Spillovers and Redistribution through Intra-Firm Networks: The Product Replacement Channel

Jay Hyun¹ Ryan Kim²

¹HEC Montréal

² Johns Hopkins University

Econometric Society Winter Meeting, Poster Presentation (Audio Version Slide)

December 31, 2020

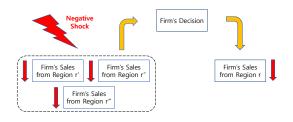
L

Motivation

- Q. How do regional shocks spill over across regions & reshape regional welfare?
 - A long-standing question in macro/trade, relevant in within-county contexts
 - $e.g., \ \ A \ sudden \ differential \ collapse \ in \ local \ housing \ markets \ in \ Great \ Recession$

State-level Housing Price Growth in Great Recession

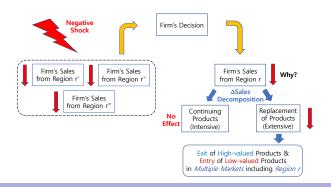
⇒ regional conditions spill over through various networks and reshape regional inequality


This Paper

- Intra-firm networks of producers who sell in multiple counties/states
 ⇒ important firms, but ambiguous direction of spillovers
- Empirics: provide causal evidence of within-firm regional spillovers and identify a novel mechanism behind
- Model: formalize the mechanism & discuss aggregate implications

Summary: Empiric

By exploiting a detailed micro-data including a million of barcodes and producer info. & sudden differential \Downarrow in local house prices in 07-09,


(1) Firm's local sales *decrease* w.r.t. not only *direct* local demand shock but also firm's average *indirect* local demand shock originating in its *other markets*

Summary: Empiric

(2) Why? We show that

- Such spillover driven by extensive margin response from product replacement (while direct local shock ⇒ intensive margin from continuing products)
- Product replacements typically synchronized across many markets
 - Shocks hitting other mkts induce product replacement even in "not hit" mkt
 - Firms downgrade products (organic→non-organic, expensive→cheap etc.)

Summary: Empirical Results - Some Remarks

- 1. What are real world examples of synchronized product replacements?
 - Kraft Foods Inc. produces both organic and non-organic cheese

(b) Non-organic Cheese

- Organic: sold in 11 states in 2007, exited all the states in 2009
- Non-organic: uniformly entered in the same states
- Despite a large variation in regional shocks: -5% (PA) to -23% (MD)

2. We address potential endogeneity concerns in depth

Summary: Theory

Empiric: replacing high- to low- value products, which are synchronized across many markets

(2) Mechanism

- A. producers facing negative demand shocks lower their product quality
 - because of the (i) scale effect and (ii) non-homotheticity
- B. in doing so, they do it in multiple markets simultaneously
 - because of the local-firm-specific fixed cost of product replacement

- (3) Implication: mitigates the regional consumption inequality
 - many regions face the same quality goods: a novel risk-sharing mechanism
 - \bullet std(consumption growth) \Downarrow by 30% w/ the mechanism, \approx \$400 per HH

Related Literature

Networks, Spillovers, and Macroeconomy

- Multi-Market: Berman et al. 15, Ahn & Mcquoid 17, Almunia et al. 18, Erbahar 18
- Multi-Establishment: Carvino & Levchenko 17, Gilbert 18, Giroud & Mueller 19
- Trade & Supply Chain: di Giovanni & Levchenko 10, Acemoglu et al. 16, Stumpner 17, Caliendo et al. 18, Arkolakis et al. 18, Auerbach et al. 19, Boehm et al. 19
- Banking Networks (Acemoglu et al. 15, Gilje et al. 16, Mitchener & Richardson 19);
 Migration (House et al. 18); Social Networks (Bailey et al. 18)

Housing Market Collapse and the Great Recession

 Mian et al. 13, Mian & Sufi 14, Stroebel & Vavra 19, Kaplan et al. 16, Giroud & Mueller 17, Beraja et al. 19

Variety/Quality Changes & Distributional Implications

Broda & Weinstein 10, Schmitt-Grohe and Uribe 12, Nakamura & Steinsson 12, Hottman et al. 16 Dingel 17, Jaimovich et al. 17, Argente et al. 18, Jaravel 18, Medina 20, Faber & Fally 20

Business Cycle Comovement

 Backus et al. 92, Frankel & Rose 98, Kose & Yi 06, Johnson 14, Liao & Santacreu 15, Cravino & Levchenko 17, di Giovanni et al. 18

Regional Risk-Sharing/Redistribution

Asdrubali et al. 96, Lustig & Van Nieuwerburgh 10, Hurst et al. 16

Uniform Pricing in Retail Sector

DellaVigna and Gentzkow 17, Cavallo 18, Hitsch et al. 19

Empirical Specification

• Data: regional house price + barcode-region level p,q + producer info.

$$\tilde{\Delta}\mathsf{S}_{rf} = \beta_0 + \delta_s + \beta_1 \tilde{\Delta}\mathsf{HP}_r + \beta_2 \tilde{\Delta}\mathsf{HP}_{rf} \ \, (\text{other}) + \mathsf{Controls}_{rf} + \varepsilon_{rf} \qquad (1$$
 where r : region (county/state), f : firm, $\tilde{\Delta}X$: growth rate of X in 07-09 δ_s : primary sector FE

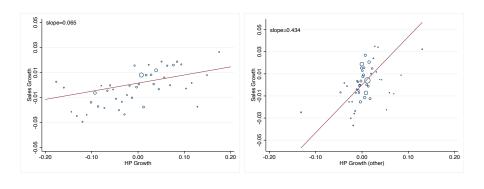
- β_2 : the effect of regional shocks hitting other markets of firm f conditional on direct local demand
 - Indirect Shock: $\tilde{\Delta} HP_{rf}$ (other) = $\sum_{r'\neq r} \omega_{r'f} \times \tilde{\Delta} HP_{r'}$
 - Also consider similarly constructed IVs
 - No prior on $\beta_2 \Rightarrow \text{We get } \beta_2 > 0$
- β_1 : the effect of direct regional shock in region r
 - Similar to Mian et al. (13), Kaplan et al. (16) \Rightarrow We expect $\beta_1 > 0$
 - Also consider region \times sector FE instead of including $\triangle HP_r$

Key Identifying Assumption

$$\tilde{\Delta} S_{rf} = \beta_0 + \delta_s + \beta_1 \tilde{\Delta} H P_r + \beta_2 \tilde{\Delta} H P_{rf} \ (other) + Controls_{rf} + \varepsilon_{rf}$$

Any confounding factor that affects firm's local sales growth does not simultaneously affect its other market house price growth

Threats to identification


• Common or clustered regional shocks?

Alternative channels?

Visualization

$$\tilde{\Delta} S_{rf} = \beta_0 + \delta_s + \beta_1 \tilde{\Delta} H P_r + \beta_2 \tilde{\Delta} H P_{rf} \text{ (other)} + \text{Controls}_{rf} + \varepsilon_{rf}$$
 Local sales respond to both direct and indirect shocks

Scatter plots (25 bins based on ventiles) depicting the relationship between (residualized) $\tilde{\Delta}S_{rf}$ and either $\tilde{\Delta}HP_r$ or $\tilde{\Delta}HP_{rf}$ (other), where each point is the sales-weighted average across obs. within each bin. We use Frisch-Waugh theorem to tease out the effect.

Local sales respond to both direct and indirect shocks

$$\tilde{\Delta} S_{rf} = \beta_0 + \delta_s + \beta_1 \tilde{\Delta} H P_r + \beta_2 \tilde{\Delta} H P_{rf} \text{ (other)} + \text{Controls}_{rf} + \varepsilon_{rf}$$

	(1) $\tilde{\Delta}S_{rf}$	(2) ÃS ^C _{rf}	$\tilde{\Delta}S_{rf}^{R}$	(4)	(5)
$ ilde{\Delta}HP_r$	0.059**	0.051**	0.009		
	(0.028)	(0.024)	(0.014)		
$ ilde{\Delta}HP_{rf}$ (other)	0.345***	0.025	0.320***		
, ,	(0.110)	(0.067)	(0.093)		
sector FE	✓	✓	✓		
county controls	✓	\checkmark	✓		
county-firm controls	✓	\checkmark	✓		
R-squared	0.201	0.223	0.284		
Observations	840,681	840,681	840,681		

Note. County controls: all controls in Mian and Sufi 14. County-firm controls: log initial county-firm specific sales, log initial firm-level sales, log initial number of local markets, and log initial number of product groups. Regressions weighted by county-firm initial sales. Standard errors double clustered at state-sector level.

Direct effect works through the intensive margin

$$\tilde{\Delta} S_{rf} = \beta_0 + \delta_s + \beta_1 \tilde{\Delta} H P_r + \beta_2 \tilde{\Delta} H P_{rf} \text{ (other)} + \text{Controls}_{rf} + \varepsilon_{rf}$$

	$ ilde{\Delta} S_{rf}$	(2) ÃS _{rf}	(3) ÃS ^R	(4)	(5)
$ ilde{\Delta}HP_r$	0.059** (0.028)	0.051** (0.024)	0.009 (0.014)		
$ ilde{\Delta}HP_{rf}$ (other)	0.345*** (0.110)	0.025 (0.067)	0.320*** (0.093)	-	
sector FE	√	√	√		
county controls	✓	\checkmark	\checkmark		
county-firm controls	✓	\checkmark	\checkmark		
R-squared	0.201	0.223	0.284		
Observations	840,681	840,681	840,681		

Note. County controls: all controls in Mian and Sufi 14. County-firm controls: log initial county-firm specific sales, log initial firm-level sales, log initial number of local markets, and log initial number of product groups. Regressions weighted by county-firm initial sales. Standard errors double clustered at state-sector level.

Spillover effect works through the extensive margin

$$\tilde{\Delta} S_{rf} = \beta_0 + \delta_s + \beta_1 \tilde{\Delta} H P_r + \beta_2 \tilde{\Delta} H P_{rf} \text{ (other)} + \text{Controls}_{rf} + \varepsilon_{rf}$$

	$\tilde{\Delta}S_{rf}$	(2) ÃS ^C	(3) ÃS ^R _{rf}	(4)	(5)
$\tilde{\Delta}$ HP $_r$	0.059**	0.051**	0.009		
,	(0.028)	(0.024)	(0.014)		
$ ilde{\Delta}HP_{rf}$ (other)	0.345***	0.025	0.320***		
	(0.110)	(0.067)	(0.093)		
sector FE	$\overline{}$	√	√		
county controls	✓	\checkmark	✓		
county-firm controls	✓	\checkmark	\checkmark		
R-squared	0.201	0.223	0.284		
Observations	840,681	840,681	840,681		

Note. County controls: all controls in Mian and Sufi 14. County-firm controls: log initial county-firm specific sales, log initial firm-level sales, log initial number of local markets, and log initial number of product groups. Regressions weighted by county-firm initial sales. Standard errors double clustered at state-sector level.

Spillover effect works through the extensive margin

 \Rightarrow robust to county x sector FE

$$\tilde{\Delta} S_{rf} = \beta_0 + \delta_{rs} + \beta_2 \tilde{\Delta} H P_{rf} \text{ (other)} + Controls_{rf} + \varepsilon_{rf}$$

	$ ilde{\Delta} S_{rf}$	(2) ÃS ^C _{rf}	(3) $\tilde{\Delta}S_{rf}^{R}$	(4)	(5)
$ ilde{\Delta}HP_{rf}$ (other)	0.398*** (0.105)	-0.021 (0.045)	0.419*** (0.102)		
county x sector FE	√	✓	✓		
county-firm controls	✓	\checkmark	\checkmark		
R-squared	0.392	0.427	0.408		
Observations	840,681	840,681	840,681		

Note. County-firm controls: log initial county-firm specific sales, log initial firm-level sales, log initial number of local markets, and log initial number of product groups. Regressions weighted by county-firm initial sales. Standard errors double clustered at state-sector level.

Spillover effect works through the extensive margin through products replaced in multiple markets

$$\tilde{\Delta} S_{rf} = \beta_0 + \delta_{rs} + \beta_2 \tilde{\Delta} H P_{rf} \text{ (other)} + Controls_{rf} + \varepsilon_{rf}$$

(1) à S	(2) ãsc	(3) ã cR	(4) ã cR,M	(5) ÃS ^{R,L}
ДЭrf	Δ3 _{rf}	∆3 _{rf}	∆3 _{rf}	ΔS_{rf}
0.398***	-0.021	0.419***	0.418***	0.000
(0.105)	(0.045)	(0.102)	(0.101)	(0.000)
✓	✓	√	√	✓
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.392	0.427	0.408	0.408	0.216
840,681	840,681	840,681	840,681	840,681
	(0.105) ✓ ✓ 0.392	$\vec{\hat{\Delta}} \hat{S}_{rf}$ $\vec{\hat{\Delta}} \hat{S}_{rf}^{c}$ 0.398*** (0.105) (0.045) \checkmark \checkmark 0.392 0.427	$\hat{\Delta} \hat{S}_{rf}$ $\hat{\Delta} \hat{S}_{rf}^{C}$ $\hat{\Delta} \hat{S}_{rf}^{R}$ 0.398*** -0.021 0.419*** (0.105) (0.045) (0.102) \checkmark \checkmark \checkmark \checkmark 0.392 0.427 0.408	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Note. County-firm controls: log initial county-firm specific sales, log initial firm-level sales, log initial number of local markets, and log initial number of product groups. Regressions weighted by county-firm initial sales. Standard errors double clustered at state-sector level.

Spillover effect works through the extensive margin through products replaced in multiple markets from high- to low-valued products

$$\tilde{\Delta}v_{rf} = \beta_0 + \delta_{rs} + \beta_2 \tilde{\Delta}HP_{rf} \text{ (other)} + Controls_{rf} + \varepsilon_{rf}$$

(1) (2) (3) (4) (5)
$$\tilde{\Delta}v_{rf} \equiv \frac{v_{rf,09}^{enter} - v_{rf,07}^{exit}}{\bar{v}_{rf}}$$

where $v_{rf} =$	sale per upc	price	price ^{group-adj.}	organic sale	# of upc
$ ilde{\Delta}HP_{rf}$ (other)	0.52** (0.21)	0.92** (0.44)	0.70** (0.34)	43.78** (17.88)	-0.06 (0.17)
region x sector FE	√	√	✓	√	√
region-firm controls	✓	\checkmark	\checkmark	\checkmark	\checkmark
R-squared	0.40	0.41	0.42	0.38	0.40
Observations	464,423	461,672	461,672	27,930	464,423

Note. For organic share, we use state as a unit of region.

Group Level

◆ Price Reg. (Replacement)

◆ Price Reg. (Continue)

Spillover effect works through the extensive margin through products replaced in multiple markets

⇒ not through simple reduction of variety

$$\tilde{\Delta}v_{rf} = \beta_0 + \delta_{rs} + \beta_2 \tilde{\Delta}HP_{rf} \text{ (other)} + Controls_{rf} + \varepsilon_{rf}$$

$$(1) \qquad (2) \qquad (3) \qquad (4) \qquad (5)$$

$$\tilde{\Delta} \mathsf{v}_{rf} \equiv \frac{\mathsf{v}_{rf,09}^{enter} - \mathsf{v}_{rf,07}^{exit}}{\bar{\mathsf{v}}_{rf}}$$

where $v_{rf} =$	sale per upc	price	price ^{group-adj.}	organic sale	# of upc
$ ilde{\Delta}HP_{rf}$ (other)	0.52** (0.21)	0.92** (0.44)	0.70** (0.34)	43.78** (17.88)	-0.06 (0.17)
region x sector FE	(0.21) ✓		<u> </u>	<u>(17.00)</u> √	√ (0.2.)
region-firm controls	✓	\checkmark	✓	✓	✓
R-squared	0.40	0.41	0.42	0.38	0.40
Observations	464,423	461,672	461,672	27,930	464,423

Note. For organic share, we use state as a unit of region.

Key Identifying Assumption: Further Robustness Check

$$\tilde{\Delta}S_{rf} = \beta_0 + \delta_s + \beta_1 \tilde{\Delta}HP_r + \beta_2 \tilde{\Delta}HP_{rf}$$
 (other) + Controls_{rf} + ε_{rf}

Any confounding factor that affects firm's local sales growth does not simultaneously affect its other market house price growth

Threats to identification Key Identifying Assumption

- Common or clustered regional shocks?
 - $\tilde{\Delta}HP_{rf}$ (other): exclude nearby counties
 - state-firm-level regression
- Alternative channels?
 - supply-side/collateral channel? $\Rightarrow \tilde{\Delta}HP_{rf}(other)$: exclude regions with plants
 - not driven by retailer
 - not driven by clientele effect
 - and many others ... Robustness

Further Results

Model Setup

Purpose: Formalize spillover mechanism & discuss aggregate implication \Rightarrow Multi-region model with endogenous quality-adjustments by firms

- ⇒ Two key mechanisms to match the empirical finding
- (1) producers facing negative demand shocks lower their product quality
 - scale effect: Firms' fixed cost increases with product quality
 - nonhomotheticity: HHs switch from high- to low-quality if income ↓
- (2) firms choose uniform product quality across markets
 - to avoid the local-firm-specific fixed cost of product replacement

* Scale Effect:

◆ Model Setup Details

◆ Structural Eq.

$$\max_{\phi_f, \{p_{rf}\}_r} \pi_f = \sum_r [p_{rf} - mc(\phi_f; a_f)] Q_{rf} - [f(\phi_f) + f_0]$$

 \Rightarrow scale effect: fixed cost $f(\phi_f)$ increases in intrinsic product quality ϕ_f

Model Setup

Purpose: Formalize spillover mechanism & discuss aggregate implication \Rightarrow

Multi-region model with endogenous quality-adjustments by firms

- ⇒ Two key mechanisms to match the empirical finding
- (1) producers facing negative demand shocks lower their product quality
 - scale effect: Firms' fixed cost increases with product quality
 - nonhomotheticity: HHs switch from high- to low-quality if income ↓
- (2) firms choose uniform product quality across markets
 - to avoid the local-firm-specific fixed cost of product replacement
- * Nonhomotheticity:

$$U_r = \left[\int_{f \in G_r} (q_{rf} \zeta_{rf})^{\frac{\sigma - 1}{\sigma}} df \right]^{\frac{\sigma}{\sigma - 1}}$$

(r: region, f: firm, G_r : set of firms selling in market r)

- $\Rightarrow \zeta_{rf} \equiv (\phi_f)^{\gamma_r}$: "perceived" product quality of firm f in region r
- \Rightarrow nonhomothetic: $\gamma_r \equiv \gamma(\text{Income}_r)$ increases with Income_r

Model Setup

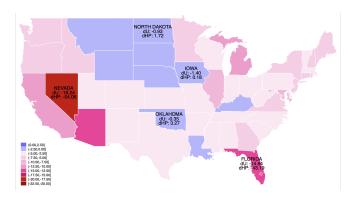
Purpose: Formalize spillover mechanism & discuss aggregate implication ⇒ Multi-region model with endogenous quality-adjustments by firms

- ⇒ Two key mechanisms to match the empirical finding
- (1) producers facing negative demand shocks lower their product quality
 - scale effect : Firms' fixed cost increases with product quality
 - nonhomotheticity : HHs switch from high- to low-quality if income $\mathop{\Downarrow}$
- (2) firms choose uniform product quality across markets
 - to avoid the local-firm-specific fixed cost of product replacement

Structural Equation: Intra-Firm Market Inter-Dependency

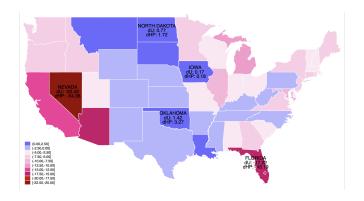
Region-Firm Sales Growth: Scale Effect and Non-homotheticity

$$\tilde{\Delta} \mathsf{S}_{\mathit{rf}} = \Upsilon_{\mathit{r}} \sum_{\mathit{r'}} \omega_{\mathit{r'f}} \ \left[\tilde{\Delta} \mathsf{S}_{\mathit{r'f}} + \tilde{\Delta} (\gamma_{\mathit{r'}} - \xi) \right] + \mathsf{other} \ \mathsf{terms}_{\mathit{rf}}$$


where

$$\Upsilon_r pprox \qquad \qquad \underbrace{\beta} \qquad \qquad \times \qquad \underbrace{(\sigma-1)(\gamma_r-\xi)}_{ ext{quality of f}} \$$
 sales or preference in r' \Rightarrow quality of f

- β : inverse elasticity of fixed cost w.r.t. quality, $f(\phi_f) \equiv b\beta\phi_f^{\frac{1}{\beta}}$
- σ : demand elasticity
- ullet γ_r : how much households value the quality, $\zeta_{\it rf} \equiv (\phi_f)^{\gamma_r}$
- ξ : elasticity of marginal cost w.r.t. quality (pass-through to price), $mc(\phi_f; a_f) = \frac{\phi_f^\xi}{a_f}$


Real Consumption Growth

- **Benchmark**: uniform quality across markets, $std(\tilde{\Delta}U_r) = 4.0$
 - e.g. Florida: real consumption growth = -14.8%, house price growth = -43.2% Oklahoma: real consumption growth = -0.4%, house price growth = +3.3%

Real Consumption Growth

- Counterfactual: state-specific quality, $std(\tilde{\Delta}U_r) = 5.2$
 - \bullet From counterfactual to benchmark: std \Downarrow 30% \approx \$400 per HH redistribution
 - e.g. Florida: real consumption growth = -17.2% (-14.8% in baseline) Oklahoma: real consumption growth = +1.4% (-0.4% in baseline)

Conclusion

New Empirical Findings: Regional Spillovers and behind Mechanism

- regional shocks spill over through the intra-firm networks created by multi-market firms
- by replacing high-valued products with low-valued products in multiple markets simultaneously

Model and Implication: Regional Redistribution (Risk-Sharing)

- quality downgrading through product replacement
- mitigates the regional consumption inequality

Thank you!