
Implied Dividend Volatility and Expected Growth

By Niels J. Gormsen, Ralph S.J. Koijen, and Ian Martin∗

A large literature is concerned with mea-
suring economic uncertainty and quantify-
ing its impact on real decisions, such as in-
vestment, hiring, and R&D, and ultimately
economic growth (Bloom, 2009; Jurado
et al., 2015). The COVID-19 pandemic
underscores the importance of timely mea-
sures of uncertainty and expected growth
across horizons.

Asset prices, such as dividend futures
(van Binsbergen et al., 2013; Gormsen and
Koijen, 2020) and index options (Gao and
Martin, 2020), provide particularly useful
measures as they are forward looking and
available at high frequencies. Dividend fu-
tures are claims on the dividends of the ag-
gregate stock market in a particular year.
As dividend futures are differentiated by
maturity, just like nominal and real bonds,
we can use these prices to obtain growth
expectations by maturity.

We extend this literature by using new
data on the prices of options on index-
level dividends, from which we can compute
implied dividend volatility. These implied
volatilities differ from the VIX which mea-
sures uncertainty about stock prices, not
only uncertainty about dividends.

We construct a term structure of im-
plied dividend volatilities that characterizes
how uncertainty varies across horizons. We
study how this term structure developed
over the COVID-19 crisis, documenting a
substantial increase in the volatility of near-
future dividends that lingers even as the
volatility of the overall market portfolio has
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started to fall.
In addition to introducing this market,

we also provide new theoretical results that
show how these data can be used to de-
rive lower bounds on expected dividend re-
turns and on expected growth rates, by ma-
turity, by exploiting the insights of Mar-
tin (2017). This provides an alternative to
methods used in the literature using vec-
tor autoregressions or survey expectations,
and sharpens alternative bounds in the lit-
erature.

I. Pricing and Riskiness of Dividends

We denote dividends on the aggregate
stock market by Dt and St denotes the value
of the aggregate stock market. The present-
value identity implies

St =
∞∑

τ=1

Et [Dt+τMt:t+τ ] ,(1)

where Mt:t+τ =
∏τ

s=1 Mt+s and Mt de-
notes the stochastic discount factor. We de-
fine the τ -period dividend strip as Pt(τ) =
Et [Dt+τMt:t+τ ] and the dividend futures
price as Ft(τ) = Pt(τ)/Et [Mt:t+τ ].

A. Data

We use data on dividend futures for the
S&P 500 index in the US (SPX) and for
the Euro Stoxx 50 index in Europe (SX5E).
We source these data from Bloomberg. We
also use data on two ETFs; one ETF tracks
long-term Treasuries (with ticker TLT) and
the other ETF tracks the investment-grade
corporate bond market in the US (with
ticker LQD). These data are from the Cen-
ter for Research in Security Prices.

We use data on Euro Stoxx 50 divi-
dend options trading on the Eurex Ex-
change. These are European options on
index dividends. The ten nearest succes-
sive annual contracts of the December cy-
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cle are available for trading at any point
in time. The Eurex Exchange records the
daily settlement prices on the options and
computes the ATM implied volatilities us-
ing a Black (76) model. We source these
volatilities from Bloomberg. We note that
liquidity in the dividend options market
is a concern. We view the current paper
mostly as a proof of concept of what can
be learned from these markets that may be
more widely traded in the future.

For dividend options, the maturity coin-
cides with the year in which the dividends
are paid. This implies that we simultane-
ously vary the timing of the dividend and
the maturity of the option. We use the De-
cember 2021, December 2022, and Decem-
ber 2023 contracts in our analysis.1 For the
Euro Stoxx 50, we choose the 12-month and
24-month implied volatilities (VSTOXX),
which we get from Bloomberg. We linearly
interpolate both series to target the Decem-
ber 2021 maturity for the market as well.
All volatilities are annualized.

We sample our data weekly and use a
sample from January 2020 until October
2020.

B. Empirical results

We study how prices and implied volatil-
ities of both indexes and dividends changed
during the COVID-19 crisis.

Figure B in the Online Appendix shows
that aggregate stock markets in Europe and
the US fell by 20-30%, while short-term
dividends fell even more for both indexes.
During the same period, Treasuries rallied
and investment-grade corporate bonds fell
by about 10%.

Financial markets recovered since then,
with the US stock market and the
investment-grade corporate bond market
recovering fully and the European stock
market recovering about half of its losses.
However, short-term dividends have not ex-
perienced the same recovery. Prices are still
down by almost 20% in the US and more
than 30% in Europe, suggesting that the

1While the December 2020 contract is also available,

its implied volatility mechanically dwindles during our

sample as more dividends are announced.

market prices substantial losses in the near
term.

The left panel of Figure I.B shows the
implied dividend volatility of the Decem-
ber 2021 option and the implied volatil-
ity of the aggregate stock market. In the
right panel, we plot the term structure of
implied dividend volatilities for the 2020,
2021, and 2022 contracts, alongside the im-
plied volatility of the market, in January,
March, and October of 2020.

Implied volatilities before the COVID-19
crisis increase with maturity, and are par-
ticularly low for the 2021 contract. The
level of volatility is comparable to the his-
torical annual dividend volatility.

During the crisis, the implied dividend
volatility increases sharply and, in case of
the 2021 contract, rises above the implied
volatility of the market. This increase
shows that short-term dividend growth is
strongly heteroskedastic. The volatility of
the short-term dividends remains high at
the end of our sample, with the volatility of
the short-term claims approximately at the
same level as the market.

As such, the relative increase in volatil-
ity during the crisis is much stronger for
the short-term dividends than for the mar-
ket and the increase is more persistent. A
key takeaway from this section is that finan-
cial markets price the pandemic via lower
dividend prices and high uncertainty about
short-term cash flows. As such, while the
market indexes have largely recovered, the
pandemic is still reflected in the pricing of
near-future cash flows.

II. Expected Returns and Growth

The price of a dividend claim reflects a
combination of the expected return on the
claim and the expected dividend. We will
derive a lower bound on the expected re-
turn, and hence on the expected dividend.

A. Methodology

We define Rτ
t+τ as the spot-return on

the τ -period dividend claim, Rτ
t+τ = Dt+τ

Pt(τ)
.

Our starting point is the following identity,
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Figure 1. Volatility dynamics during the COVID-19 crisis. The years in the right panel correspond to

the maturities of the implied dividend volatilities.

which holds for any returns Rt+τ and Rτ
t+τ :

Et[R
τ
t+τ ] − Rf

t =
cov∗

t (R
τ
t+τ , Rt+τ )

Rf
t

− covt(Mt+τRt+τ , R
τ
t+τ ).

We use asterisks to denote risk-neutral mo-
ments and write Rf

t for the gross risk-
free rate between t and t + τ . This
relationship—a variant of the identity in
Martin (2017)—was exploited in the con-
text of currency returns by Kremens and
Martin (2019).

We explore two sets of assumptions to
use this identity to derive a lower bound
for expected returns and expected dividend
growth rates. We will refer to these ap-
proaches as Method 1 and Method 2.

Method 1: We pick Rt+τ = Rτ
t+τ , which

means that the first term on the RHS is the
risk-neutral variance on the dividend and
thus observable. We assume that the sec-
ond covariance term is non-positive. If the
return on the dividend claim is proportional

to the asset return (as is the case in mod-
els that generate constant price-dividend
ratios) then this condition reduces to the
NCC of Martin (2017). This applies, for
example, to models such as Barro (2006),
in which the NCC holds. Accordingly, the
risk-neutral variance of Rt+τ (τ) constitutes
a lower bound on expected returns, giving
rise to the following bound on expected div-
idends:

Et[Dt+τ ] ≥ Pt(τ)
(

var∗t (R
τ
t+τ )

Rf
t

+ Rf
t

)

In Appendix A, we show that the covari-
ance is negative in bad states of the world in
the Campbell and Cochrane (1999) external
habit model, but is positive in the Bansal
and Yaron (2004) long-run risks model for
short maturities. Also, the covariance term
is potentially positive in models in which
returns on dividends are not strongly neg-
atively correlated with the SDF. We there-
fore also consider an alternative assump-
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tion.
Method 2: We (i) pick Rt = RM

t , which
is the return on the aggregate stock mar-
ket, and (ii) assume that returns, dividends,
and the SDF are jointly log-normally dis-
tributed.2 As we show in Appendix A, this
implies

Et[R
τ
t+τ ] − Rf

t =
ρtσ

∗
t (R

τ
t+τ )σ

∗
t (R

M
t+τ )

Rf
t

− covt(Mt+τR
M
t+τ , R

τ
t+τ ),

where ρt = corrt(Rτ
t+τ , R

M
t+τ ) and σ∗

t de-
notes risk-neutral volatility. We further as-
sume that the second covariance term is
non-positive. (If one adopts the perspective
of an investor with log utility who chooses
to invest fully in the market, then Mt+τ =
1/RM

t+τ so that the covariance term is ex-
actly zero. In this case, the bound holds
with equality.) The lower bound above
again gives rise to a lower bound on ex-
pected dividends:

Et[Dt+τ ] ≥ Pt(τ)
(

ρtσ
∗
t (R

τ
t+τ )σ

∗
t (R

M
t+τ )

Rf
t

+ Rf
t

)

.

Method 2 requires an estimate of
corrt(Rτ

t+τ , R
M
t+τ ). As estimating a

correlation model is beyond the scope
of this paper, we will present results for
a range of values. We remark that the
assumption of log-normality is likely vio-
lated, as discussed by Martin (2017), but
the hope is that this violation has limited
impact on the final results. We leave it
for future research to derive bounds under
more general distributional assumptions.

B. Empirical Results

We approximate Rf
t ' 1 during our sam-

ple. Method 1 implies that the lower bound
on the annualized expected excess returns

2We need the latter assumption because derivatives

whose prices would reveal the risk-neutral covariance

between the market return and dividend growth are not

widely traded. By contrast, Kremens and Martin (2019)

were able to exploit the fact that index quanto contracts,

which reveal the corresponding risk-neutral covariance

between the market return and currency appreciation,

are traded.

on the 2021 dividend varies from 0.2% be-
fore the crisis to 12.4% during the down-
turn, and 5.0% at the end of our sample.

This points to high expected excess re-
turns on short-term claims during the cri-
sis, consistent with van Binsbergen et al.
(2012) and van Binsbergen et al. (2013).
However, it is inconsistent with the models
that motivate the covariance constraint in
the first place. Hence, we are less comfort-
able using this bound, and these results are
best viewed as a rejection of the models in
which the conditional covariance condition
is satisfied as the implications for dividend
volatility under the null of the model lead
to too much volatility in discount rates on
short-term claims.

Method 2 instead relies on a covariance
restriction that mimics Martin (2017). As
estimating the conditional correlation is
challenging, we consider two values that we
consider plausible during times of stress,
ρt = 50% or 75%.

For these values, we plot the lower bound
for expected excess returns in annualized
terms in the left panel of Figure II.B. The
expected excess return peaks at 4.5%, when
ρt = 50%, or 6.7%, when ρt = 75%. As
before, this suggests substantial expected
excess returns on dividend claims.3

In the right panel of Figure II.B, we
use these estimates to compute a lower
bound on the expected dividend in Decem-
ber 2021. To simplify the interpretation,
we scale this expectation by the December
2019 dividend. This bound sharpens the
lower bound in Gormsen and Koijen (2020),
which corresponds to ρt = 0, and provides
an alternative to VAR methods and survey
expectations.

We draw two conclusions from this fig-
ure. First, even though we tighten the
lower bound—as the lower bound for ex-
pected excess returns is well above zero—
most of the variation in dividend futures is
due to growth expectations. This under-
scores the usefulness of dividend futures for

3As the volatilities of all dividend claims and the

market move significantly during the crisis, so do the

lower bounds on the expected excess returns. We refer

to Gormsen (2020) for estimates of variation in expected

excess returns across maturities.
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Figure 2. A lower bound on expected excess returns on the short-term dividend claim (left panel

)and on the expected dividend in 2021, scaled by the 2019 dividend (right panel). The different lines

correspond to conditional correlations between market returns and short-term dividend returns.

forecasting economic growth. Second, while
the market recovers, in the second part of
2020, the near-term growth expectations
improve only slightly and, in fact, deteri-
orate towards the year’s end. Paired with
the high level of implied dividend volatili-
ties, the short-term economic outlook is un-
certain and not expected to recover in the
near term in Europe.
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Online appendix

A1. Method 1

We evaluate whether the covariance condition holds such that the bound is indeed a
lower bound in several asset pricing models.

Lucas model

Consider a Lucas model with power utility and similar technology processes as in Camp-
bell and Cochrane (1999)

Δct+1 = g + vt+1,

Δdt+1 = g + wt+1,

where vt+1 ∼ N(0, σ2), wt+1 ∼ N(0, σ2
w), and corr(vt+1, wt+1) = ρ. The dividend price is

Et (Mt+1Dt+1) = δDt Et (exp {(1 − γ)g − γvt+1 + wt+1})

= DtR
−1
f exp

{

g +
1
2
σ2

w − γσσwρ

}

,

where Rf = δ−1 exp{γg − 1
2
γ2σ2}. The dividend return, Rd,t+1 = Dt+1/Et (Mt+1Dt+1), is

Rd,t+1 = Rf exp
{

γσσwρ −
1
2
σ2

w + wt+1

}

,

so ERd,t+1 = Rf exp{γσσwρ} and var log Rd,t+1 = σ2
w. As Mt+1 and Rd,t+1 are conditionally

lognormal, the NCC holds for the dividend strip return if and only if

logEt Rd,t+1 − log Rf

σt(log Rd,t+1)
≥ σt(log Rd,t+1) .

The quantity on the left-hand side of the inequality is, essentially, the Sharpe ratio of the
dividend strip. Hence the NCC condition holds if and only if

γρσ ≥ σw.

However, we can also compute the covariance term and avoid bounds altogether

cov (Mt+1Rd,t+1, Rd,t+1) = E
(
Mt+1R

2
d,t+1

)
− E (Rd,t+1) .

The first term is given by

E
(
Mt+1R

2
d,t+1

)
= E

(
R2

f exp
{
2γσσwρ − σ2

w + 2wt+1 − γg − γvt+1

})

= R2
f exp

{

2γσσwρ − σ2
w + 2σ2

w − γg +
1
2
γ2σ2 − 2σσwργ

}

= Rf exp
{
σ2

w

}

Putting it all together implies that

var∗ (Rd,t+1) = Rf [ERd,t+1 − Rf + cov (Mt+1Rd,t+1, Rd,t+1)]

= R2
f

(
exp{σ2

w} − 1
)
.
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We observe the left-hand side and notice that it is highly volatile, which rejects the model.
More broadly, in any model of the form

Mt+1 = R−1
f exp{−

1
2
λ2

tσ
2 − λtvt+1},

Rd,t+1 = Rf exp{μt −
1
2
σw + wt+1},

for any risk price λt and μt = ρλtσσw, it holds

var∗ (Rd,t+1) = R2
f

(
exp{σ2

w} − 1
)
.

These conditions are satisfied in the Campbell and Cochrane (1999) model to which we
turn next.

Campbell and Cochrane (1999)

In this subsection, we use the notation from Campbell and Cochrane (1999) without
further comment. The price of a claim to the first dividend is

Et (Mt+1Dt+1) = Dt Et

(
Mt+1

Dt+1

Dt

)

= δDt Et (exp {−γg − γ {(φ − 1)(st − s) + [1 + λ(st)]vt+1} + g + wt+1})

= δDt exp

{
g(1 − γ) + γ(1 − φ)(st − s) +

γ2σ2

2S
2

(1 − 2(st − s)) +
1

2
σ2

w −
γρσσw

S

√
1 − 2(st − s)

}
.

So the return on this dividend strip is

Rd,t+1 =
Dt+1

Et (Mt+1Dt+1)
=

Dt+1

Dt
δ−1 exp

{
g(γ − 1) − γ(1 − φ)(st − s) −

γ2σ2

2S
2

(1 − 2(st − s)) −
1

2
σ2

w +
γρσσw

S

√
1 − 2(st − s)

}
.

Hence the expected return is

Et Rd,t+1 = δ−1 exp
{

gγ − γ(1 − φ)(st − s) −
γ2σ2

2S
2 (1 − 2(st − s)) +

γρσσw

S

√
1 − 2(st − s)

}

= Rf exp
{

γρσσw

S

√
1 − 2(st − s)

}

,

and
vart log Rd,t+1 = σ2

w .

From the above equations, the NCC holds for the dividend strip return if and only if

γρσ

S

√
1 − 2(st − s) ≥ σw.

This condition mimics the Lucas model above when st − s and γLucas = γ

S
.

Figure A.A1 shows that the NCC holds in sufficiently bad states of the world, but not
in good states of the world and not at the steady state level of habit, S.

Bansal and Yaron (2004)

In this subsection, we use the notation from Bansal and Yaron (2004) without further
comment. We focus on the Case II calibration that features stochastic volatility.

Single-period calculations. A claim to the first dividend earns zero risk premium be-
cause dividend growth is conditionally uncorrelated with the log stochastic discount fac-
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tor, covt(gd,t+1,mt+1) = 0. (We are following Bansal and Yaron by treating the model
as conditionally lognormal, relying on loglinearizations.) Hence Et Rd,t+1 = Rf,t+1. Again
exploiting lognormality, the risk-neutral variance takes the form above,

var∗t Rd,t+1 = R2
f,t+1

(
evart log gd,t+1 − 1

)
= R2

f,t+1

(
eϕ2

dσ2
t − 1

)
,

and

covt (Mt+1Rd,t+1, Rd,t+1) =
1

Rf,t+1

var∗t Rd,t+1 − (Et Rd,t+1 − Rf,t+1) = Rf,t+1

(
eϕ2

dσ2
t − 1

)
.

Hence the conditional covariance is positive (but very small) in Bansal and Yaron (2004).

Bansal et al. (2012) make dividends and consumption growth correlated in the short run.
As a result, covt(gd,t+1,mt+1) = −γπσ2

t , and hence Et Rd,t+1 = Rf,t+1e
γπσ2

t , where π is a
new parameter introduced in equation (3) of Bansal et al. (2012). Risk-neutral variance
changes slightly:

var∗t Rd,t+1 = R2
f,t+1

(
e(π2+ϕ2)σ2

t − 1
)

and
covt (Mt+1Rd,t+1, Rd,t+1) = Rf,t+1

(
e(π2+ϕ2)σ2

t − eγπσ2
t

)
.

This is positive in their calibration, in which π2 + ϕ2 = 42.3 > γπ = 26.

Multi-period calculations. Bansal and Yaron (2004) calibrate the model to a monthly
frequency, while we use 1- to 3-year dividend claims. We therefore compute the risk-neutral
variance and the covariance for longer horizons for completeness. The model implies that

Pt(τ) = Dt exp(Aτ + Bτxt + Cτσ
2
t ),

where the coefficients follow from

Pt(τ) = Dt Et

(
Mt+1 exp

{
gd,t+1 + Aτ−1 + Bτ−1xt+1 + Cτ−1σ

2
t+1

})

= Dt exp
{
μd + φxt + Aτ−1 + Bτ−1ρxt + Cτ−1σ

2(1 − ν1) + Cτ−1ν1σ
2
t

}
×

R−1
ft exp

{
1
2

(
ϕ2

d + B2
τ−1ϕ

2
e

)
σ2

t +
1
2
C2

τ−1σ
2
w − λm,eBτ−1ϕeσ

2
t − λm,wCτ−1σ

2
w

}
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where Rft = exp{s0 + s1xt + s2σ
2
t } and thus

Aτ = −s0 + μd + Aτ−1 + Cτ−1σ
2(1 − ν1) +

1
2
C2

τ−1σ
2
w − λm,wCτ−1σ

2
w,

Bτ = −s1 + φ + Bτ−1ρ,

Cτ = −s2 + Cτ−1ν1 +
1
2

(
ϕ2

d + B2
τ−1ϕ

2
e

)
− λm,eBτ−1ϕe.

Returns are given by

Rd,t+1(τ) = exp
{
gd,t+1 + Aτ−1 − Aτ + Bτ−1xt+1 − Bτxt + Cτ−1σ

2
t+1 − Cτσ

2
t

}

= ft(τ, xt, σ
2
t ) exp {ϕdσtut+1 + Bτ−1ϕeσtet+1 + Cτ−1σwwt+1} ,

where

ft(τ, xt, σ
2
t ) = exp

{
μd + φxt + Aτ−1 − Aτ + (Bτ−1ρ − Bτ ) xt + Cτ−1σ

2(1 − ν1) + (Cτ−1ν1 − Cτ ) σ2
t

}

= Rft exp
{

−
1
2
C2

τ−1σ
2
w −

1
2

(
ϕ2

d + B2
τ−1ϕ

2
e

)
σ2

t + λm,wCτ−1σ
2
w + λm,eBτ−1ϕeσ

2
t

}

.

Exploiting lognormality,

var∗t Rd,t+1 = R2
ft (exp {vart log Rd,t+1(τ)} − 1) = R2

ft

(
exp

{(
ϕ2

d + B2
τ−1ϕ

2
e

)
σ2

t + C2
τ−1σ

2
w

}
− 1
)
.

For the risk premium, we have

Et (Rd,t+1(τ)) − Rft = Rft

(
exp{λm,wCτ−1σ

2
w + λm,eBτ−1ϕeσ

2
t } − 1

)
.

This implies for the covariance

covt (Mt+1Rd,t+1(τ), Rd,t+1(τ)) = Rft(exp{
(
ϕ2

d + B2
τ−1ϕ

2
e

)
σ2

t + C2
τ−1σ

2
w}

− exp{λm,wCτ−1σ
2
w + λm,eBτ−1ϕeσ

2
t }),

which we linearize (and approximating Rft = 1 as it does not affect the sign and is the
relevant empirical case)

covt (Mt+1Rd,t+1(τ), Rd,t+1(τ)) ' ϕ2
dσ

2
t + Bτ−1ϕe (Bτ−1ϕe − λm,e) σ2

t + Cτ−1 (Cτ−1 − λm,w) σ2
w.

Note that Bτ , B
′
τ > 0, Cτ , C

′
τ < 0, for τ > 0, and λm,e > 0 and λm,w < 0. At longer

horizons, the NCC will be satisfied, but the coefficients (Bτ , Cτ ) change only slowly with
maturity due to the persistence of the processes. We therefore conclude that the NCC
condition of method 1 is likely not satisfied in Bansal and Yaron (2004) when calibrated
to our sample period.

A2. Method 2

Additional calculations under lognormality

If Mt+1 = e−rf,t− 1
2 σ2

1,t−σ1,tZ1,t+1 and Rd,t+1 = eμd,t− 1
2 σ2

2,t+σ2,tZ2,t+1 and Rt+1 =
eμt− 1

2 σ2
3,t+σ3,tZ3,t+1 then we must have μd,t − rf,t = ρ12,tσ1,tσ2,t and μt − rf,t = ρ13,tσ1,tσ3,t so

that EMR = 1 holds, where we are writing ρij,t for corrt(Zi,t+1, Zj,t+1. Straightforward cal-
culations show that covt(Rd,t+1, Rt+1) = eμd,t+μt(eρ23,tσ2,tσ3,t − 1) and cov∗

t (Rd,t+1, Rt+1) =
e2rf,t(eρ23,tσ2,tσ3,t −1); similarly, vart Rd,t+1 = e2μd,t(eσ2

2,t −1) and vart Rt+1 = e2μt(eσ2
3,t −1),

while risk-neutral variances are var∗t Rd,t+1 = e2rf,t(eσ2
2,t−1) and var∗t Rt+1 = e2rf,t(eσ2

3,t−1).
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It follows that the true and risk-neutral correlations are equal:

corrt (Rd,t+1, Rt+1) = corr∗t (Rd,t+1, Rt+1) =
eρ23,tσ2,tσ3,t − 1

√(
eσ2

2,t − 1
)(

eσ2
3,t − 1

) ≈ ρ23,t .

The covariance condition

Although we have focussed on dividend volatility, consumption-based models also have
difficulty matching the time series behavior of price volatility. Martin (2017, Table IV)
reports time series of various statistics (mean, median, standard deviation, min, max,
skewness, kurtosis, and autocorrelation) of sample paths of the VIX and SVIX indices gen-
erated in the model economies of Campbell and Cochrane (1999), Bansal and Yaron (2004),
Bansal et al. (2012), Bollerslev et al. (2009), Drechsler and Yaron (2011), and Wachter
(2013). None of these is able to generate sample paths that resemble those observed em-
pirically. All the models apart from Drechsler and Yaron (2011) generate volatility series
that are more persistent than the data. The empirically observed mean gap between VIX
and SVIX—a measure of the average importance of extreme left-tail events—is outside
the support of the million sample paths in every model: Wachter (2013) overstates the
importance of such events, and all other models understate it. All the models apart from
Wachter (2013) fail, on 99% of sample paths, to generate the maximum levels of VIX that
have been observed in reality. All models apart from Drechsler and Yaron (2011) fail, on
99% of sample paths, to match the kurtosis of VIX and SVIX.

We also refer to Dew-Becker et al. (2017) for the a set of related challenges of models to
match the term structure of variance swaps and variance risk premia. Dew-Becker et al.
show that the monthly risk premium on short-term variance (≤ 3 months) is negative and
large whereas the risk premium on longer-term variance (> 3 months) is essentially zero.
The fact that very-short run variance is priced but longer-term variance is not implies
the existence of a transitory element in realized volatility that investors are highly averse
towards. The results also imply that investors are not averse towards changes in long-
term expected volatility – something that is hard to reconcile with long-run risk models
(Drechsler and Yaron, 2011) and disaster models with Epstein-Zin preferences (Wachter,
2013) as investors in such models are averse towards increases in expected volatility, which
is modeled to be persistent, meaning that claims on longer-term variance should be priced.
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additional figures

We summarize the broad patterns in the data as opposed to high-frequency event stud-
ies.4 We therefore sample the data at three moments in time: the pre-pandemic peak of
the market, the bottom of the market, and at the end of our sample. For both Europe
and the US, we determine the peak of the index level before the start of the pandemic
and compute the average prices and volatilities of each asset during the three week period
before the peak. Similarly, we determine the bottom of the market indexes and average the
prices and implied volatilities in the three weeks surrounding the bottom. We also average
the prices during the last three weeks of our sample. To succinctly present the results, we
present the returns averaged for the 2021, 2022, and 2023 dividend futures prices. The
dividend prices are indicated by “ST” in the legend of the figure.
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Figure B1. The dynamics of asset prices during the COVID-19 crisis.

4Gormsen and Koijen (2020) analyze the dynamics of the index and dividend futures around some of the key

events during the crisis for the European, Japanese, and US market.


