PREDICTING BANK DISTRESS IN THE UK WITH MACHINE LEARNING

Joel Suss (Bank of England, London School of Economics) Henry Treitel (Bank of England)

Summary:

- Using regulatory data, we compare classical statistical models with distress
- Implement rigorous, double-block randomisation CV procedure & quarter correlation)
- Random forest (RF) best based on AUC and Brier Score
- RF also best when varying the relative cost of false negatives (mi (wrongly predicting distress) for discrete decision thresholds
- Investigate drivers of bank distress using Shapley values and regr
- Explore simple ensembling techniques to demonstrate additiona
- Robustness checks: different time horizons (1,2,3 and 8 months),

Data:

- Outcome measure: Subjective supervisory assessments of firm ri Total Probability score)
- 1-10 score, 8 or above considered high-risk and lab
- Predictors: financial ratios, balance sheet growth rates, macroeconomic variables (quarterly, 2006-2012) \bullet

Distribution of Arrow scores

	Fals
ith machine learning techniques for predicting bank	1.00
to account for hierarchical nature of data (intra-firm	0.75
issing actual cases of distress) & false positives	۲ 2 0.50
ression, and H-statistic (for interaction strength) al performance benefits), rolling forecast CV, omitting pre Q3 2009 data.	0.25
isk (UK Financial Services Authority ARROW	0.00
belled distressed – i.e. converted to binary	

Cross-validation procedure

se negative & false positive error rates

Interaction strength (H-statistic)

Shapley regression coefficients (standardized & exponentiated)

Mean absolute Shapley values

Relative misclassification costs

