the central business 

district (CBD) of MSAs come from Holian and Kahn (2015). Data on MSA-level population and median 

income are from the U. S. Census Bureau via Moody’s Analytics. For data on improvements, we use data 

on appraisals for loans submitted for delivery to Fannie Mae and Freddie Mac since 2012 from the 

Uniform Appraisal Dataset (UAD). 

Descriptive statistics for this data set are summarized in Table 1.  The average number of years between 

transactions is 8.26 years.  The overwhelming number of cases (91.18%) are for a single repeat of a given 

home. A modest share (8.14%) represents cases where a property has sold two times.  Over the sample 

of repeats, real household income has declined by 3%, on average, between transactions.   

Finally, the features of these data impose several limitations on our analysis.  First, the data are 

restricted to loans funded by Freddie Mac, so this sample is likely to underrepresent low-valued 

properties, where the Federal Housing Administration (FHA) and subprime lenders have a large market 

share, and high-valued properties where loan amounts are beyond the conforming loan limit.  To 

address this limitation and to provide a robustness check on our core results, we also implement a 

Heckman selection correction, leveraging data from the National Mortgage Database (NMDB). The 

NMDB is a nationally representative 5 percent sample of closed-end, first-lien residential mortgages in 

the United States and is funded and managed by Federal Housing Finance Agency and the Consumer 

Financial Protection Bureau. 

An additional limitation is that the measured income used in this analysis is based on that reported by 

potential buyers to qualify for the loan, and in some cases may underestimate the income if a household 

reports only enough income needed for qualification.  Finally, filtering rates for rental properties can be 

very important in determining the total market filtering rate, as Rosenthal (2014) demonstrated.  

However, our data cover only owner-occupied properties. 

 

Model 

                                                           
7 For example, a home is constructed in 2000 and sold for the first time in 2001. Sometimes, the first sale is 
recorded with year built as 2000 and the second sale with year built as 2001. 
8 In levels, this trims data where income increases annually by more than 82% (that is, [exp(0.6) – 1 = 0.82]) or 
when income decreases annually by more than 45% (that is, [exp(-0.6) - 1 = -0.45]). 
9 The HUD tool is available at https://www.huduser.gov/portal/datasets/geotools.html 

https://www.huduser.gov/portal/datasets/geotools.html
https://www.huduser.gov/portal/datasets/geotools.html
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Four methods are used to create estimates of filtering rates in this paper: 1) a repeat income model; 2) a 

simplification of this model assuming a linear form for the log income index; 3) a spatial localization of 

annual income changes; and 4) a structural model.   

The repeat income method of Rosenthal (2014) produces an index of the household income as a 

function of property age.  This method’s structure is closely related to the repeat sales model (Bailey, 

Muth, and Nourse 1963), but is applied to income as opposed to the house price of the two sales and is 

indexed by the age of the home rather than the sale date.  Following Rosenthal’s (2014) notation, the 

model is specified as follows.  For each transaction, the income of the arriving occupant at age 𝑡 can be 

written as:  

  𝑌𝑡 = 𝑒𝛾𝑡𝑓(𝑋𝑡; βt), (1) 

where 𝑓(𝑋𝑡; βt) is an unknown and potentially nonlinear function of the structural and neighborhood 

characteristics of the home (𝑋) and their shadow prices (𝛽). The 𝛾𝑡 for each 𝑡 are the parameters of 

interest and reflect the index of the household income of the arriving occupant(s) as the home ages in 

years. Assuming that  𝑋 and 𝛽 are constant over time, then the difference of the log of income across 

two periods becomes 

log (
𝑌𝑡+𝜏

𝑌𝑡
) = 𝛾𝑡+𝜏 − 𝛾𝑡 + 𝜔𝑡, (2) 

where 𝑓(𝑋; 𝛽) drops out of the model when taking the difference, and 𝜔 is the random error term. For 

a sample of properties with multiple transactions at various ages, the estimated model using linear 

regression is  

log (
𝑌𝑡+𝜏,𝑖

𝑌𝑡,𝑖
) = ∑ 𝛾𝑟𝐷𝑟,𝑖 + 𝜔𝑟,𝑖,

𝑇

𝑟=1

(3) 

where 𝐷𝑟 equals -1 for the age at the time of the first transaction; 1 for the age of the second 

transaction; and 0 otherwise for each pair of transactions (𝑖 ∈ 1, … , 𝑁). The 𝛾 parameters can be 

estimated using linear regression of the log change in income on the matrix 𝐷. Provided that 𝑋 and 𝛽 

are constant over time, the 𝛾 parameters are the filtering index.10 

For smaller MSAs, we typically do not have enough data to estimate the index in each period using the 

repeat income technique. To overcome this problem, we impose the restriction that the log index is 

linear in time.  With this added assumption, the repeat income specification becomes 

log (
𝑌𝑡+𝜏

𝑌𝑡
) = 𝑔𝜏 + 𝜔𝑡 , (4) 

where 𝑔 is the filtering rate. To estimate filtering rates at even more granular levels, such as at the ZIP 

Code level, we use a nonparametric method: local polynomial regression.  The technique is applied to a 

transformed variable,  

                                                           
10 The results are reported in levels, which involves taking the exponent and setting the base level at 100. 



6 
 

 
log (

𝑌𝑡+𝜏
𝑌𝑡

)

𝜏
, (5)

 

as the dependent variable, which is an observation-level estimate of the filtering rate.  The independent 

variables in this regression are the longitude and latitude coordinates for each home.  The R 

implementation of local polynomial estimation, “np,” is used to estimate filtering rates at each ZIP Code 

centroid.  This method fits a linear specification using data restricted to a local neighborhood 

surrounding each evaluation point, where observations closer to the evaluation point are weighted 

more heavily.  To achieve higher resolution in areas with more data, a smaller bandwidth was used to 

estimate filtering rates in ZIP Codes closer to the city center. For more background on this technique, 

see Fan and Gijbels (1996) and Li and Racine (2007). For a description of the “np” package, see Hayfield 

and Racine (2008). 

The final model estimated is a structural model incorporating the effects of changes in house prices. 

Rosenthal (2014) specifies a structural model of housing demand where housing is decomposed into 

homogenous quality-adjusted units. The sum of the units is denoted by ℎ, and the quality-adjusted price 

of the units is denoted 𝑞, yielding housing demand 

log(ℎ𝑡,𝑖) = 𝜃𝑌 log(𝑌𝑡,𝑖) + 𝜃𝑞 log(𝑞𝑡,𝑖) , (6) 

where the parameters 𝜃𝑌 and 𝜃𝑞 are the income and price elasticities of the demand for housing, 

respectively. 

From this housing demand model, the change in log income is derived by solving for log (𝑌) and 

differencing across transactions. In addition, housing is assumed to depreciate at a constant annual rate 

(log(ℎ𝑡+𝜏,𝑖/ℎ𝑡,𝑖  ) = 𝑑𝜏𝑖), yielding: 

log (
𝑌𝑡+𝜏,𝑖

𝑌𝑡,𝑖
)   =

𝑑

𝜃𝑌
𝜏𝑖 −

𝜃𝑞

𝜃𝑌
log (

𝑞𝑡+𝜏,𝑖

𝑞𝑡,𝑖
) + 𝜔𝑡,𝑖. (7) 

Equation (7) implies that the filtering rates depend on the drivers of housing demand and the rate at 

which housing depreciates. Estimating this equation involves controlling for the quality-adjusted house 

price inflation, log(𝑞𝑡+𝜏,𝑖/𝑞𝑡,𝑖 ). It would seem natural to use the change in the observed transaction 

price as a proxy, but this would generate downward-biased estimates of filtering rates if estimated using 

ordinary least squares. As in Rosenthal (2014), this issue is addressed in a two-stage least squares (2SLS) 

regression by using differences in MSA-level house price indexes to instrument for the actual change in 

the house price. 

 
Results 

Repeat Income Model 

At the national level, Figure 1 shows an index of the average income of households in a given property 

as the property ages. The horizontal axis is the age of the property, starting at 1 for new construction 

sold in the same year as it was built. The vertical axis is the repeat income index level, with the base 

level for the index set to 100 for a new property. This figure shows an average real income reduction of 

approximately 16% over 40 years, implying an average downward filtering rate of about 0.42% per year. 
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Thus, our data generate national estimates that are broadly in line with but lower than Rosenthal 

(2014).  Our estimated index also has a more pronounced “U” shape, with the index showing upward 

filtering starting at an age of about 60 years and rebounding to within 5% of the real income for a new 

property after reaching 90 years.11 This suggests that the gains in affordability for owner-occupied 

properties through filtering over the first 60 years of a property’s life are reversed over the next 40.  This 

“U” shape could be caused by lower quality older homes transitioning to rental properties or being torn 

down, and so dropping out of our sample. 

The next exercise considers the variation in filtering rates across MSAs using the same repeat 

transactions estimator. Figure 2 displays estimates for six major MSAs: Atlanta, Chicago, Detroit, Los 

Angeles, Minneapolis, and Washington, DC. The figure clearly demonstrates substantial heterogeneity in 

filtering rates across these MSAs. After 40 years, average real incomes increased by 12.8% for 

Washington, DC (implying an average annual increase of 0.30%) and by 14.1% for Los Angeles (implying 

an average annual increase of 0.33%). Thus, properties in these markets were filtering up to higher-

income households as homes aged. It is not surprising that these markets are ones with affordable 

housing challenges. In contrast, Detroit and Chicago show rapid downward filtering rates. For Detroit, 

the income index level drops 35.1% over 40 years (implying a rate of filtering of -1.1% per year). For 

Chicago, the income index level drops by 23.3% over 40 years (implying a rate of filtering of -0.66% per 

year).   

Linear Model Estimates 

To further investigate the heterogeneity of filtering rates across MSAs, the repeat income model in 

equation (4) is estimated with the simplifying assumption of a log linear index. This allows filtering rates 

to be estimated for many more MSAs because only a single parameter needs to be estimated rather 

than a time-varying index.  Panels (a) and (b) of Table 2 provide results for the MSAs with the fastest and 

slowest filtering rates, where the more negative the coefficient, the faster the downward filtering rate.12  

All the filtering rates reported are statistically significantly different from zero. Panel (a) displays the 10 

fastest MSA downward filtering rates. Topeka, Kansas has the fastest downward filtering rate, at roughly 

-1.61% per year. These are markets in which filtering is expected to provide a robust source of 

affordable supply.  In contrast, Panel (b) displays MSAs with the slowest filtering rates. For example, San 

Francisco, California has an annual filtering rate of 0.71%, meaning that properties filter up to higher-

income households as they age.  Not surprisingly, the cities listed in Panel (b) tend to be regions with 

affordability problems.  These tend to be markets where higher house price growth, on average, 

dominates depreciation to decrease the affordability of properties as they age. However, our spatial 

analysis described in the next section shows that there are often areas within these MSAs where 

downward filtering still occurs.  

We explore potential drivers of variation in filtering rates across MSAs by plotting the MSA filtering rates 

against some relevant variables for housing markets: house price appreciation, supply elasticity, and 

population growth.  Panel (a) of Figure 3 plots filtering rates by long-term average house price 

appreciation (HPA) and shows that house price growth is correlated with filtering rates. Panel (b) plots 

MSA filtering rates against housing supply elasticity as derived in Saiz (2010).  There is a correlation 

                                                           
11 Above the age of 96, the real income index is not statistically significantly different from 100. 
12 A complete list of the filtering estimates for 180 MSAs is in Table A1 of the appendix. 



8 
 

between filtering and supply elasticity, with more elastic markets having the fastest downward filtering 

rates. Two MSAs stand out in this plot: Austin, Texas which has an elastic supply but positive filtering; 

and Fargo, North Dakota, which has a very elastic supply but near-zero filtering.  Both markets have 

experienced booms in local industries, with periods of above-average house price growth reflecting 

changes in housing demand not captured by the supply elasticity. This along with our regression analysis 

described later suggest that most of the effect of supply elasticity on filtering is through house prices. 

Panel (c) shows that the correlation of filtering rates with the Wharton Residential Land Use Regulation 

Index (WRI) is similar to that of the Saiz (2010) supply elasticity. Note, Fargo and Austin do not stand out 

in the WRI plot as they do in the supply elasticity plot.  Panel (d) shows there is little association of MSA 

population growth with filtering rates. Panel (e) shows a positive correlation of MSA filtering rate with 

the share of appraisals with improvements (kitchen and bathroom remodeled within five years of 

appraisal). This relationship is similar if only kitchen remodels, only bathroom remodels, or kitchen or 

bathroom remodels are used as our measure of improvements. Finally, Panel (f) shows that the average 

MSA filtering rate is positively correlated with the growth in median income in the MSA, but downward 

filtering occurs in many MSAs with positive median income growth. 

We use repeat purchase appraisals on same property from the UAD for 1-unit single-family properties 

from 2012 through 2019 submitted for delivery to Freddie Mac to compare the condition transition 

rates. We compare the condition transition of properties in upward filtering MSAs against those in 

downward filtering MSAs. A total of 81,597 appraisal pairs are used for the estimates of the top 30 

downward filtering MSAs and 65,279 for the estimates of the top 10 upward filtering MSAs. The 

property condition variable is classified as follows: C1 = new construction/never occupied; C2 = recently 

renovated/like new; C3 = well maintained/limited depreciation; and C4 = adequately maintained/needs 

minimal repairs.13 Panel (a) of Table 3 reports condition transitions for downward filtering MSAs. As 

shown in the third row, of the properties that have condition C3 for the first appraisal, 17% deteriorate 

to C4 at the second appraisal.  Also, from the next row, 29% of properties in condition C4 remain in this 

condition.  In contrast, in Panel (b), only 10% of the C3 properties deteriorate to C4 and only 19% of 

properties in condition C4 remain in this condition.  This table shows that properties in upward filtering 

MSAs are less likely to transition to lower condition and those in lower condition are more likely to 

transition to an improved condition. 

Nonparametric Models 

Variation in filtering rates within MSAs is observed by estimating a spatial model that evaluates the 

filtering rate at the ZIP Code level using a nonparametric estimator, local linear estimation. Panel (a) of 

Figure 4 represents filtering rates estimated at every ZIP Code centroid in the Washington, DC metro 

area.  There are clear differential filtering rates even within the city of Washington, DC.  The southeast 

corner of the city beyond Anacostia has negative filtering rates, whereas the rest of the city has positive 

filtering rates.  Outside of the city of Washington, DC is a band of strongly positive filtering rates that 

runs north to south of the city.  To the east, the region in Prince Georges county adjacent to the city has 

strong negative filtering rates. 

Panel (b) represents ZIP Code level filtering rates for the Atlanta metro area.  The Atlanta, Georgia MSA 

has a negative average filtering rate, but there is variability within the MSA. Panel (b) shows positive 

                                                           
13 Properties with condition below C4 are not purchased by Freddie Mac and thus are not included in our sample. 
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filtering rates near and to the north of the city center, and negative filtering rates outside the city center 

to the east, west, and south.   

Panel (c) represents ZIP Code level filtering rates for the Chicago, Illinois metro area.  The Chicago MSA 

has a negative average filtering rate, but has positive filtering rates in a band running southwest of the 

city center, with negative filtering rates to the south and north of that area.   

Taken together, the three panels of Figure 4 demonstrate that filtering is far from uniform across 

space.14  These MSAs provide examples where some regions within the MSA are creating new affordable 

housing through filtering, while other areas are not, as older properties filter up to higher-income 

households.15  Generally, looking across many MSAs, we find that within most MSAs, upward filtering 

occurs in the areas closest to the city center, and that most often the highest downward filtering occurs 

outside the city center. The average of within-MSA variation over ZIP Code-level filtering rate estimates 

is substantially higher than the variance across the MSA-level filtering rate estimates.16 

In the next analysis, we explore the relationship between house prices and variation of filtering rates 

within the MSA. Specifically, we observe that the city center of MSAs tend to have higher house price 

appreciation than the surrounding areas. To illustrate this phenomenon, we create an average estimate 

of the within-city variation in house price growth across MSAs. Because the MSAs are different sizes, we 

normalize the latitude and longitude of each MSA to range from -1 to 1, with the central business 

district located at the origin, (0,0), after the normalization. We apply this normalization to the latitude 

and longitude of each ZIP Code center within an MSA and create a combined data set across the MSAs 

used for analysis. We restrict the sample to the 26 MSAs with the most repeat income observations in 

our sample and use these for within-MSA filtering and the HPA analysis.17  For each MSA, we calculate 

the ZIP Code-level HPA deviation from the MSA HPA mean and the observation’s filtering rate minus the 

MSA mean filtering rate. 

With the combined data, we estimate spatial variation in house price growth deviations from the MSA 

mean using kernel regression.18 House price growth is measured as a ZIP Code’s average annual house 

price growth from 1993 through 2018 based on the FMHPI. Panel (a) of Figure 5 plots the local linear 

estimates of house price growth for the interior of the city up to half of the way to the edge of the city in 

either direction. On average, the highest rates of HPA within the MSAs are heavily concentrated in ZIP 

                                                           
14 In an earlier version, we verified the statistical significance of the within-MSA variations in filtering rates using 
the nonparametric test of Hsiao, Li, and Racine (2007) and as implemented in the npcmstest function of the R 
package “np.”  
15 Of course, these are averages. Actual filtering is a stochastic process, so that even in markets that have upward 
filtering on average, some affordable properties can be created. 
16 Recently, Baum-Snow and Han (2019) found substantial variation in housing supply elasticity within metro areas. 
17 The 26 MSAs are Atlanta, Georgia; Austin, Texas; Boston, Massachusetts; Charlotte, North Carolina; Chicago, 
Illinois;  Cincinnati, Ohio; Columbus, Ohio; Dallas, Texas; Denver, Colorado; Detroit, Michigan; Houston, Texas; 
Indianapolis, Indiana; Kansas City, Missouri; Los Angeles, California; Miami, Florida; Minneapolis, Minnesota; 
Nashville, Tennessee; New York, New York; Philadelphia, Pennsylvania; Phoenix, Arizona; Portland, Oregon; 
Raleigh, North Carolina; St. Louis, Missouri; Seattle, Washington; Tampa, Florida;  and Washington, DC. 
18 The kernel regression is used instead of local linear regression to allow for a weighting that avoids MSAs with 
many observations dominating the results. For house price growth, this weighting is inversely proportional to the 
number of ZIP Codes with house price indexes for house price growth. For filtering rates, this weighting is inversely 
proportional to the number of repeat income observations in the MSA. 
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Codes near the city center.19 Given the importance of house price growth in the structural model, we 

would also expect our analogous estimate of filtering rates to be higher near the city center. For Panel 

(b), we perform a similar exercise on the observation filtering rates minus the MSA average by pooling 

the data from the 26 MSAs and find that above-average filtering rates are also concentrated near the 

city center. 

Structural Model 

The structural model of Rosenthal (2014) offers insights into the drivers of filtering variability.  This 

structural model is estimated using two-stage least squares (2SLS) with results reported in Table 4. The 

first-stage regression projects the change in log house prices onto the instrument, which is the 

corresponding percent change in the Freddie Mac House Price Index (FMHPI) at the MSA level when 

available, or the change in FMHPI at the Census division when the property is not in an MSA, to be 

consistent with Rosenthal (2014).20 It is important for the index being used as the instrument to be at a 

high enough level of aggregation to be uncorrelated with the property-level error term in equation (7). 

Focusing on the first column, labeled “All,” the results from the first-stage regression are reported in the 

first two rows.  The change in these index values is positively related to house prices, as is reflected in 

the 0.611 regression coefficient.  As can be seen from the large Kleibergan-Paap F-statistics, this is a 

strong instrument.21   

The next three columns of this provide estimates stratified by Saiz (2010) supply elasticity. The “elastic” 

category includes MSAs with a supply elasticity greater than 2; the “mid-elastic” category consists of 

elasticities between 1 and 2; and the “inelastic” category includes MSAs with elasticities less than 1. The 

final column provides regression results using MSAs for which we do not have an elasticity from Saiz 

(2010). The results from these columns show coefficients that are close to the total sample estimates, 

suggesting that supply elasticity does not affect impact filtering beyond the effect on house prices. 

The second-stage estimates of the structural model are given in the bottom of the table. The dependent 

variable is the log change in income. The key coefficient of interest is on years between transactions, 

with a value of -1.28%. It shows the contribution to the annual filtering rate of one additional year of 

property age. There are moderate differences in this coefficient across elasticity groups, with the 

downward filtering rate 20% faster for the elastic group than the inelastic group.22 This model also 

shows the dependence of filtering rates on house price changes. From the first column, a 1% decrease in 

house prices results in a 0.356% increase in the filtering rate. The inelastic group filtering rates are 

around 19% more sensitive to changes in house prices than those of the elastic group.23  

The volume of housing supplied, the expectation of future house price growth, the stringency of credit 

supply, and labor market conditions all varied during the study period. In Table 5, we estimate the 

structural model for four specific periods: pre-boom (January 1975 to December 2001); boom (January 

                                                           
19 This figure may be of independent interest as it shows that while the spatial pattern of the HPA for any particular 
MSA can be complex, the average pattern of HPA across MSAs possess a simple monocentric spatial structure.   
20 Percent change is calculated as the HPI at time of the second sale divided by the HPI in the year of the first sale. 
21 In addition to the Kleibergan-Paap weak IV test, the Anderson-Rubin and Stock-Wright robust tests for weak 
instruments also show that this is a strong instrument inference, as the tests results are significant at the 0.1% 
level. 
22 This difference is statistically significant at the 10% level as the Z-statistic is 1.69. 
23 However, this difference just fails to be statistically significant at the 10% level, as the Z-statistic is 1.62. 
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2002 to June 2006); bust (July 2006 to December 2011); and post-crisis (January 2012 to December 

2018). In each case, the sample is restricted to pairs of purchase transactions where both purchases 

occurred within the same subperiod. The first column shows the full sample results as presented in 

Table 4. The second through fifth columns of Table 5 provide the results for the four subperiods. 

Focusing on the years between transactions coefficients for the second stage, these coefficients are 

negative and significant in the first three periods (before 2012). This coefficient for the pre-boom and 

bust periods is around 1.2%, and is slightly higher (1.66%) for the boom period. However, for the post-

crisis period (after 2011), the coefficient drops to 0.0698% and is not statistically significant, suggesting 

that the filtering process may have undergone a structural change in these years.24 

An alternative way of examining the stability of the structural specification over time is to partition the 

impacts of time between transactions by time interval within a single regression.  Table 6 provides 

estimates from this specification.  In these regressions, the “years between transactions” variable in the 

prior models is segmented into four variables that represent the number of years between transactions 

that fell within each period (pre-boom, boom, bust, post-crisis).  What is most interesting is that the 

coefficients change from the pre-boom estimate of -1.72% per year and boom estimate of -3.01% but 

then are closer to zero in the bust and post-crisis periods, at -1.02% and -0.632%, respectively.  This also 

suggests a potential structural change, in that older properties are not filtering downward as fast as they 

had after conditioning on house price growth.  

Gentrification 

Finally, we examine the relationship between filtering and gentrification.  Gentrification is characterized 

as the influx of higher socioeconomic status residents and an increase in housing prices. Tracts subject 

to gentrification are identified using the definition given in the National Community Reinvestment 

Coalition report, Shifting Neighborhoods: Gentrification and Cultural Displacement in American Cities 

(NCRC 2019).  This measure identifies a tract as “gentrification eligible” if it has a population of at least 

500 and had a median household income and median home value below 40th percentile within its MSA  

in 2000 and experienced an increase in median home value greater than the 60th percentile and an 

increase in its share of college-educated residents greater than the 60th percentile in its MSA.25 We 

identify gentrification by assessing changes at the census tract level using nationwide U.S. Census 

Bureau data normalized by the longitudinal tract database (LTDB) between 2000 and 2012.26 

Table 7 presents the regression analysis controlling for gentrification. We identify whether a property is 

in a gentrification tract and create an indicator variable for each pair. The first column focuses on the 

effects of gentrification on the annual filtering rate, which is defined as the log real income change 

divided by holding period, estimated by ordinary least squares (OLS). As seen from the first specification 

holding the change in log house prices constant, locating in a gentrification tract increases the log real 

                                                           
24 This lack of statistical significance is not an issue of weak power, as the parameter is tightly estimated. 
25 There is no generally accepted definition of a gentrifying tract. For example, alternative definitions can be found 
in Freeman (2005) and Brummet and Reed (2019).  These definitions all require the tract income to be low relative 
to the MSA median and increases in both the share of college-educated residents and house prices or rents. 
26 The longitudinal tract database (LTDB) provides estimates using 2010 boundaries for a standard set of variables 
from 1970 through 2000. The dataset includes a wide range of other variables based on sample data: the one-in-six 
samples from the decennial Census in 1970–2000 and the sample data from the American Community Survey for 
2008–12.  See https://s4.ad.brown.edu/projects/diversity/Researcher/Bridging.htm. 
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income by 0.37% in the annual filtering rate. For example, if the filtering rate were -0.5% in non-

gentrifying tracts, it would be -0.13% in gentrifying tracts. In this sense, at the national level, 

gentrification is associated with slower downward filtering rates.   

The second and third columns explore the effects of gentrification on filtering in the structural model. 

The second column shows the results of 2SLS when the sample is restricted to properties in the 

identified gentrification tracts. The sample size reduces to 12,520, around 1% of total transaction pairs 

counts.  The coefficient on years between transactions is -0.836%, around 65% of the magnitude of the 

full sample estimate from Table 4. In the third column, we include interaction of the gentrification 

indicator with years between transactions in the 2SLS equation. Including the gentrification interaction 

term does not materially change the coefficient for years between transactions. Holding house price 

change and years between transactions constant, being in a gentrification tract increase the log real 

income change by 0.352% annually. These results indicate that gentrification tends to influence a market 

toward upward filtering.  This is intuitive because higher-income households are attracted to 

gentrification areas because of additional neighborhood quality and amenity benefits that are not 

necessarily incorporated in house price increases. Note that this relationship need not be causal, given 

that inclusion in a gentrification tract may induce selection bias because the increase in median income 

of a tract is part of the definition of gentrification.   

Robustness 

Correcting for Selection Bias 

The sample is restricted to loans funded by Freddie Mac and is likely to be underrepresented for low-

valued properties, where the Federal Housing Administration (FHA) and subprime lenders have a large 

market share, and for high-valued properties where loan amounts are beyond the conforming loan limit.  

To address possible selection bias, we implement an extension of the Heckman (1979) correction as 

adapted to repeat sales models (see Gatzlaff and Haurin 1997; Hwang and Quigley 2004; Zanola 2007).  

This method first estimates a model to predict the probability of a mortgage being funded by 

government-sponsored enterprises (GSEs) based on a set of loan and borrower characteristics. In this 

first step, the probit model is fit using the NMDB data. Formally, let 𝐺𝑆𝐸𝑖𝑡  be an indicator variable that 

takes the value of 1 if loan 𝑖, originated in year 𝑡, is funded by a GSE, and let: 

𝑃𝑟𝑜𝑏(𝐺𝑆𝐸𝑖𝑡 = 1) = Φ (𝛾0 + ∑ 𝛾𝑚𝑍𝑚𝑖𝑡

𝑀

𝑚=1

) , (8) 

where Φ is the standard normal distribution, 𝑍𝑚𝑖𝑡 are the loan characteristics (𝑚 = 1 … 𝑀) of loan 𝑖 

originated at time 𝑡, and 𝛾 is a set of parameters.27The first stage estimates are based on more than 4 

million purchase observations in the NMDB for loan originated between 1995 and 2018 with summary 

statistics in Table A2 and results in Table A3 of the appendix. 

In the second step, we use the parameter estimates from the probit model to forecast sampling 

probabilities for our Freddie Mac data.  We restrict our repeated income sample to loans originated 

                                                           
27 Loan characteristics includes FICO score, loan-to-value ratio, debt-to-income ratio, loan amount, numbers of 
borrowers, numbers of units, loan term, loan product type (fixed or not), whether the borrower is a first-time 
home buyer, and origination year. 
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since 1995 to match the range of the NMDB data. Since the repeat income model’s error term is subject 

to possible selection bias in both transaction times, the correction takes the form of the difference of 

two estimated bias terms.  The inverse Mill’s ratio— 𝜆𝑡,𝑖 = 𝜙(𝛾𝑍𝑖𝑡)/Φ(𝛾𝑍𝑖𝑡)—is included as an 

independent variable in equations (4) and (7) to correct for the non-randomness of sample selection. 

The structural model equation (7) becomes:  

log (
𝑌𝑡+𝜏,𝑖

𝑌𝑡,𝑖
)   =

𝑑

𝜃𝑌
𝜏𝑖 −

𝜃𝑞

𝜃𝑌
log (

𝑞𝑡+𝜏,𝑖

𝑞𝑡,𝑖
) + β(𝜆𝑡+𝜏,𝑖 − 𝜆𝑡,𝑖) + 𝜔𝑡,𝑖.  (9) 

The corrected 2SLS results are presented in Table 8. The first column shows the previous estimates and 

the second column shows the coefficients after including the Heckman correction term β(𝜆𝑡+𝜏,𝑖 − 𝜆𝑡,𝑖).  

The sample size reduces to 1,051,519 by restricting loans to be originated since 1995. The contribution 

to the annual filtering rate of one additional year of property age is -1.24%, and all the coefficient 

estimates are very similar to the results in Table 5. Restricting to loans originated after 1995 does not 

alter the filtering rate estimation. There is only a modest change for all the coefficient estimates after 

the Heckman correction. The coefficient for differences in the Mill’s ratio is nonzero and significant, and 

the Wald test for this coefficient is significant, suggesting the existence of selection bias. The estimated 

coefficient for property age is -1.16%, which is a slightly weaker effect compared to the first column. The 

results show that the selection issue does not qualitatively change the results.  

A similar Heckman selection adjustment can be applied to the linear filtering model presented in 

equation (4), resulting in the following estimation equation: 

log (
𝑌𝑡+𝜏

𝑌𝑡
) = 𝑔𝜏 + β(𝜆𝑡+𝜏,𝑖 − 𝜆𝑡,𝑖)+ 𝜔𝑡. (10) 

 

Figure 6 plots the estimated filtering rates with and without the Heckman selection adjustment.  Each 

point in this figure represents an MSA, with the X-axis plotting the filtering estimate with the Heckman 

correction, and the Y-axis plotting the filtering estimate without this correction. Since most of the data 

points lie close to the 45-degree line, the figure shows that the selection bias does not qualitatively 

change the linear model results. 

Error Structure 

In repeat sales models for measuring house price levels, the model errors are often modeled by a linear 

relationship in the time between sales. Case and Shiller (1987) argued that changes in house prices 

include components whose variance increases with the interval of sales, implying heteroskedastic error 

terms. We estimated this specification for filtering models by regressing the squared residuals on the 

time between sales.  

We estimate the relationship between residual variance and change in property age for the repeat 

income model residuals in this paper and find that the change in property age has only a modest impact 

on the residual variance.  This suggests that idiosyncratic changes in income mostly occur when a 

property sale takes place and depend only secondarily on the change in property age. For the national 

level repeat income model, the estimated equation for the variance of an observed filtering rate is 

𝑉𝑖(𝜏) = 0.25 + 0.006 ∗ 𝜏, where 𝜏 is the time between sales in years. For the structural model the 
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estimated equation is 𝑉𝑖(𝜏) = 0.25 + 0.005 ∗ 𝜏. In the data, the time between sales ranges from 1 to 25 

years with a mean of 8.2 years. For this range of values, the intercept dominates the variance. The linear 

model estimated at the MSA level gives a range of estimated error structures, listed in appendix Table 

A4, with intercepts ranging from 0.16 to 0.38 and linear coefficients ranging from -0.001 to 0.027. 

However, the width of this range is driven by a few outliers. Looking at the range from the 10th to 90th 

percentile, the intercept ranges from 0.22 to 0.31 and the linear coefficients range from 0.0018 to 

0.0087. This suggests that most MSAs have an error structure broadly in line with the national-level 

estimates. 

Effective Age 

The age of the property at the time of sale is a key variable in our analysis. In the main analysis for this 

paper, property age is determined based on the year of construction of the current structure. While this 

method accounts for a completely new structure built on the same lot, it does not account for any 

renovations to the property since it was initially constructed. The CoreLogic data contains an effective 

year built variable that reflects substantial renovations to the structure based on information from 

appraisals. We created a new dataset of pairs where both sales have the same effective year built. This 

gives a slightly smaller dataset than used for the main analysis: 1,190,584 pairs for 1,089,387 properties. 

This data set yields very similar estimates at the national and MSA level to the main analysis. 

Figure 7 contains the national-level repeat income model estimates for effective age and construction 

age. The two estimates are very close (within 1.25, with a base level of 100) for the first 75 years of 

property age and diverge a bit more for the very oldest properties, where fewer data are available and 

estimates are more volatile. Figure 8 shows a comparison of the MSA level filtering estimates from the 

linear model. Of the 180 MSAs estimated, 37 have the exact same estimate because the effective age is 

the same as the construction age for all properties in the sample. There are 99 MSAs with lower filtering 

estimates when using the effective age data and 44 with higher estimates using effective age. Together, 

the mean absolute difference of these estimates is 0.0003, with a maximum difference of 0.0016. This 

suggests there may be a slight upward bias in the linear estimates from properties that have had 

significant renovations. 

Filtering Relative to Median Income 

Could some variation in filtering estimates simply reflect variation in income growth across MSAs? In 

Figure 3 panel (f), there is a strong positive correlation between filtering and real income growth over 

the sample period. As incomes increase throughout an MSA, it is possible for properties to go to 

occupants of higher real income with income farther below the median income. We explore this issue by 

estimating the linear model discounting by MSA median income rather than by the CPI. Formally, the 

quarterly MSA median income is converted to an index with the first quarter of 1993 as the base and the 

index is used to discount the household income in the same way as CPI was used in the original analysis. 

Figure 9 contains a scatterplot of the initial filtering estimates versus the estimates relative to the MSA 

median income. The biggest differences between the two estimates is for Midland, Texas on the 

downside and Flint, Michigan on the upside. Midland had the highest filtering estimate in real income at 

0.86% per year but relative to median income of Midland the rate was -0.66% per year. In contrast, in 

Flint the filtering estimate was -1.3% in real terms but at a rate of 0.27% relative to median income. In 

general, those MSAs with upward filtering relative to real income had a lower rate, even going negative, 

relative to median income while MSAs with downward filtering rates had less negative rates, some going 
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positive, relative to median income. Table A5 in the appendix contains the complete list of estimates 

using both methods. 

Conclusion 

Private markets provide affordable housing primarily through a process in which, on average, homes 

filter down to lower-income households as they age.  Rosenthal (2014) established that, nationally, 

filtering is a major source of housing supply for low-income households. This paper contributes to our 

understanding of filtering by demonstrating the heterogeneity of filtering rates across space and time.  

The analysis finds strong geographic variation in filtering rates and strong differences in average filtering 

rates over time.  There is substantial variation in filtering rates within MSAs in addition to variation 

across MSAs. As a result, markets with on average downward filtering have areas where incomes are 

rising—usually near the central business district, and markets with on average upward filtering have 

areas where properties are becoming more affordable. The variability of filtering rates is largely 

explained by differences in house price appreciation within and across MSAs.  

The influence of house price appreciation on filtering implies a role for policy makers to adopt policies 

that would increase the elasticity of supply, driving down prices and allowing filtering to increase the 

stock of available affordable housing. Generally, policies encouraging the creation of new housing supply 

will assist in directly easing demand pressures and reducing the rate of house price appreciation, 

allowing properties to filter downward. Beyond filtering, policies that increase housing supply elasticity 

also promote housing affordability by directly expanding the supply of new affordable housing. 
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Table 1. Summary statistics 

Variable Mean 

Years between transactions 8.26 

log change in real income -0.03 

Monthly income at time of transaction ($2018) 9299 

Age of home at time of transaction (years) 23.32 

House price at time of transaction ($) 235,929 

log change in house price 0.27 

    

Distribution of transaction pairs per home (percent)   

     1 pair 91.18 

     2 pairs 8.14 

     3 pairs 0.63 

     4+ pairs 0.04 

    

Number of homes 1,126,328 

Repeat observations 1,233,888 
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Figure 1. Filtering index of owner-occupied properties 

The index tracks the average level of occupant real income as the home ages, estimated using the repeat income 

model. 
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Figure 2. Filtering index by MSA 

Filtering estimates using the repeat income model are quite heterogeneous at the MSA level. For example, Los 

Angeles, CA and Washington, DC show substantial increases in the real income of occupants as properties age, 

while, Detroit, MI and Chicago, IL show a real income decline over the same period. 
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Table 2. Linear model of real change in income (log) by MSA 

a. MSAs with largest reduction in occupant income 

MSA 
Annual Filtering  

(log) 
Standard  

Error 
40-Year  

(%) 

Topeka, KS -0.0161 0.0018 -47.38 

Macon, GA -0.0149 0.0020 -44.79 

Jackson, MS -0.0148 0.0018 -44.59 

Fort Wayne, IN -0.0145 0.0009 -43.94 

Toledo, OH -0.0135 0.0008 -41.66 

Flint, MI -0.0132 0.0015 -40.95 

South Bend, IN -0.0131 0.0013 -40.86 

Myrtle Beach, SC -0.0130 0.0021 -40.62 

Spartanburg, SC -0.0130 0.0018 -40.55 

Greensboro, NC -0.0125 0.0008 -39.32 

 

b. MSAs with largest increase in occupant income 

MSA 
Annual Filtering  

(log) 
Standard  

Error 
40-Year  

(%) 

Boulder, CO 0.0047 0.0009 20.64 

Charlottesville, VA 0.0047 0.0018 20.68 

Los Angeles, CA 0.0055 0.0004 24.41 

San Diego, CA 0.0055 0.0006 24.71 

Oxnard, CA 0.0055 0.0010 24.76 

Santa Rosa, CA 0.0062 0.0013 28.04 

Seattle, WA 0.0063 0.0004 28.76 

San Jose, CA 0.0071 0.0008 32.58 

San Francisco, CA 0.0071 0.0006 33.00 

Midland, TX 0.0086 0.0015 40.78 

Note: The filtering rate is estimated using equation (4), the linear model with no intercept. The 40-year percentage change is 

computed as [exp(40 ∗ 𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡) − 1] ∗ 100. Only the first city of each MSA is listed. 

 

  



23 
 

Figure 3. MSA annual filtering (log) 

 a. By house price appreciation (HPA) 

The relationship between long-term HPA and filtering rates across MSAs is positive, as expected. 

 

Note: Log annual filtering rates are those reported in Table A1. Average annual house price appreciation is estimated from the 

log of the Freddie Mac house price index.  
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b. By supply elasticity 

The relationship with supply elasticity and filtering is not as strong as with house prices. 

 

Note: Log annual filtering rates are those reported in Table A1. Elasticity refers to housing supply elasticity measured by Saiz 

(2010). 
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c. By the Wharton Regulatory Index 

The relationship between the Wharton Regulatory Index and filtering is not as strong as with house prices. 

 

Note:  Log annual filtering rates are those reported in Table A1. The Wharton Regulatory Index is from Gyourko, Saiz, and 

Summers (2008). 
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d. By population growth 

There does not appear to be much association between population growth and filtering rates.   

 

Note:  Log annual filtering rates are those reported in Table A1. Population estimates from Moody’s Analytics based on US 

Census Bureau data. 
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e. By share of improvements 

Filtering is positively correlated with improvements in appraisal data. 

 

Note:  Log annual filtering rates are those reported in Table A1. Appraisal data from the Uniform Mortgage Data Program. 

Remodel refers to significant finish and/or structural changes made within the past five years to both the kitchen and 

bathrooms.    
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f. By median real income growth 

As expected, average filtering for an MSA is correlated with the rate of growth in median income over that period. 

 

Note:  Log annual filtering rates are those reported in Table A1. Median income data from Moody’s Analytics based on U. S. 

Census Bureau data. 
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Table 3. Transitions of Reported Property Condition in Repeat Appraisals 

a. Property condition transition rates in the top 30 downward filtering MSAs (percent) 

Condition at 
First Appraisal 

Condition at Second Appraisal 

C1 C2 C3 C4 

C1 7 54 37 1 

C2 0 19 75 6 

C3 0 4 79 17 

C4 0 3 68 29 

 

b. Property condition transition rates in the top 10 upwards filtering MSAs (percent) 

Condition at 
First Appraisal 

Condition at Second Appraisal 

C1 C2 C3 C4 

C1 7 60 32 1 

C2 0 22 74 3 

C3 0 9 82 10 

C4 0 11 70 19 

 

C1 = New construction/never occupied 

C2 = Recently renovated/like new 

C3 = Well maintained/limited depreciation 

C4 = Adequately maintained/needs minimal repairs 

Notes:  The table reports the percentage of properties with a given condition at their second appraisal by the condition of the 

first appraisal. The table is based on pairs of purchase appraisals on the same property from the Uniform Appraisal Dataset for 

1-unit single-family properties from 2012 through 2019 submitted for delivery to Freddie Mac. Top upward and downward 

filtering MSAs are based on the log annual filtering rates reported in Table A1. 
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Figure 4. Annual filtering (log) of ZIP Code centers using locally linear estimation 

a. Washington, DC 

The Washington, DC metro area displays substantial heterogeneity in filtering rates across the MSA, with pockets 

of strong downward and upward filtering, while many ZIP Codes to the west have filtering rates close to zero. 

 

Note: Each ZIP Code is colored based on the local linear estimate for the latitude and longitude of the centroid from the U. S. 

Census Bureau. The estimates use increasing bandwidths for areas farther from the city center that have fewer data. This helps 

preserve the heterogeneity for areas near the city center that would otherwise be washed out by the larger bandwidths. White 

borders denote ZIP Code boundaries. Black borders denote county boundaries. The small black dot denotes the coordinates of 

the central business district (CBD) from Holian and Kahn (2015).  
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b. Atlanta, Georgia  

Atlanta has many regions of strong downward filtering, with upward filtering in the areas to the immediate north 

and east of the city center. 

 

Note: Each ZIP Code is colored based on the local linear estimate for the latitude and longitude of the centroid from the U. S. 

Census Bureau. The estimates use increasing bandwidths for areas farther from the city center that have fewer data. This helps 

preserve the heterogeneity for areas near the city center that would otherwise be washed out by the larger bandwidths. White 

borders denote ZIP Code boundaries. Black borders denote county boundaries. The small black dot denotes the coordinates of 

the central business district (CBD) from Holian and Kahn (2015).  
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c. Chicago, Illinois 

Chicago is dominated by regions of downward filtering, with some areas of upward filtering south west of the 

city center and on the fringes. 

 

Note: Each ZIP Code is colored based on the local linear estimate for the latitude and longitude of the centroid from the U. S. 

Census Bureau. The estimates use increasing bandwidths for areas farther from the city center that have fewer data. This helps 

preserve the heterogeneity for areas near the city center that would otherwise be washed out by the larger bandwidths. White 

borders denote ZIP Code boundaries. Black borders denote county boundaries. The small black dot denotes the coordinates of 

the central business district (CBD) from Holian and Kahn (2015).  
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Figure 5. Within-city spatial variation  

This figure shows the spatial deviation of ZIP Code house price appreciation (HPA) relative to the metropolitan 

statistical area (MSA), averaged over 26 MSAs. 

a. House price appreciation 

The area around the city center experiences the highest rates of house price growth, substantially above the 

average in the MSA, while the outer regions grow at about or just below the MSA average. 

 

Note: The coordinate system is a normalized latitude and longitude where the location of the central business district (CBD) is 
(0,0) and the farthest ZIP Code centroid from the CBD in either direction defines the edge of the city at 1. The plot displays 
weighted local constant regression estimates with a bandwidth of 0.05 for a grid of point in the interior of the MSA half-way to 
the city’s edge in either direction. We restrict the MSAs used to be consistent with those for which we have filtering estimates 
reported in Panel (b) of Figure 5, but this phenomenon is robust even for all MSAs for which we have indexes.  
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b. Annual filtering rates 

The city centers have on average slower filtering rates than the MSA average, but there is substantial variation in 

filtering rates outside of the city center. 

 

Note: Annual filtering rate is defined as log real income change divided by year between the transactions. The coordinate 

system is a normalized latitude and longitude where the location of the central business district (CBD) is (0,0) and the farthest 

ZIP Code centroid from the CBD in either direction defines the edge of the city at 1. The plot displays weighted local constant 

regression estimates using a bandwidth of 0.06 for a grid of point in the interior of the MSA half-way to the city’s edge in either 

direction. The data include a combined sample of ZIP Code averages from 26 MSAs.  
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Table 4. Structural model of real change in income (log) by housing supply elasticity 

 

  All Elastic Mid-elastic Inelastic Unclassified 

First stage 

Percent change in HPI 
0.611*** 0.616*** 0.644*** 0.605*** 0.569*** 

(0.0136) (0.0279) (0.0152) (0.0144) (0.0529) 

KP weak instrument F-statistic 2024 488 1804 1762 116 

Second stage 

Year between transactions 
-0.0128*** -0.0134*** -0.0116*** -0.0112*** -0.0132*** 

(0.000505) (0.000593) (0.000908) (0.00116) (0.000296) 

Change in log price 
0.356*** 0.318*** 0.346*** 0.379*** 0.323*** 

(0.0132) (0.0248) (0.0171) (0.0282) (0.0215) 

MSA fixed effects 380 155 79 18 128 

Second-stage R-squared 0.045 0.034 0.05 0.068 0.036 

Observations 1,233,887 482,027 352,526 218,264 181,070 
 
Note: The table displays the structural model of real change in income (log) described in equation (7) stratified by supply 
elasticity. The percent change in the housing price index (HPI) is used as instrument for change in log house price. Standard 
errors clustered at the MSA level in parentheses. House supply elasticity estimates are from Saiz (2010). Inelastic metropolitan 
statistical areas (MSAs) are those with elasticity less than 1; mid-elastic refers to MSAs with elasticity between 1 and 2; and 
elastic MSAs are those with elasticity greater than 2. Unclassified refers to properties in MSAs without an estimated elasticity or 
not in an MSA. KP = Kleibergen-Paap weak instrument test. *** = Significant at 1 percent level. ** = Significant at 5 percent 
level. * = Significant at 10 percent level. 
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Table 5. Structural model of real change in income (log) by transaction year 

 

  All Pre-boom Boom Bust Post-crisis 

First stage 

Percent change in HPI 
0.611*** 0.773*** 0.669*** 1.234*** 0.575*** 

(0.0136) (0.0221) (0.0159) (0.115) (0.0152) 

KP weak instrument F-statistic 2024 1224 1764 115 1436 

Second stage 

Year between transactions 
-0.0128*** -0.0133*** -0.0166*** -0.0111*** 0.000698 

(0.000505) (0.00120) (0.00338) (0.00417) (0.00335) 

Change in log price 
0.356*** 0.384*** 0.358*** 0.652*** 0.435*** 

(0.0132) (0.0206) (0.0488) (0.0627) (0.0581) 

MSA fixed effects 380 379 371 359 377 

Second-stage R-squared 0.045 0.019 0.015 0.047 0.021 

Observations 1,233,887 187,099 37,214 22,043 72,008 
 
Note: The table displays the structural model of real change in income (log) described in equation (7) stratified by period.  The 
percent change in the housing price index (HPI) is used as instrument for change in log house price. Standard errors clustered as 
the MSA level in parentheses. Data are partitioned, with only those pairs with both transactions in the same period included. 
The pre-boom period includes transactions from 1975 to December 2001; the boom period, from January 2002 to June 2006; 
the bust period, from July 2006 to December 2011; and the post-crisis period, from January 2012 to December 2018. KP = 
Kleibergen-Paap weak instrument test. *** = Significant at 1 percent level. ** = Significant at 5 percent level. * = Significant at 
10 percent level. 
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Table 6. Structural model of real change in income (log) with time varying effect of years between 

transactions  

 

First stage 

Percent change in HPI 
0.541*** 

(0.0129) 

KP weak instrument F-statistic 1770 

Second stage 

Years between transactions in pre-boom period 
-0.0172*** 

(0.000972) 

Years between transactions in boom period 
-0.0301*** 

(0.00108) 

Years between transactions in bust period 
-0.0102*** 

(0.000814) 

Years between transactions in post-crisis period 
-0.00632*** 

(0.000941) 

Change in log price 
0.455*** 

(0.0145) 

MSA fixed effects 380 

Second-stage R-squared 0.052 

Observations 1,233,887 
 
Note: This table presents an extension of the structural model of real change in income (log) described in equation (7) with 
differential depreciation rates across periods, but assumes the same relationship for house prices across periods. This 
specification allows us to use all the observation pairs in this analysis, unlike the results in Table 5. The percent change in house 
price index (HPI) is used as instrument for change in log house price. Standard errors clustered as the MSA level in parentheses. 
KP = Kleibergen-Paap weak instrument test. *** = Significant at 1 percent level. ** = Significant at 5 percent level. *= Significant 
at 10 percent level. 
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Table 7. Examining the impacts of gentrification on real change in income (log)  

  Annual filtering rate Log real income change 

Years between transactions -- 
-0.00836*** -0.0128*** 

(0.00134) (0.000502) 

Change in log price 
0.0479*** 0.435*** 0.357*** 

(0.00115) (0.0327) (0.0131) 

In gentrification tract 
0.00373*** 

-- -- 
(0.00130) 

Gentrification tract × Years 
between transactions 

-- -- 
0.00352*** 

(0.000860) 

MSA fixed effects 380 215 380 

Second-stage R-squared 0.013 0.07 0.045 

First-stage coefficient on 
percent change in HPI 

-- 
0.854*** 0.611*** 

(0.0228) (0.0136) 

First-stage F statistics -- 1404 2011 

Sample Full Sample Gentrification tracts Full sample 

Observations 1,233,888 12,520 1,233,887 

 
Note: The first column displays the regression of the observation level filtering rates [see equation (5)] on the change in log 
prices and an indicator for being in a gentrification tract. The second column provides two-stage least squares (2SLS) estimates 
for the structural model restricted to only gentrification tracts. The third column provides 2SLS estimates for the structural 
model including an interaction term between “years between transactions” and being in a gentrification tract. Annual filtering 
rate is defined as log real income change divided by years between the transactions. Gentrification tract definition is from NCRC 
(2019). Standard errors clustered as the MSA level in parentheses. HPI = housing price index. *** = Significant at 1 percent 
level. ** = Significant at 5 percent level. * = Significant at 10 percent level. 
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Table 8. Structural model of real change in income (log) with Heckman correction 

  Without Heckman correction With Heckman correction 

First stage 

Percent change in HPI 
0.630*** 0.629*** 

(0.0141) (0.0139) 

KP weak instrument F-statistic 2003 2034 

Second stage 

Years between transactions 
-0.0124*** -0.0116*** 

(0.000499) (0.000476) 

Change in log price 
0.353*** 0.339*** 

(0.0135) (0.0126) 

Difference in inverse Mill's ratio 
-- 0.145*** 

-- (0.00956) 

MSA fixed effects 380 380 

Second-stage R-squared 0.044 0.046 

Observations 1,051,519 1,051,519 
Note: This table displays the structural model of real change in income (log) with Heckman correction described in equation (9) 
and without Heckman correction. The percent change in the housing price index (HPI) is used as instrument for change in log 
house price. Standard errors clustered as the MSA level in parentheses. KP = Kleibergen-Paap weak instrument test. *** = 
Significant at 1 percent level. ** = Significant at 5 percent level. * = Significant at 10 percent level. 
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Figure 6. Heckman correction: Linear model of real change in income (log) by MSA 

The Heckman correction slightly decrease the filtering rate for most MSAs. 

 

Note: The MSA filtering rate is estimated using equation (4), the linear model with no intercept.  The horizontal axis shows the 

filtering rate with the Heckman correction term, 𝛽(𝜆𝑡+𝜏,𝑖 − 𝜆𝑡,𝑖) for each MSA. The vertical axis shows the filtering rate without 

the Heckman correction term for the same MSA using the same sample. 
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Figure 7. Repeat income index estimates for construction age and effective age 
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Figure 8. Comparison of the MSA filtering estimates for construction age and effective age 
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Figure 9. Scatterplot of the MSA filtering estimates with filtering relative to median income 
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Appendix  

Table A1. Linear model of real change in income (log) by MSA  

 
Note: The filtering rate is estimated using equation (4), the linear model with no intercept. The 40-year percentage change is 

computed as [exp(40 ∗ 𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡) − 1] ∗ 100. Only the first city of each MSA is listed. 

  

MSA
Filtering Rate 

(log)

Standard 

Error

40-Year 

(%)
MSA

Filtering Rate 

(log)

Standard 

Error

40-Year 

(%)
MSA

Filtering Rate 

(log)

Standard 

Error

40-Year 

(%)
Topeka, KS -0.0161 0.0018 -47.38 Memphis, TN -0.0070 0.0008 -24.27 Pittsburgh, PA -0.0028 0.0007 -10.56
Macon, GA -0.0149 0.0020 -44.79 Oklahoma City, OK -0.0067 0.0008 -23.45 Salem, OR -0.0028 0.0012 -10.45
Jackson, MS -0.0148 0.0018 -44.59 Champaign, IL -0.0067 0.0014 -23.39 Lancaster, PA -0.0023 0.0010 -8.75
Fort Wayne, IN -0.0145 0.0009 -43.94 Cincinnati, OH -0.0067 0.0004 -23.36 York, PA -0.0022 0.0012 -8.53
Toledo, OH -0.0135 0.0008 -41.66 Baton Rouge, LA -0.0064 0.0012 -22.65 Ogden, UT -0.0021 0.0009 -7.87
Flint, MI -0.0132 0.0015 -40.95 Davenport, IA -0.0064 0.0010 -22.65 Madison, WI -0.0020 0.0008 -7.84
South Bend, IN -0.0131 0.0013 -40.86 Reading, PA -0.0063 0.0014 -22.15 Gainesvil le, FL -0.0020 0.0019 -7.69
Myrtle Beach, SC -0.0130 0.0021 -40.62 Boise City, ID -0.0062 0.0011 -21.90 Port St. Lucie, FL -0.0019 0.0019 -7.36
Spartanburg, SC -0.0130 0.0018 -40.55 Orlando, FL -0.0061 0.0006 -21.78 Fargo, ND -0.0019 0.0015 -7.32
Greensboro, NC -0.0125 0.0008 -39.32 Des Moines, IA -0.0061 0.0007 -21.75 Richmond, VA -0.0018 0.0007 -7.10
Youngstown, OH -0.0125 0.0017 -39.30 Fayetteville, AR -0.0061 0.0016 -21.71 Phoenix, AZ -0.0018 0.0004 -6.84
Evansville, IN -0.0122 0.0009 -38.52 Ann Arbor, MI -0.0061 0.0012 -21.62 Fresno, CA -0.0014 0.0013 -5.52
Terre Haute, IN -0.0120 0.0018 -38.02 Stockton, CA -0.0061 0.0012 -21.59 Spokane, WA -0.0014 0.0011 -5.33
Elkhart, IN -0.0116 0.0017 -37.12 Lincoln, NE -0.0061 0.0012 -21.49 Tampa, FL -0.0012 0.0005 -4.72
Lawrence, KS -0.0115 0.0020 -36.85 Louisvil le, KY -0.0059 0.0006 -21.05 Worcester, MA -0.0011 0.0008 -4.11
Owensboro, KY -0.0113 0.0016 -36.36 Chicago, IL -0.0058 0.0002 -20.83 Minneapolis, MN -0.0006 0.0003 -2.32
Hickory, NC -0.0112 0.0016 -36.06 St. Cloud, MN -0.0058 0.0013 -20.80 Louisvil le, KY -0.0004 0.0011 -1.76
Winston, NC -0.0112 0.0010 -36.06 Raleigh, NC -0.0058 0.0005 -20.77 New Haven, CT -0.0004 0.0009 -1.53
Mobile, AL -0.0111 0.0018 -35.85 Riverside, CA -0.0057 0.0006 -20.51 Asheville, NC -0.0003 0.0016 -1.28
Kennewick, WA -0.0107 0.0014 -34.84 Tucson, AZ -0.0056 0.0009 -20.00 Olympia, WA -0.0003 0.0017 -1.24
Grand Rapids, MI -0.0106 0.0006 -34.66 Rochester, NY -0.0056 0.0007 -19.94 Palm Bay, FL -0.0003 0.0012 -1.18
Akron, OH -0.0106 0.0009 -34.58 Waterloo, IA -0.0055 0.0018 -19.59 Miami, FL -0.0003 0.0004 -1.09
Las Vegas, NV -0.0105 0.0007 -34.16 Lynchburg, VA -0.0053 0.0021 -19.04 Manchester, NH -0.0003 0.0010 -1.01
Eau Claire, WI -0.0103 0.0018 -33.87 Omaha, NE -0.0053 0.0008 -19.01 Eugene, OR -0.0001 0.0011 -0.36
Green Bay, WI -0.0103 0.0015 -33.85 Tallahassee, FL -0.0052 0.0013 -18.71 Urban Honolulu, HI 0.0001 0.0015 0.51
Kalamazoo, MI -0.0103 0.0012 -33.77 Durham, NC -0.0051 0.0009 -18.36 Bridgeport, CT 0.0001 0.0009 0.58
Wichita, KS -0.0102 0.0011 -33.61 Cape Coral, FL -0.0050 0.0014 -18.19 Sacramento, CA 0.0003 0.0006 1.14
Bloomington, IL -0.0100 0.0012 -33.08 Modesto, CA -0.0050 0.0013 -18.03 Trenton, NJ 0.0005 0.0014 1.92
Detroit, MI -0.0099 0.0003 -32.62 Milwaukee, WI -0.0050 0.0006 -18.03 Portland, ME 0.0007 0.0013 2.70
Indianapolis, IN -0.0098 0.0005 -32.46 Charlotte, NC -0.0049 0.0005 -17.70 Bill ings, MT 0.0009 0.0019 3.54
Springfield, MO -0.0098 0.0012 -32.38 Lafayette, LA -0.0047 0.0017 -17.04 Philadelphia, PA 0.0009 0.0003 3.82
Rockford, IL -0.0098 0.0011 -32.35 Nashville, TN -0.0047 0.0006 -16.97 Albany, NY 0.0010 0.0010 3.95
Lansing, MI -0.0097 0.0010 -32.21 Athens, GA -0.0046 0.0020 -16.91 Providence, RI 0.0013 0.0008 5.21
Racine, WI -0.0097 0.0015 -32.02 Allentown, PA -0.0046 0.0009 -16.91 State College, PA 0.0013 0.0019 5.30
Columbia, SC -0.0095 0.0009 -31.70 Reno, NV -0.0044 0.0012 -16.27 Bellingham, WA 0.0015 0.0015 6.10
Tuscaloosa, AL -0.0095 0.0020 -31.70 Provo, UT -0.0044 0.0011 -16.07 Charleston, SC 0.0015 0.0010 6.18
Bowling Green, KY -0.0092 0.0018 -30.87 Pensacola, FL -0.0044 0.0016 -16.07 Burlington, VT 0.0018 0.0013 7.47
Columbus, GA -0.0091 0.0019 -30.59 Columbus, OH -0.0044 0.0005 -15.97 Duluth, MN 0.0018 0.0014 7.47
Greenville, SC -0.0091 0.0007 -30.54 Albuquerque, NM -0.0043 0.0009 -15.80 Denver, CO 0.0018 0.0004 7.64
Beaumont, TX -0.0091 0.0017 -30.40 Colorado Springs, CO -0.0042 0.0010 -15.43 Vallejo, CA 0.0019 0.0015 7.81
Lubbock, TX -0.0090 0.0017 -30.09 Mankato, MN -0.0042 0.0021 -15.30 Anchorage, AK 0.0020 0.0013 8.42
Augusta, GA -0.0089 0.0013 -29.87 Syracuse, NY -0.0041 0.0013 -15.02 New York, NY 0.0021 0.0003 8.63
Chattanooga, TN -0.0087 0.0012 -29.36 Jacksonville, FL -0.0040 0.0009 -14.85 Austin, TX 0.0025 0.0005 10.47
Cleveland, OH -0.0087 0.0007 -29.28 Savannah, GA -0.0039 0.0013 -14.58 Baltimore, MD 0.0026 0.0005 10.78
Little Rock, AR -0.0086 0.0011 -29.14 St. Louis, MO -0.0039 0.0004 -14.41 Virginia Beach, VA 0.0026 0.0009 10.83
Columbia, MO -0.0084 0.0014 -28.48 Houston, TX -0.0038 0.0003 -14.03 Salt Lake City, UT 0.0028 0.0011 11.63
Tulsa, OK -0.0083 0.0009 -28.25 New Orleans, LA -0.0037 0.0011 -13.89 Portland, OR 0.0035 0.0004 15.12
Canton, OH -0.0083 0.0015 -28.14 Greeley, CO -0.0036 0.0014 -13.52 Washington, DC 0.0042 0.0003 18.06
Peoria, IL -0.0081 0.0012 -27.67 Dallas, TX -0.0036 0.0003 -13.27 Bend, OR 0.0042 0.0019 18.15
Cedar Rapids, IA -0.0079 0.0011 -26.98 Deltona, FL -0.0035 0.0015 -13.20 Boston, MA 0.0043 0.0004 18.77
Kansas City, MO -0.0077 0.0004 -26.48 Buffalo, NY -0.0035 0.0009 -13.20 Boulder, CO 0.0047 0.0009 20.64
Huntington, WV -0.0077 0.0019 -26.42 Wilmington, NC -0.0035 0.0013 -12.92 Charlottesvil le, VA 0.0047 0.0018 20.68
Lakeland, FL -0.0073 0.0015 -25.44 Sioux Falls, SD -0.0035 0.0017 -12.92 Los Angeles, CA 0.0055 0.0004 24.41
El Paso, TX -0.0073 0.0019 -25.35 Harrisburg, PA -0.0033 0.0011 -12.51 San Diego, CA 0.0055 0.0006 24.71
Atlanta, GA -0.0073 0.0003 -25.17 Rochester, MN -0.0033 0.0011 -12.33 Oxnard, CA 0.0055 0.0010 24.76
Bakersfield, CA -0.0072 0.0014 -25.14 Roanoke, VA -0.0033 0.0013 -12.33 Santa Rosa, CA 0.0062 0.0013 28.04
Lexington, KY -0.0071 0.0008 -24.81 Hartford, CT -0.0031 0.0007 -11.52 Seattle, WA 0.0063 0.0004 28.76
Birmingham, AL -0.0071 0.0008 -24.66 San Antonio, TX -0.0030 0.0007 -11.13 San Jose, CA 0.0071 0.0008 32.58
Knoxville, TN -0.0071 0.0009 -24.63 Springfield, MA -0.0029 0.0015 -11.02 San Francisco, CA 0.0071 0.0006 33.00
Huntsvil le, AL -0.0070 0.0012 -24.51 North Port, FL -0.0029 0.0013 -10.95 Midland, TX 0.0086 0.0015 40.78
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Table A2. Heckman selection first stage summary statistics 

Variable Mean 

GSE indicator 0.41 

FICO 740 

LTV 79.89 

Loan amount 170115 

DTI 35.31 

One borrower 0.50 

One unit 0.98 

Fixed product 0.63 

30-yr product 0.80 

First time home buyer 0.50 

Sample size  4,465,886 

Year Sample size Year Sample size 

1995 131,019 2007 193,532 

1996 169,823 2008 144,100 

1997 195,329 2009 133,607 

1998 253,600 2010 114,156 

1999 251,110 2011 106,478 

2000 227,814 2012 117,086 

2001 242,300 2013 133,441 

2002 240,217 2014 133,059 

2003 251,286 2015 152,466 

2004 242,838 2016 171,802 

2005 256,140 2017 180,278 

2006 241,783 2018 182,622 
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Table A3. Heckman selection first stage probit regression 

Dependent Variable: Indicator of GSE loan 

Independent Variable Coefficient 
Standard 
Error 

Independent 
Variable Coefficient 

Standard 
Error 

FICO [650,700) 0.082 (0.004) Year1996  -0.058 (0.005) 

FICO [700,750) 0.330 (0.004) Year1997 -0.225 (0.005) 

FICO [750,800) 0.618 (0.004) Year1998 -0.173 (0.005) 

FICO >=800 0.746 (0.005) Year1999 -0.206 (0.005) 

LTV [80,95] 0.039 (0.002) Year2000 -0.235 (0.005) 

LTV (95,105) -0.749 (0.002) Year2001 -0.044 (0.005) 

Loan amount (5k,10k] 0.782 (0.003) Year2002 -0.039 (0.005) 

Loan amount (10k,20k] 1.004 (0.003) Year2003 0.021 (0.005) 

Loan amount (20k,40k] 0.977 (0.003) Year2004 -0.076 (0.005) 

Loan amount (40k,750k] 0.606 (0.017) Year2005 -0.176 (0.005) 

Loan amount >750k -1.730 (0.031) Year2006 -0.103 (0.005) 

DTI [30,43) -0.019 (0.002) Year2007 0.160 (0.005) 

DTI [43,50) -0.044 (0.002) Year2008 -0.056 (0.006) 

DTI [50,70] -0.034 (0.003) Year2009 -0.149 (0.006) 

One borrower indicator 0.078 (0.002) Year2010 -0.108 (0.006) 

One unit indicator 0.327 (0.006) Year2011 -0.066 (0.006) 

Fixed product 1.517 (0.002) Year2012 -0.050 (0.006) 

30 Yr product 0.830 (0.002) Year2013 -0.009 (0.006) 

First time home buyer  0.086 (0.002) Year2014 -0.019 (0.006) 

UPB>40k × one unit  -0.397 (0.017) Year2015 -0.068 (0.006) 

Constant -3.326 (0.009) Year2016 -0.030 (0.006) 

Sample size 4,465,886 Year2017 0.001 (0.006) 

R square 0.348 Year2018 -0.164 (0.006) 
Notes: This table provides probit regression estimates for the selection model described in equation (8) using NMDB data. The 

base categories in this regression are for FICO,  FICO<650; for UPB,  OUPB<10k; for DTI  DTI<30%; for LTV,  LTV<80; and for 

origination year the base is 1995. All estimates are significant at 1 percent except year 2013 and year 2017 indicator. 

We had also tried separate probit regression for each origination year and obtain very similar results for the second stage 
filtering rate estimates.  
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Table A4. Linear model of squared residuals on time between sales by MSA  

 

Note: The residuals used in this estimation are from the model using equation (4) and whose coefficients are reported in Table 

A1. The 8-year variance is computed by applying the linear model for that MSA to a time between sales of eight years, the 

national mean. Only the first city of each MSA is listed. 

  

MSA Intercept
Linear

Coeff

8-Year 

Var
MSA Intercept

Linear

Coeff

8-Year 

Var
MSA Intercept

Linear

Coeff

8-Year 

Var
Akron, OH 0.2292 0.0066 0.28 Fort Wayne, IN 0.2406 0.0063 0.29 Peoria, IL 0.2257 0.0068 0.28
Albany, NY 0.2358 0.0040 0.27 Fresno, CA 0.3015 0.0081 0.37 Philadelphia, PA 0.2378 0.0051 0.28
Albuquerque, NM 0.2641 0.0090 0.34 Gainesvil le, FL 0.3834 0.0005 0.39 Phoenix, AZ 0.2968 0.0062 0.35
Allentown, PA 0.2070 0.0074 0.27 Grand Rapids, MI 0.2513 0.0048 0.29 Pittsburgh, PA 0.2572 0.0047 0.29
Anchorage, AK 0.2286 0.0051 0.27 Greeley, CO 0.2527 0.0059 0.30 Port St. Lucie, FL 0.3755 0.0014 0.39
Ann Arbor, MI 0.2317 0.0078 0.29 Green Bay, WI 0.2552 0.0011 0.26 Portland, ME 0.2956 0.0003 0.30
Asheville, NC 0.3100 0.0102 0.39 Greensboro, NC 0.2614 0.0052 0.30 Portland, OR 0.2577 0.0060 0.31
Athens, GA 0.2491 0.0160 0.38 Greenville, SC 0.2403 0.0066 0.29 Providence, RI 0.2258 0.0032 0.25
Atlanta, GA 0.2287 0.0085 0.30 Harrisburg, PA 0.2365 0.0046 0.27 Provo, UT 0.2173 0.0113 0.31
Augusta, GA 0.2740 0.0074 0.33 Hartford, CT 0.2229 0.0047 0.26 Racine, WI 0.2556 -0.0008 0.25
Austin, TX 0.2334 0.0063 0.28 Hickory, NC 0.2339 0.0088 0.30 Raleigh, NC 0.2449 0.0046 0.28
Bakersfield, CA 0.2629 0.0073 0.32 Houston, TX 0.2269 0.0062 0.28 Reading, PA 0.2456 -0.0002 0.24
Baltimore, MD 0.2526 0.0036 0.28 Huntington, WV 0.2618 0.0050 0.30 Reno, NV 0.3049 0.0055 0.35
Baton Rouge, LA 0.2555 0.0054 0.30 Huntsvil le, AL 0.2391 0.0058 0.29 Richmond, VA 0.2423 0.0064 0.29
Beaumont, TX 0.2569 0.0034 0.28 Indianapolis, IN 0.2465 0.0056 0.29 Riverside, CA 0.3293 0.0018 0.34
Bellingham, WA 0.2854 0.0062 0.33 Jackson, MS 0.2298 0.0082 0.30 Roanoke, VA 0.2594 0.0062 0.31
Bend, OR 0.3596 0.0084 0.43 Jacksonville, FL 0.2581 0.0083 0.32 Rochester, MN 0.2821 0.0028 0.30
Bill ings, MT 0.2489 0.0084 0.32 Kalamazoo, MI 0.2029 0.0086 0.27 Rochester, NY 0.2477 0.0039 0.28
Birmingham, AL 0.2661 0.0067 0.32 Kansas City, MO 0.2223 0.0117 0.32 Rockford, IL 0.2103 0.0069 0.27
Bloomington, IL 0.2272 0.0027 0.25 Kennewick, WA 0.2289 0.0070 0.29 Sacramento, CA 0.3133 0.0039 0.34
Boise City, ID 0.3423 0.0088 0.41 Knoxville, TN 0.2407 0.0076 0.30 Salem, OR 0.2754 0.0054 0.32
Boston, MA 0.2331 0.0025 0.25 Lafayette, LA 0.2278 0.0107 0.31 Salt Lake City, UT 0.2754 0.0040 0.31
Boulder, CO 0.2720 0.0053 0.31 Lakeland, FL 0.2674 0.0065 0.32 San Antonio, TX 0.2576 0.0053 0.30
Bowling Green, KY 0.2367 0.0071 0.29 Lancaster, PA 0.2695 0.0014 0.28 San Diego, CA 0.2899 0.0019 0.30
Bridgeport, CT 0.2287 0.0050 0.27 Lansing, MI 0.2800 0.0014 0.29 San Francisco, CA 0.2715 0.0035 0.30
Buffalo, NY 0.2570 0.0028 0.28 Las Vegas, NV 0.3318 0.0054 0.38 San Jose, CA 0.2435 0.0038 0.27
Burlington, VT 0.2697 0.0032 0.30 Lawrence, KS 0.2500 0.0173 0.39 Santa Rosa, CA 0.2922 0.0067 0.35
Canton, OH 0.2499 0.0038 0.28 Lexington, KY 0.2442 0.0073 0.30 Savannah, GA 0.2254 0.0118 0.32
Cape Coral, FL 0.3265 0.0074 0.39 Lincoln, NE 0.2602 0.0012 0.27 Seattle, WA 0.2500 0.0047 0.29
Cedar Rapids, IA 0.1982 0.0044 0.23 Little Rock, AR 0.2786 0.0061 0.33 Sioux Falls, SD 0.2495 0.0041 0.28
Champaign, IL 0.3214 0.0026 0.34 Los Angeles, CA 0.2649 0.0049 0.30 South Bend, IN 0.2226 0.0088 0.29
Charleston, SC 0.2825 0.0055 0.33 Louisvil le, KY 0.2489 0.0074 0.31 Spartanburg, SC 0.2691 0.0071 0.33
Charlotte, NC 0.2494 0.0069 0.30 Lubbock, TX 0.2630 0.0076 0.32 Spokane, WA 0.2989 0.0059 0.35
Charlottesvil le, VA 0.2843 0.0051 0.33 Lynchburg, VA 0.2752 0.0068 0.33 Springfield, MA 0.2418 0.0031 0.27
Chattanooga, TN 0.2438 0.0062 0.29 Macon, GA 0.2328 0.0092 0.31 Springfield, MO 0.3125 0.0036 0.34
Chicago, IL 0.2297 0.0041 0.26 Madison, WI 0.2417 0.0033 0.27 St. Cloud, MN 0.2968 0.0011 0.31
Cincinnati, OH 0.2400 0.0055 0.28 Manchester, NH 0.2447 0.0006 0.25 St. Louis, MO 0.2456 0.0053 0.29
Cleveland, OH 0.2340 0.0063 0.28 Mankato, MN 0.2397 0.0069 0.29 State College, PA 0.2041 0.0076 0.27
Colorado Springs, CO 0.2617 0.0048 0.30 Memphis, TN 0.2220 0.0083 0.29 Stockton, CA 0.2909 0.0034 0.32
Columbia, MO 0.2797 0.0055 0.32 Miami, FL 0.2666 0.0052 0.31 Syracuse, NY 0.2482 0.0017 0.26
Columbia, SC 0.2549 0.0086 0.32 Midland, TX 0.2437 0.0020 0.26 Tallahassee, FL 0.2593 0.0085 0.33
Columbus, GA 0.2339 0.0081 0.30 Milwaukee, WI 0.2387 0.0026 0.26 Tampa, FL 0.2761 0.0063 0.33
Columbus, OH 0.2451 0.0041 0.28 Minneapolis, MN 0.2411 0.0051 0.28 Terre Haute, IN 0.2792 0.0028 0.30
Dallas, TX 0.2339 0.0054 0.28 Mobile, AL 0.2897 0.0031 0.31 Toledo, OH 0.2663 0.0038 0.30
Davenport, IA 0.2068 0.0091 0.28 Modesto, CA 0.3317 0.0003 0.33 Topeka, KS 0.1551 0.0282 0.38
Deltona, FL 0.3221 0.0070 0.38 Myrtle Beach, SC 0.3351 0.0096 0.41 Trenton, NJ 0.2272 0.0034 0.25
Denver, CO 0.2646 0.0050 0.30 Nashville, TN 0.2591 0.0067 0.31 Tucson, AZ 0.3624 0.0025 0.38
Des Moines, IA 0.2132 0.0032 0.24 New Haven, CT 0.2184 0.0039 0.25 Tulsa, OK 0.2570 0.0072 0.31
Detroit, MI 0.2293 0.0047 0.27 New Orleans, LA 0.2520 0.0069 0.31 Tuscaloosa, AL 0.3055 0.0002 0.31
Duluth, MN 0.3047 0.0043 0.34 New York, NY 0.2339 0.0028 0.26 Urban Honolulu, HI 0.2913 -0.0009 0.28
Durham, NC 0.2871 0.0055 0.33 North Port, FL 0.3207 0.0068 0.37 Vallejo, CA 0.2963 0.0024 0.32
Eau Claire, WI 0.1934 0.0105 0.28 Ogden, UT 0.2388 0.0045 0.27 Virginia Beach, VA 0.2170 0.0080 0.28
El Paso, TX 0.2407 0.0112 0.33 Oklahoma City, OK 0.2634 0.0069 0.32 Washington, DC 0.2316 0.0049 0.27
Elkhart, IN 0.3200 -0.0017 0.31 Olympia, WA 0.2294 0.0083 0.30 Waterloo, IA 0.1843 0.0106 0.27
Eugene, OR 0.2711 0.0080 0.33 Omaha, NE 0.2384 0.0032 0.26 Wichita, KS 0.2191 0.0095 0.30
Evansville, IN 0.2511 0.0056 0.30 Orlando, FL 0.2825 0.0053 0.32 Wilmington, NC 0.3191 0.0047 0.36
Fargo, ND 0.2204 0.0058 0.27 Owensboro, KY 0.2897 0.0050 0.33 Winston, NC 0.2673 0.0041 0.30
Fayetteville, AR 0.2221 0.0104 0.31 Oxnard, CA 0.2640 0.0030 0.29 Worcester, MA 0.2205 0.0037 0.25
Flint, MI 0.2520 0.0063 0.30 Palm Bay, FL 0.2693 0.0088 0.34 York, PA 0.2217 0.0064 0.27
Fort Collins, CO 0.2839 0.0059 0.33 Pensacola, FL 0.2656 0.0104 0.35 Youngstown, OH 0.2478 0.0057 0.29
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Table A5. Comparison of the MSA filtering estimates with filtering relative to median income 

 

 

MSA
Filtering Rate 

(log)

Relative to Median 

(log)
MSA

Filtering Rate 

(log)

Relative to Median 

(log)
MSA

Filtering Rate 

(log)

Relative to Median 

(log)
Topeka, KS -0.0161 -0.0134 Memphis, TN -0.0070 -0.0021 Pittsburgh, PA -0.0028 -0.0065
Macon, GA -0.0149 -0.0039 Oklahoma City, OK -0.0067 -0.0083 Salem, OR -0.0028 -0.0006
Jackson, MS -0.0148 -0.0142 Champaign, IL -0.0067 -0.0044 Lancaster, PA -0.0023 -0.0011
Fort Wayne, IN -0.0145 -0.0064 Cincinnati, OH -0.0067 -0.0050 York, PA -0.0022 -0.0010
Toledo, OH -0.0135 -0.0061 Baton Rouge, LA -0.0064 -0.0092 Ogden, UT -0.0021 -0.0039
Flint, MI -0.0132 0.0027 Davenport, IA -0.0064 -0.0055 Madison, WI -0.0020 -0.0028
South Bend, IN -0.0131 -0.0061 Reading, PA -0.0063 -0.0038 Gainesville, FL -0.0020 -0.0056
Myrtle Beach, SC -0.0130 -0.0103 Boise City, ID -0.0062 -0.0023 Port St. Lucie, FL -0.0019 0.0030
Spartanburg, SC -0.0130 -0.0075 Orlando, FL -0.0061 -0.0023 Fargo, ND -0.0019 -0.0077
Greensboro, NC -0.0125 -0.0025 Des Moines, IA -0.0061 -0.0083 Richmond, VA -0.0018 -0.0012
Youngstown, OH -0.0125 -0.0052 Fayetteville, AR -0.0061 -0.0094 Phoenix, AZ -0.0018 -0.0004
Evansville, IN -0.0122 -0.0083 Ann Arbor, MI -0.0061 -0.0028 Fresno, CA -0.0014 -0.0014
Terre Haute, IN -0.0120 -0.0094 Stockton, CA -0.0061 -0.0073 Spokane, WA -0.0014 -0.0032
Elkhart, IN -0.0116 -0.0033 Lincoln, NE -0.0061 -0.0046 Tampa, FL -0.0012 -0.0008
Lawrence, KS -0.0115 -0.0126 Louisville, KY -0.0059 -0.0034 Worcester, MA -0.0011 -0.0028
Owensboro, KY -0.0113 -0.0094 Chicago, IL -0.0058 -0.0033 Minneapolis, MN -0.0006 -0.0004
Hickory, NC -0.0112 0.0005 St. Cloud, MN -0.0058 -0.0052 Fort Collins, CO -0.0004 0.0000
Winston, NC -0.0112 -0.0009 Raleigh, NC -0.0058 -0.0055 New Haven, CT -0.0004 0.0018
Mobile, AL -0.0111 -0.0063 Riverside, CA -0.0057 -0.0066 Asheville, NC -0.0003 0.0019
Kennewick, WA -0.0107 -0.0080 Tucson, AZ -0.0056 -0.0043 Olympia, WA -0.0003 -0.0020
Grand Rapids, MI -0.0106 -0.0051 Rochester, NY -0.0056 0.0010 Palm Bay, FL -0.0003 0.0032
Akron, OH -0.0106 -0.0060 Waterloo, IA -0.0055 -0.0056 Miami, FL -0.0003 0.0024
Las Vegas, NV -0.0105 -0.0045 Lynchburg, VA -0.0053 -0.0022 Manchester, NH -0.0003 -0.0022
Eau Claire, WI -0.0103 -0.0104 Omaha, NE -0.0053 -0.0065 Eugene, OR -0.0001 0.0021
Green Bay, WI -0.0103 -0.0063 Tallahassee, FL -0.0052 -0.0024 Urban Honolulu, HI 0.0001 -0.0014
Kalamazoo, MI -0.0103 -0.0028 Durham, NC -0.0051 -0.0037 Bridgeport, CT 0.0001 -0.0016
Wichita, KS -0.0102 -0.0056 Cape Coral, FL -0.0050 -0.0012 Sacramento, CA 0.0003 -0.0015
Bloomington, IL -0.0100 -0.0094 Milwaukee, WI -0.0050 0.0007 Trenton, NJ 0.0005 0.0009
Detroit, MI -0.0099 -0.0011 Modesto, CA -0.0050 -0.0047 Portland, ME 0.0007 -0.0023
Indianapolis, IN -0.0098 -0.0038 Charlotte, NC -0.0049 -0.0004 Billings, MT 0.0009 -0.0034
Springfield, MO -0.0098 -0.0073 Lafayette, LA -0.0047 -0.0088 Philadelphia, PA 0.0009 0.0014
Rockford, IL -0.0098 -0.0025 Nashville, TN -0.0047 -0.0028 Albany, NY 0.0010 -0.0030
Lansing, MI -0.0097 -0.0023 Allentown, PA -0.0046 -0.0042 Providence, RI 0.0013 -0.0006
Racine, WI -0.0097 -0.0023 Athens, GA -0.0046 -0.0026 State College, PA 0.0013 -0.0037
Columbia, SC -0.0095 -0.0054 Reno, NV -0.0044 0.0007 Bellingham, WA 0.0015 0.0009
Tuscaloosa, AL -0.0095 -0.0124 Pensacola, FL -0.0044 -0.0057 Charleston, SC 0.0015 -0.0030
Bowling Green, KY -0.0092 -0.0081 Provo, UT -0.0044 -0.0092 Burlington, VT 0.0018 0.0002
Columbus, GA -0.0091 -0.0077 Columbus, OH -0.0044 -0.0033 Duluth, MN 0.0018 0.0004
Greenville, SC -0.0091 -0.0048 Albuquerque, NM -0.0043 0.0004 Denver, CO 0.0018 -0.0009
Beaumont, TX -0.0091 -0.0075 Colorado Springs, CO -0.0042 -0.0042 Vallejo, CA 0.0019 0.0016
Lubbock, TX -0.0090 -0.0126 Mankato, MN -0.0042 -0.0036 Anchorage, AK 0.0020 0.0020
Augusta, GA -0.0089 -0.0043 Syracuse, NY -0.0041 -0.0035 New York, NY 0.0021 0.0003
Chattanooga, TN -0.0087 -0.0063 Jacksonville, FL -0.0040 -0.0015 Austin, TX 0.0025 -0.0023
Cleveland, OH -0.0087 -0.0024 Savannah, GA -0.0039 -0.0045 Baltimore, MD 0.0026 -0.0027
Little Rock, AR -0.0086 -0.0052 St. Louis, MO -0.0039 -0.0014 Virginia Beach, VA 0.0026 -0.0001
Columbia, MO -0.0084 -0.0071 Houston, TX -0.0038 -0.0048 Salt Lake City, UT 0.0028 -0.0009
Tulsa, OK -0.0083 -0.0075 New Orleans, LA -0.0037 -0.0042 Portland, OR 0.0035 0.0003
Canton, OH -0.0083 -0.0029 Greeley, CO -0.0036 -0.0108 Washington, DC 0.0042 -0.0021
Peoria, IL -0.0081 -0.0069 Dallas, TX -0.0036 -0.0025 Bend, OR 0.0042 0.0023
Cedar Rapids, IA -0.0079 -0.0086 Buffalo, NY -0.0035 -0.0036 Boston, MA 0.0043 -0.0019
Kansas City, MO -0.0077 -0.0060 Deltona, FL -0.0035 0.0002 Boulder, CO 0.0047 0.0006
Huntington, WV -0.0077 -0.0073 Sioux Falls, SD -0.0035 -0.0062 Charlottesville, VA 0.0047 0.0005
Lakeland, FL -0.0073 -0.0050 Wilmington, NC -0.0035 -0.0018 Los Angeles, CA 0.0055 0.0034
El Paso, TX -0.0073 -0.0063 Harrisburg, PA -0.0033 -0.0031 San Diego, CA 0.0055 -0.0012
Atlanta, GA -0.0073 -0.0018 Roanoke, VA -0.0033 -0.0003 Oxnard, CA 0.0055 0.0049
Bakersfield, CA -0.0072 -0.0070 Rochester, MN -0.0033 -0.0049 Santa Rosa, CA 0.0062 0.0033
Lexington, KY -0.0071 -0.0052 Hartford, CT -0.0031 -0.0024 Seattle, WA 0.0063 -0.0017
Birmingham, AL -0.0071 -0.0063 San Antonio, TX -0.0030 -0.0049 San Jose, CA 0.0071 -0.0031
Knoxville, TN -0.0071 -0.0064 Springfield, MA -0.0029 -0.0012 San Francisco, CA 0.0071 -0.0011
Huntsville, AL -0.0070 -0.0055 North Port, FL -0.0029 -0.0020 Midland, TX 0.0086 -0.0066


