Spillovers and Redistribution through Intra-Firm Networks: The Product Replacement Channel

Jay Hyun1 Ryan Kim2

1HEC Montréal
2Johns Hopkins University

Econometric Society Winter Meeting, Poster Presentation (Audio Version Slide)

December 31, 2020
Motivation

Q. How do regional shocks spill over across regions & reshape regional welfare?

- A long-standing question in macro/trade, relevant in within-county contexts
e.g., A sudden differential collapse in local housing markets in Great Recession

This Paper

- **Intra-firm networks** of producers who sell in multiple counties/states
 ⇒ important firms, but ambiguous direction of spillovers

- **Empirics**: provide causal evidence of within-firm regional spillovers and identify a novel mechanism behind

- **Model**: formalize the mechanism & discuss aggregate implications
Summary: Empiric

By exploiting a detailed micro-data including a million of barcodes and producer info. & sudden differential \(\downarrow\) in local house prices in 07-09,

(1) Firm's local sales **decrease** w.r.t. not only **direct local demand shock** but also firm’s **average indirect local demand shock** originating in its **other markets**
(2) **Why? We show that**

- Such *spillover* driven by *extensive margin response* from product replacement (while *direct local shock* \Rightarrow *intensive margin* from continuing products)

- Product replacements typically *synchronized across many markets*
 - Shocks hitting other mkts induce product replacement even in “not hit” mkt
 - Firms *downgrade products* (organic \rightarrow non-organic, expensive \rightarrow cheap etc.)
1. What are real world examples of synchronized product replacements?

- Kraft Foods Inc. produces both organic and non-organic cheese

(a) Organic Cheese
(b) Non-organic Cheese

- Organic: sold in 11 states in 2007, exited all the states in 2009
- Non-organic: uniformly entered in the same states
- Despite a large variation in regional shocks: -5% (PA) to -23% (MD)

2. We address potential endogeneity concerns in depth
Summary: Theory

Empiric: replacing high- to low- value products, which are synchronized across many markets

(2) Mechanism

A. producers facing negative demand shocks lower their product quality
 - because of the (i) scale effect and (ii) non-homotheticity

B. in doing so, they do it in multiple markets simultaneously
 - because of the local-firm-specific fixed cost of product replacement

(3) Implication: mitigates the regional consumption inequality

- many regions face the same quality goods: a novel risk-sharing mechanism
- std(consumption growth) ↓ by 30% w/ the mechanism, ≈ $400 per HH
Related Literature

Networks, Spillovers, and Macroeconomy
- Multi-Market: Berman et al. 15, Ahn & Mcquoid 17, Almunia et al. 18, Erbahar 18
- Multi-Establishment: Carvino & Levchenko 17, Gilbert 18, Giroud & Mueller 19
- Trade & Supply Chain: di Giovanni & Levchenko 10, Acemoglu et al. 16, Stumpner 17, Caliendo et al. 18, Arkolakis et al. 18, Auerbach et al. 19, Boehm et al. 19
- Banking Networks (Acemoglu et al. 15, Gilje et al. 16, Mitchener & Richardson 19); Migration (House et al. 18); Social Networks (Bailey et al. 18)

Housing Market Collapse and the Great Recession
- Mian et al. 13, Mian & Sufi 14, Stroebel & Vavra 19, Kaplan et al. 16, Giroud & Mueller 17, Beraja et al. 19

Variety/Quality Changes & Distributional Implications
- Broda & Weinstein 10, Schmitt-Grohe and Uribe 12, Nakamura & Steinsson 12, Hottman et al. 16 Dingel 17, Jaimovich et al. 17, Argente et al. 18, Jaravel 18, Medina 20, Faber & Fally 20

Business Cycle Comovement
- Backus et al. 92, Frankel & Rose 98, Kose & Yi 06, Johnson 14, Liao & Santacreu 15, Cravino & Levchenko 17, di Giovanni et al. 18

Regional Risk-Sharing/Redistribution
- Asdrubali et al. 96, Lustig & Van Nieuwerburgh 10, Hurst et al. 16

Uniform Pricing in Retail Sector
- DellaVigna and Gentzkow 17, Cavallo 18, Hitsch et al. 19
Empirical Specification

- Data: regional house price + barcode-region level p,q + producer info.

\[\tilde{S}_{rf} = \beta_0 + \delta_s + \beta_1 \tilde{\Delta}H P_r + \beta_2 \tilde{\Delta}H P_{rf} \text{ (other)} + \text{Controls}_{rf} + \varepsilon_{rf} \]

(1)

where \(r \): region (county/state), \(f \): firm, \(\tilde{\Delta}X \): growth rate of \(X \) in 07-09
\(\delta_s \): primary sector FE

- \(\beta_2 \): the effect of regional shocks hitting other markets of firm \(f \) conditional on direct local demand
 - Indirect Shock: \(\tilde{\Delta}H P_{rf} \text{ (other)} = \sum_{r' \neq r} \omega_{r'f} \times \tilde{\Delta}H P_{r'} \) - Also consider similarly constructed IVs
 - No prior on \(\beta_2 \) \(\Rightarrow \) We get \(\beta_2 > 0 \)

- \(\beta_1 \): the effect of direct regional shock in region \(r \)
 - Similar to Mian et al. (13), Kaplan et al. (16) \(\Rightarrow \) We expect \(\beta_1 > 0 \)
 - Also consider region x sector FE instead of including \(\tilde{\Delta}H P_r \)
Key Identifying Assumption

\[\tilde{\Delta} S_{rf} = \beta_0 + \delta_s + \beta_1 \tilde{\Delta} HP_r + \beta_2 \tilde{\Delta} HP_{rf} \text{ (other)} + \text{Controls}_{rf} + \varepsilon_{rf} \]

Any confounding factor that affects firm’s local sales growth does not simultaneously affect its other market house price growth

Threats to identification

- Common or clustered regional shocks?

- Alternative channels?
Visualization

$$\tilde{\Delta}S_{rf} = \beta_0 + \delta_s + \beta_1 \tilde{\Delta}HP_r + \beta_2 \tilde{\Delta}HP_{rf} \text{ (other)} + \text{Controls}_{rf} + \varepsilon_{rf}$$

Local sales respond to both direct and indirect shocks

Scatter plots (25 bins based on ventiles) depicting the relationship between (residualized) $\tilde{\Delta}S_{rf}$ and either $\tilde{\Delta}HP_r$ or $\tilde{\Delta}HP_{rf}$ (other), where each point is the sales-weighted average across obs. within each bin. We use Frisch-Waugh theorem to tease out the effect.
Local sales respond to both **direct** and **indirect** shocks

\[\tilde{\Delta}S_{rf} = \beta_0 + \delta_s + \beta_1 \tilde{\Delta}HP_r + \beta_2 \tilde{\Delta}HP_{rf} \text{ (other)} + \text{Controls}_{rf} + \varepsilon_{rf} \]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{\Delta}HP_r)</td>
<td>0.059**</td>
<td>0.051**</td>
<td>0.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.024)</td>
<td>(0.014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tilde{\Delta}HP_{rf} \text{ (other)})</td>
<td>0.345***</td>
<td>0.025</td>
<td>0.320***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.110)</td>
<td>(0.067)</td>
<td>(0.093)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sector FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>county controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>county-firm controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.201</td>
<td>0.223</td>
<td>0.284</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>840,681</td>
<td>840,681</td>
<td>840,681</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. County controls: all controls in Mian and Sufi 14. County-firm controls: log initial county-firm specific sales, log initial firm-level sales, log initial number of local markets, and log initial number of product groups. Regressions weighted by county-firm initial sales. Standard errors double clustered at state-sector level.
Direct effect works through the intensive margin

\[\tilde{\Delta}S_{rf} = \beta_0 + \delta_s + \beta_1 \tilde{\Delta}HP_r + \beta_2 \tilde{\Delta}HP_{rf} \text{ (other)} + \text{Controls}_{rf} + \varepsilon_{rf} \]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{\Delta}S_{rf})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tilde{\Delta}HP_r)</td>
<td>0.059**</td>
<td>0.051**</td>
<td>0.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.024)</td>
<td>(0.014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tilde{\Delta}HP_{rf} \text{ (other)})</td>
<td>0.345***</td>
<td>0.025</td>
<td>0.320***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.110)</td>
<td>(0.067)</td>
<td>(0.093)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sector FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>county controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>county-firm controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.201</td>
<td>0.223</td>
<td>0.284</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>840,681</td>
<td>840,681</td>
<td>840,681</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. County controls: all controls in Mian and Sufi 14. County-firm controls: log initial county-firm specific sales, log initial firm-level sales, log initial number of local markets, and log initial number of product groups. Regressions weighted by county-firm initial sales. Standard errors double clustered at state-sector level.
Spillover effect works through the extensive margin

\[\tilde{\Delta}S_{rf} = \beta_0 + \delta_s + \beta_1 \tilde{\Delta}HP_r + \beta_2 \tilde{\Delta}HP_{rf} \text{ (other)} + \text{Controls}_{rf} + \varepsilon_{rf} \]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{\Delta}HP_r)</td>
<td>0.059**</td>
<td>0.051**</td>
<td>0.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.024)</td>
<td>(0.014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tilde{\Delta}HP_{rf}) (other)</td>
<td>0.345***</td>
<td>0.025</td>
<td>0.320***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.110)</td>
<td>(0.067)</td>
<td>(0.093)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sector FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>county controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>county-firm controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.201</td>
<td>0.223</td>
<td>0.284</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>840,681</td>
<td>840,681</td>
<td>840,681</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. County controls: all controls in Mian and Sufi 14. County-firm controls: log initial county-firm specific sales, log initial firm-level sales, log initial number of local markets, and log initial number of product groups. Regressions weighted by county-firm initial sales. Standard errors double clustered at state-sector level.
Spillover effect works through the extensive margin
⇒ robust to county x sector FE

\[\tilde{\Delta} S_{rf} = \beta_0 + \delta_{rs} + \beta_2 \tilde{\Delta} H P_{rf} \text{ (other)} + \text{Controls}_{rf} + \varepsilon_{rf} \]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{\Delta} S_{rf})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tilde{\Delta} S^C_{rf})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tilde{\Delta} S^R_{rf})</td>
<td></td>
<td></td>
<td>0.419***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>county x sector FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>county-firm controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.392</td>
<td>0.427</td>
<td>0.408</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>840,681</td>
<td>840,681</td>
<td>840,681</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. County-firm controls: log initial county-firm specific sales, log initial firm-level sales, log initial number of local markets, and log initial number of product groups. Regressions weighted by county-firm initial sales. Standard errors double clustered at state-sector level.
Spillover effect works through the extensive margin through products replaced in multiple markets

\(\tilde{\Delta}S_{rf} = \beta_0 + \delta_{rs} + \beta_2 \tilde{\Delta}H_{rf}\) (other) + Controls\(_{rf}\) + \(\varepsilon_{rf}\)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{\Delta}S_{rf})</td>
<td>(0.398^{***})</td>
<td>-0.021</td>
<td>(0.419^{***})</td>
<td>0.418^{***}</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.105)</td>
<td>(0.045)</td>
<td>(0.102)</td>
<td>(0.101)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>(\tilde{\Delta}H_{rf}) (other)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>county x sector FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>county-firm controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.392</td>
<td>0.427</td>
<td>0.408</td>
<td>0.408</td>
<td>0.216</td>
</tr>
<tr>
<td>Observations</td>
<td>840,681</td>
<td>840,681</td>
<td>840,681</td>
<td>840,681</td>
<td>840,681</td>
</tr>
</tbody>
</table>

Note. County-firm controls: log initial county-firm specific sales, log initial firm-level sales, log initial number of local markets, and log initial number of product groups. Regressions weighted by county-firm initial sales. Standard errors double clustered at state-sector level.
Spillover effect works through the extensive margin through products replaced in multiple markets from high- to low-valued products

\[\tilde{\Delta}v_{rf} = \beta_0 + \delta_{rs} + \beta_2 \tilde{\Delta}HP_{rf} \text{ (other)} + \text{Controls}_{rf} + \varepsilon_{rf} \]

(1) (2) (3) (4) (5)

\[\tilde{\Delta}v_{rf} \equiv \frac{v_{\text{enter},09} - v_{\text{exit},07}}{v_{rf}} \]

where \(v_{rf} = \frac{\text{sale per upc}}{\text{price group-adj.}} \cdot \frac{\text{organic sale}}{\# \text{ of upc}} \)

<table>
<thead>
<tr>
<th>(\tilde{\Delta}HP_{rf} \text{ (other)})</th>
<th>0.52**</th>
<th>0.92**</th>
<th>0.70**</th>
<th>43.78**</th>
<th>-0.06</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.21)</td>
<td>(0.44)</td>
<td>(0.34)</td>
<td>(17.88)</td>
<td>(0.17)</td>
</tr>
<tr>
<td>region x sector FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>region-firm controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.40</td>
<td>0.41</td>
<td>0.42</td>
<td>0.38</td>
<td>0.40</td>
</tr>
<tr>
<td>Observations</td>
<td>464,423</td>
<td>461,672</td>
<td>461,672</td>
<td>27,930</td>
<td>464,423</td>
</tr>
</tbody>
</table>

Note. For organic share, we use state as a unit of region.
Spillover effect works through the extensive margin through products replaced in multiple markets
⇒ not through simple reduction of variety

\[\tilde{\Delta}v_{rf} = \beta_0 + \delta_{rs} + \beta_2 \tilde{\Delta}HP_{rf} \text{ (other)} + \text{Controls}_{rf} + \varepsilon_{rf} \]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{\Delta}v_{rf} \equiv \frac{v_{enter,09} - v_{exit,07}}{\bar{v}_{rf}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

where \(v_{rf} = \text{sale per upc} \) price \(\text{price}^{\text{group-adj.}} \) organic sale \(\# \text{ of upc} \)

\(\tilde{\Delta}HP_{rf} \) (other) | 0.52** | 0.92** | 0.70** | 43.78** | -0.06 |
| (0.21) | (0.44) | (0.34) | (17.88) | (0.17) |

region × sector FE | ✓ | ✓ | ✓ | ✓ | ✓ |
region-firm controls | ✓ | ✓ | ✓ | ✓ | ✓ |
R-squared | 0.40 | 0.41 | 0.42 | 0.38 | 0.40 |
Observations | 464,423 | 461,672 | 461,672 | 27,930 | 464,423 |

Note. For organic share, we use state as a unit of region.
Key Identifying Assumption: Further Robustness Check

\[\tilde{S}_{rf} = \beta_0 + \delta_s + \beta_1 \tilde{HP}_r + \beta_2 \tilde{HP}_{rf} \text{ (other)} + \text{Controls}_{rf} + \varepsilon_{rf} \]

Any confounding factor that affects firm’s local sales growth does not simultaneously affect its other market house price growth

Threats to identification

- **Common or clustered regional shocks?**
 - \(\tilde{HP}_{rf} \text{ (other)} \): exclude nearby counties
 - state-firm-level regression

- **Alternative channels?**
 - supply-side/collateral channel? \(\Rightarrow \tilde{HP}_{rf} \text{ (other)} \): exclude regions with plants
 - not driven by retailer
 - not driven by clientele effect
 - and many others ...

Further Results

- **Heterogeneous treatment effect**
Model Setup

Purpose: Formalize spillover mechanism & discuss aggregate implication ⇒

Multi-region model with endogenous quality-adjustments by firms

⇒ **Two key mechanisms** to match the empirical finding

(1) **producers facing negative demand shocks lower their product quality**
 - **scale effect:** Firms’ fixed cost increases with product quality
 - **nonhomotheticity:** HHs switch from high- to low-quality if income ⇓

(2) **firms choose uniform product quality across markets**
 - to avoid the local-firm-specific fixed cost of product replacement

∗ **Scale Effect:**

\[
\max_{\phi_f, \{p_{rf}\}_r} \pi_f = \sum_r [p_{rf} - mc(\phi_f; a_f)] Q_{rf} - [f(\phi_f) + f_0]
\]

⇒ **scale effect:** fixed cost \(f(\phi_f) \) increases in intrinsic product quality \(\phi_f \)
Model Setup

Purpose: Formalize spillover mechanism & discuss aggregate implication ⇒

Multi-region model with endogenous quality-adjustments by firms

⇒ **Two key mechanisms** to match the empirical finding

(1) **producers facing negative demand shocks lower their product quality**
 - *scale effect:* Firms’ fixed cost increases with product quality
 - *nonhomotheticity:* HHs switch from high- to low-quality if income ↓

(2) firms choose uniform product quality across markets
 - to avoid the local-firm-specific fixed cost of product replacement

Nonhomotheticity:

\[
U_r = \left[\int_{f \in G_r} (q_{rf} \xi_{rf})^{\frac{\sigma-1}{\sigma}} df \right]^{\frac{\sigma}{\sigma-1}}
\]

(\(r: \text{ region}, \ f: \text{ firm}, \ G_r: \text{ set of firms selling in market } r\))

⇒ \(\xi_{rf} \equiv (\phi_f)^{\gamma_r}\): “perceived” product quality of firm \(f\) in region \(r\)

⇒ nonhomothetic: \(\gamma_r \equiv \gamma(\text{Income}_r)\) increases with \(\text{Income}_r\)
Model Setup

Purpose: Formalize spillover mechanism & discuss aggregate implication ⇒

Multi-region model with endogenous quality-adjustments by firms

⇒ **Two key mechanisms** to match the empirical finding

(1) producers facing negative demand shocks lower their product quality
 - scale effect: Firms’ fixed cost increases with product quality
 - nonhomotheticity: HHs switch from high- to low-quality if income ↓

(2) firms choose uniform product quality across markets
 - to avoid the local-firm-specific fixed cost of product replacement

* Uniform vs Market-specific Product Quality:

\[
\max_{\phi_f, \{p_{rf}\}_r} \pi_f = \sum_r \left[p_{rf} - mc(\phi_f; a_f) \right] Q_{rf} - [f(\phi_f) + f_0]: \text{Uniform}
\]

\[
\max_{\{\phi_{rf}, p_{rf}\}_r} \pi_f^m = \sum_r \left[\left[p_{rf} - mc(\phi_{rf}; a_f) \right] Q_{rf} - [f^m(\phi_{rf}) + f_{0r}^m] \right]: \text{Market-specific}
\]
Structural Equation: Intra-Firm Market Inter-Dependency

Region-Firm Sales Growth: Scale Effect and Non-homotheticity

\[\Delta S_{rf} = \gamma_r \sum_{r'} \omega_{r'f} [\Delta S_{r'f} + \Delta(\gamma_{r'} - \xi)] + \text{other terms}_{rf} \]

where

\[\gamma_r \approx \beta \left(\sigma - 1 \right) (\gamma_r - \xi) \times \]

sales or preference in r' \Rightarrow quality of f

quality of f \Rightarrow sales in r

- \(\beta \): inverse elasticity of fixed cost w.r.t. quality, \(f(\phi_f) \equiv b\beta \phi_f^{1/\beta} \)
- \(\sigma \): demand elasticity
- \(\gamma_r \): how much households value the quality, \(\zeta_{rf} \equiv (\phi_f)^{\gamma_r} \)
- \(\xi \): elasticity of marginal cost w.r.t. quality (pass-through to price), \(mc(\phi_f; a_f) = \phi_f^\xi \)
Real Consumption Growth

Benchmark: uniform quality across markets, \(\text{std}(\tilde{\Delta} U_r) = 4.0 \)

e.g. Florida: real consumption growth = **-14.8%**, house price growth = **-43.2%**

Oklahoma: real consumption growth = **-0.4%**, house price growth = **+3.3%**
Real Consumption Growth

- **Counterfactual**: state-specific quality, \(\text{std}(\tilde{\Delta} U_r) = 5.2 \)
 - From counterfactual to benchmark: \(\text{std} \downarrow 30\% \approx $400 \) per HH redistribution

 e.g. Florida: real consumption growth = **-17.2%** (**-14.8%** in baseline)
 Oklahoma: real consumption growth = **+1.4%** (**-0.4%** in baseline)
Conclusion

New Empirical Findings: Regional Spillovers and behind Mechanism

- regional shocks spill over through the intra-firm networks created by multi-market firms
- by replacing high-valued products with low-valued products in multiple markets simultaneously

Model and Implication: Regional Redistribution (Risk-Sharing)

- quality downgrading through product replacement
- mitigates the regional consumption inequality
Thank you!