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1 Introduction

There is little debate on the prevalence of heterogeneous beliefs or disagreement among

market participants and the importance of this fact on asset prices and their dynamics.1

In parallel, many experimental studies by the psychologists and economists responsible for

the inception and growth of behavioral economics, conclude that an essential feature in

economic and financial decision-making is the existence and critical role of a reference value-

–for example, current wealth, wealth of peers, a benchmark, are some of the most frequently

used in the literature, among many others– for the decision-maker.2 In this paper we combine

both elements in a parsimonious model that captures not only qualitative properties of asset

prices –which other studies also achieve—but also quantifies them and evaluates the relative

importance of the features of the model in explaining the data.

The consequence of a reference point in asset prices is straightforward, so we discuss it

first: it affects the effective risk-aversion of the agents –as opposed to the parametric value

of their risk-aversion— which in turn can explain the level of the price of risk, an elusive goal

for models that rely on standard utility and ignore the reference point. Among the different

possible ways to incorporate reference-dependence in preferences, we adapt the model of

habit-formation of Campbell and Cochrane (1999) to non-i.i.d. consumption growth, very

influential in the mainstream asset pricing literature, as well as in the behavioral economics

camp –for example, Rayo and Becker (2007). Further, the persistence in the habit assumed

by Campbell and Cochrane (1999) generates variations in the price of risk, which explain the

excess stock return predictability and account for a significant portion of the stock return

volatility.

Yet, as we show in this paper, equally important for the dynamic properties of asset

prices are heterogenous beliefs. However, most of the previous theoretical literature analyzes

very stylized models, for example featuring only two agents, and offers just qualitative pre-

dictions. An obvious shortcoming is that a purely qualitative analysis can lead to misleading

conclusions as to the importance of the effects analyzed. Further, due to data limitations, the

empirical evidence is partial and inconclusive.3 In this paper, we analyze a rich yet tractable

1In a recent study, Giglio, Maggiori, Stroebel and Utkus (2019) survey a large panel of individual retail
investors and document that individuals have large and persistent heterogeneity in beliefs and show strong
willingness to agree to disagree.

2The pathbreaking Kahneman and Tversky (1979) that compiles the conclusions of many of these studies
is the point of departure of a large literature on reference-dependent preferences.

3Several empirical studies have tried to uncover the relation between disagreement and future stock
returns. For example, Diether, Malloy and Scherbina (2002) (DMS), Chen, Hong and Stein (2002), Goet-
zmann and Massa (2005) Yu (2011) find a negative relation, in support of the overvaluation hypothesis of
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model that permits a quantitative analysis of the asset pricing implications, with a focus on

the stock price volatility, the equity premium, and the risk-free rate. We show that some

of the qualitative effects derived in the previous literature are in practice negligible while

other consequences of our model not studied in the previous literature are quantitatively

important.

Our analysis is based on a model of the cross-section of beliefs about the growth rate of

the economy, with a continuum of agents that update their beliefs constantly and yet agree

to disagree, in line with the evidence provided by Kandel and Pearson (1995) and most of the

literature on heterogeneous beliefs. We estimate the model using data from the Survey of

Professional Forecasters (SPF) on GDP growth forecasts. There are several notable features

in the data. First, the mean forecast is a strong predictor of GDP growth and changes in

the mean forecast are weakly correlated with the realized GDP growth. Evidently, fore-

casters observe useful information about changes in the conditional mean of the economy’s

growth rate, which we model with an informative common signal. Second, disagreement

among forecasters is persistent, volatile, counter-cyclical and negatively correlated with re-

alized GDP growth. We envision that each individual has her own way of perceiving the

complex economic system and how shocks and new information propagate and affect it.4 We

further presume that negative economic shocks deteriorate the quality of information. High

informational quality could be related, for example, to cases where all economic indicators

“point to the same direction”, as opposed to cases where the economic indicators give con-

flicting signals. Meanwhile, if there is good information the scope of differences in perception

and disagreement are low. When this information deteriorates everyone has to rely on their

own way of perceiving and interpreting new information, and disagreement increases. To

incorporate these features, we draw from Scheinkman and Xiong (2003) and assume that

Miller (1977). However, Johnson (2004) finds that the analyst dispersion used by DMS to measure disagree-
ment proxies for uncertainty and higher uncertainty is what leads to lower future returns for levered firms.
Barron, Stanford and Yu (2009) provide further support to the argument in Johnson (2004) and provide
opposite evidence to DMS. Avramov, Chordia, Jostova and Philipov (2009) show that the negative relation
between analyst dispersion and future stock returns is accounted for by credit risk. Further, Doukas, Kim
and Pantzalis (2006), utilizing a different measure of forecast dispersion, find a positive relation with future
stock returns.

4There is evidence that cultural differences, individual abilities and personal experiences influence differ-
ences in perceptions and financial decisions. Grinblatt, Keloharju and Linnainmaa (2012) document that
IQ affects trading behavior and performance. Kumar, Page and Spalt (2011) show that religious beliefs
affect risk taking behavior, while Malmendier and Nagel (2011) show that personal experiences influence risk
taking behavior. Burke and Manz (2014) find that economic literacy improves forecast accuracy. Hoffmann
and Post (2017) find that investors’ past returns positively impact return expectations and negatively impact
their risk perceptions.
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agents observe “private” noisy signals. We further assume that the weight the agents place

on these signals is inversely proportional to the informativeness of the common signal. This

captures the common wisdom that when common information is weak or absent, individuals

revert to their “tribal” beliefs. Consequently, when the information quality of the common

signal deteriorates, disagreement increases.

With the estimated disagreement model at hand, we calibrate preferences and quanti-

tatively analyze how disagreement affects asset price properties. Our main findings are as

follows: (i) In the absence of shocks to information quality, disagreement is constant and

has a negligible effect on the volatility in stock prices. (ii) Shocks to information quality

generate close to half of the stock price volatility observed in the data, where stock prices

increase with information quality. (iii) Shocks to information quality are highly positively

correlated with growth shocks and, hence, negatively correlated with the state price; as a re-

sult, the stock price volatility that they generate significantly increases the equity premium.

(iv) Disagreement is negatively correlated with the market price-dividend ratio and predicts

future interest rates, both in the model and in the data. (v) Disagreement increases signifi-

cantly the price of risk when the utility curvature parameter is low and habit is “strong”.5

In contrast, with standard CRRA preferences the effect is negligible, irrespective of the level

of risk-aversion.

The recent market turmoil resulting from the Covid-19 health crisis provides an illus-

tration of the mechanism we analyze in the paper. During the month of March, we saw a

drop of about 30% in the S&P500, which over the following weeks quickly regained half of

that drop on a steady trend. Overall, the market registered changes of more than 1% for

a number of consecutive days that had not been seen since 1930. What do our economic

models have to say about such swings? The habit-formation theory explains them as an

increase in risk-aversion due to a drop in the level of consumption relative to habit and then

a subsequent drop in risk aversion (possibly due to an increase in expected consumption, as

the government announces a very large, multi-prong, economic package). The long-run risk

theory explains them as very persistent fluctuations in expected consumption growth. That

is, a significant drop (and then a significant increase, adjustment triggered by the economic

package) in expected consumption growth that will remain in place for a long time. In our

model we have both channels. The first is quantitatively important but cannot account for

the entire magnitude of the stock market fluctuations we observe. The second is minuscule

because the estimated persistence in the shocks to the expected consumption growth is not

5The utility curvature parameter is the CRRA in the case of no habit.
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high enough. But we also have a third channel, which is disagreement, that basically says

that in addition to a drop in consumption (relative to habit) and expected consumption

growth, we had a spike in uncertainty, in a good part driven by very low information qual-

ity (scientist and government leaders expressing different opinions and revising them almost

daily), which makes long-run predictions more difficult. This naturally induces an increase

in disagreement: investors disagree on how the shock translates to stock market impact, and

this is a persistent effect. That is, the low information quality is expected to remain for a

long time, and this predicts disagreement in the future. The rebound of the stock market

can also be explained by subsequent positive shocks to information quality resulting from the

approval of the economic package, which mitigates the effect of conflicting predictions among

politicians and/or scientists. The overall rise in disagreement causes a small but persistent

increase in the real rate–as expected deflation is the consensus–and the risk premium. Ad-

ditionally, our model predicts a decrease in diversification: anecdotal evidence is consistent

with this prediction, as we have seen that investors focus on subsets of the market, like tech

companies, and the rise in the stock market is mostly explained by a few (but very large)

stocks.

Despite the rich model, we derive the state dynamics in closed form by assuming that

the initial priors are drawn from a Gaussian distribution. The cross-section of beliefs is

characterized by three variables. The first is the mean forecast. The second is the forecast

dispersion, which refers to the standard deviation across forecasts. The third is the uncer-

tainty, which is the same for all agents.6 We also solve in closed form the stochastic discount

factor, which yields analytical expressions for the risk-free rate and the price of risk. Through

comparative statics and different model calibrations, we analyze and quantify the various

effects. Our findings put several results of the related theoretical literature into perspective.

Most of the existing theory on heterogeneous expectations and asset prices predicts that

disagreement generates excess volatility.7 In the absence of variations in information quality,

there are two main channels through which disagreement affects volatility. The first is that

disagreement affects the volatility of the mean forecast. This is the focus of the recent

study by Atmaz and Basak (2018), who analyze a model with dogmatic beliefs and constant

fundamentals. They find that disagreement increases the volatility of the mean forecast

through the reallocation of wealth generated by the speculative trading activity. Our analysis

6The amount of information that agents believe they can extract from the observed signals is the same
across agents. This is a common assumption for parsimony.

7See, for example, Buraschi and Jiltsov (2006), David (2008), Dumas, Kurshev and Uppal (2009), Xiong
and Yan (2010), Ehling, Gallmeyer, Heyerdahl-Larsen and Illeditsch (2016) and Atmaz and Basak (2018).
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shows that this is not always the case. In fact, when we consider fluctuations in the mean

growth rate, uncertainty, learning and intermediate consumption, disagreement in general

generates lower volatility of the mean forecast than a full information case. Regardless, we

find that these fluctuations are not quantitatively important for the stock price because the

shocks to the mean growth rare are not persistent enough.

The second channel by which disagreement may generate excess volatility is through the

fluctuations in the forecast dispersion. According to Dumas, Kurshev and Uppal (2009) this

effect generates most of the excess volatility. This channel is also emphasized in Buraschi

and Jiltsov (2006) and David (2008), but all three studies analyze two-agent economies. Our

model generates an altogether different result. As opposed to the case of a two-agent econ-

omy, disagreement with constant information quality in a large economy does not generate

any stochastic fluctuations in forecast dispersion. Due to the law of large numbers, changes

in dispersion depend neither on the growth rate realizations nor on the signals. Starting

from any level, it soon converges deterministically to a steady state. Thus, in our model,

shocks to the forecast dispersion can only come from shocks to information quality. This

feature enables the identification of the parameters of the information quality process.

Because of the above two results, a disagreement economy with constant information

quality is equivalent to a homogeneous agent economy and disagreement has negligible effect

on the stock price volatility. The introduction of shocks to information quality makes the

forecast dispersion stochastic with asset pricing effects whose magnitudes depend on the

preference parameters. The theoretical literature has generated several results that explain

how an increase in disagreement affects asset prices. Miller (1977) hypothesizes that dis-

agreement with short sale constraints leads to overvaluation, because prices reflect more the

valuation of optimistic investors. Harrison and Kreps (1978) and Scheinkman and Xiong

(2003) substantiate this hypothesis with partial equilibrium analyses, assuming, however,

risk-neutral agents. Gallmeyer and Hollifield (2008) extend the analysis to general equilib-

rium with risk-averse agents and they find that disagreement with short-sale constraints may

increase or reduce the stock price depending on the investors’ intertemporal elasticity of sub-

stitution.8 Similarly, Jouini and Napp (2006b) and Jouini and Napp (2006a) show that in a

frictionless setting disagreement may increase or decrease stock prices, because depending on

the risk preference parameters disagreement may decrease or increase the risk-free interest

rate.9

8In a related paper, Osambela (2015) provides a connection between liquidity and speculation in the
presence of disagreement and endogenous portfolio constraints.

9Varian (1985) shows, in a static analysis, that the impact of heterogeneous beliefs on state prices depends

5



We also find that forecast dispersion affects the risk-free rate and the effect depends on

whether agents are more or less risk-averse than a logarithmic investor (with or without

habit). When agents are more risk-averse than a logarithmic investor, an increase in disper-

sion increases the risk-free rate. In this case, the relative pessimists have a stronger effect

on the aggregate demand for savings. As a result, the risk-free rate needs to increase so

that the relative optimists can borrow from the relative pessimists. Therefore, a shock to

information quality increases future dispersion and either increases or decreases the future

risk-free rates, depending on the utility curvature parameter.

We then examine whether disagreement also affects the price of risk. According to David

(2008), disagreement explains about half of the observed equity premium when agents have

low constant relative risk aversion (CRRA). In such a case, disagreement makes agents take

large speculative positions that increase substantially the per-capita consumption risk. Our

analytical results, however, show to the contrary that, even though lower CRRA leads to

higher speculation and per-capita consumption risk, the net effect of a decrease in CRRA

on the price of risk is negative. Ceteris paribus, the price of risk always decreases with a

lower CRRA because the decrease due to the lower CRRA is greater than the increase due to

higher speculation. As a result, with CRRA preferences, disagreement only has a marginal

effect on the price of risk which in absolute terms is quantitatively insignificant, regardless

of risk aversion. This prediction changes when we introduce habit formation preferences.

When agents are highly risk averse due to habit but with low utility curvature parameter,

then an increase in dispersion leads to a significant increase in the price of risk.

The price of risk is also affected when the mean forecast is biased in relation to the true

mean growth rate. For example, in David (2008) the high equity premium is generated partly

because in his model the mean forecast in on average negatively biased. In our model, the

mean forecast is on average unbiased and fluctuations in this bias are, as already discussed,

quantitatively unimportant for the stock price.

We calibrate preferences to fit the stock market Sharpe ratio and the volatility of the

risk-free rate. As a result, agents are slightly more risk averse than a logarithmic investor

with “strong” habit. Hence, higher dispersion leads to increases in both the price of risk and

the risk-free rate. Further, according to the estimated disagreement model, the information

quality is volatile, persistent and driven by aggregate growth shocks.10 Consequently, shocks

on the properties of the utility function.
10According to the estimated model, shocks to information quality are almost entirely driven by aggregate

growth shocks, whereby a positive shock leads to a decrease in information quality. David (2008) points
also that forecast dispersion is counter-cyclical, which his model explains by having the two agents disagree
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to information quality generate large fluctuations in stock prices, because they have persistent

effects in both the price of risk and the risk-free rate. Also, these stock price fluctuations

require a risk premium because such shocks are mainly driven by the aggregate growth rate,

which is the only source of priced risk in the economy. The calibrated model explains most

of the stock price volatility, half of which is generated by habit and the rest due to variations

in information quality. At the same time, the calibrated model explains the risk-free rate

in terms of its mean, volatility, autocorrelation and correlation with the stock price. About

half of the volatility in the risk-free rate is due to fluctuations in the forecast dispersion and

the rest due to fluctuations in the mean forecast. Finally, we find that the dispersion in

professional forecasts predicts interest rates, as anticipated by the model.

2 Further related literature

The literature on heterogeneous beliefs and asset prices is long. Detemple and Murthy (1994)

analyze a production economy with heterogeneous beliefs on the economy’s growth rate and

show that asset prices are determined by the wealth-weighted beliefs of the agents. In a

pure exchange economy Zapatero (1998) shows that disagreement generates excess volatility,

mainly due to the volatility of the wealth shares. In a similar setting, Basak (2000) shows

that heterogeneous beliefs over non-fundamentals give rise to additional priced factors and

Basak (2005) expresses the equilibrium in the form of a representative agent and derives the

price of risk in the case of CRRA preferences. Buraschi and Jiltsov (2006) study the effects

on options and draw a link between disagreement, option volumes and option prices.11 In

all these studies, as well as in many others, the main effect on prices come from fluctuations

in the expectations of the representative agent, or some other measure of mean forecast. In

our analysis we construct a measure of the mean forecast using the consumption weights

and together with an appropriate distributional assumption we solve the equilibrium in

closed form.12 However, we find that fluctuations in the mean forecast are not quantitatively

important for the stock price.

more during recessions. He points out that this feature is consistent with evidence that the cross-sectional
differences in consumption growth increase during recessions.

11Buraschi, Trojani and Vedolin (2014) also study connections between disagreement and implied volatil-
ities and show how disagreement is related to volatility risk premia.

12Methodologically, our study is related to Xiouros and Zapatero (2010), Cvitanić and Malamud (2011)
and Atmaz and Basak (2018) who utilize an appropriate distributional assumption over a continuum of types
to provide analytical results of the market equilibrium.
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Atmaz and Basak (2018) also analyze the asset pricing effects of disagreement with a

continuum of agents and solve analytically for the equilibrium. Their main result is that

dispersion makes the stock price convex in cash-flow news. They also find that dispersion

increases both the stock price volatility and trading. Our study differs in many respects.

Firstly, they perform a qualitative comparative statics analysis on how the initial disagree-

ment and different cash-flow news affect the stock price. We instead focus on the quantitative

predictions of an estimated model of disagreement. Further, we analyze an infinite rather

than a finite horizon economy, we introduce fluctuations in the conditional growth rate,

intermediate consumption, learning, fluctuating information quality and habit formation

preferences. Our model yields a stationary equilibrium which we calibrate to asset prices.

In terms of predictions, we find instead that what is important for stock prices is shocks to

information quality and not fluctuations in the mean forecast/bias.

Dumas, Kurshev and Uppal (2009) study the “sentiment” risk caused by overconfident

investors, which generates excess volatility in stock prices and further study the optimal

behavior of the rational investor. Xiong and Yan (2010) and Ehling, Gallmeyer, Heyerdahl-

Larsen and Illeditsch (2016) find that heterogeneity in inflation expectations generates excess

volatility in bond yields. With our analysis we echo Atmaz and Basak (2018) in the impor-

tance of studying models with a continuum of agents, since some of the result in two-agent

settings do not carry over to large economies.

Two other related studies are those of Cvitanić, Jouini, Malamud and Napp (2011) and

Bhamra and Uppal (2014) who offer general equilibrium analyzes of economies with both

preference and belief heterogeneity. Both studies offer a number of analytical results in terms

of several asset pricing quantities, as well as results pertaining to agent survival and the long-

run properties of those economies. In particular, Bhamra and Uppal (2014) offer analytical

expressions of all main asset pricing quantities, including the stock return volatility, as well

as the conditions to obtain a stationary equilibrium in a two-agent setting. In our model, the

continuum of agents always results in a stationary equilibrium, independently of the model

parameters, because it is not tied to the survival of any agent stemming from the fact that

all agents have negligible amount of wealth.13

Our paper is also related to the literature that tries to explain quantitatively the asset

13Several papers study the agent survival and specifically the market selection hypothesis that conjectures
the eventual financial ruin of irrational agents; see, for example, Sandroni (2000), Blume and Easley (2006),
Yan (2008) and Fedyk, Heyerdahl-Larsen and Walden (2012). Further, Kogan, Ross, Wang and Westerfield
(2007), Kogan, Ross, Wang and Westerfield (2009), Cvitanić and Malamud (2011) and Cvitanić, Jouini,
Malamud and Napp (2011) show that non-surviving agents may have long-run effects on equilibrium asset
prices and portfolios.
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prices on the aggregate, of which the main features are the equity premium and the volatility

of valuation ratios. Common examples are the habit-formation models of Campbell and

Cochrane (1999) and Wachter (2006), the long-run risk model of Bansal and Yaron (2004)

and the rare disaster models of Barro (2006) and Gabaix (2012). We contribute to this

literature by incorporating heterogeneous beliefs into a habit-formation model that accounts

not only for the equity premium and stock return volatility, but also for several relations

between disagreement and asset price quantities. In addition, our model explains the low

correlation between the risk-free rate and the stock price-dividend ratio. Effectively, we

introduce a new factor, namely information quality in the presence of disagreement, that

we find to be important for asset prices. Shocks to information quality significantly affect

both the risk-free rate and risk premia. We perform a variance decomposition of the stock

price-dividend in the model and we find it to be similar to what we see in the data.

3 A model of disagreement

The model of disagreement is built on the basis of an endowment economy, where agents

face the aggregate consumption risk. Agents differ in their opinions about the aggregate risk

because they disagree on how they interpret common information, in line with the evidence

provided by Kandel and Pearson (1995). We assume that all information is available to

all agents so that there is no need to learn from asset prices. This allows us to develop

and estimate the disagreement model independently of preferences and asset prices. The

model has three distinctive features: the continuum of agents, a common informative signal,

unobservable to the econometrician, and the fluctuating degree by which the agents interpret

information differently caused by fluctuations in information quality. These features generate

rich dynamics for the distribution of beliefs and allow us to estimate the model using data

from the Survey of Professional Forecasters (SPF) provided by the Philadelphia Fed.

3.1 Aggregate endowment

The aggregate per-capita consumption, C, is exogenous. Its log-growth rate is conditionally

normal with a time-varying conditional mean that follows an autoregressive process;

gt`1 „ Npµt, σ
2
c q, (1)

µt`1 “ ϕµµt ` p1´ ϕµqµc ` σµε
µ
t`1, (2)
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where gt`1 – lnpCt`1{Ctq, µc is the long-run mean and the shocks εµ are i.i.d. Np0, 1q

and independent of g. The fluctuations in the mean growth rate represent changes in the

economic fundamentals and the fact that it is unobservable is the source of disagreement.

3.2 Agents, information quality and disagreement

The economy is populated with a continuum of agents indexed by i P r0, 1s of unit total

mass and constant density of one. Agents can not observe µt and hold beliefs according to

µt|Ft „
i Npµit, v

2
t q, @i P r0, 1s, (3)

where „i denotes the beliefs of agent i and Ft the common information set in period t.

The beliefs about the aggregate consumption growth are, thus, given by Npµit, σ
2
c ` v2t q.

The uncertainty vt is the same across agents. This is a result of the assumption, to be

formalized later, that the amount of information that the agents believe they can extract is

the same for all. As a result, the agents differ only in their forecasts for next period, i.e.

µit “ Eitpgt`1q “ Eitpµtq, where we use the notation Eitp¨q “ Eip¨|Ftq to denote a conditional

expectation.

An agent’s type in period t is determined by her beliefs µit. We further assume that the

initial distribution of types is Gaussian, in the sense that the density of agents as a function

of beliefs is the normal density function with mean µ̄0 and standard deviation ν̄0. We denote

with ntpµq the density of agents whose forecast is given by µ and, hence, n0pµq “ φpµ; µ̄0, ν̄
2
0q,

where φp¨; ¨, ¨q denotes the normal density function.14 In what follows, we will specify how

agents update their beliefs. Nevertheless, the distribution of types remains Gaussian; for any

period t it is completely described by the average forecast µ̄t and the dispersion in forecasts

ν̄t, where

µ̄t “

ż 1

0

µitdi and ν̄2t “

ż 1

0

pµit ´ µtq
2di. (4)

14To be able to derive our results, we define the distribution of types in some period t as follows:

ntpµq –
d

dµ

ż 1

0

Hpµ´ µitqdi “

ż 1

0

δpµ´ µitqdi,

where Hpxq is the Heaviside function, equal to 1 for x ě 0 and 0 otherwise and whose derivative is the Dirac
delta function, δpxq. The second integral in the above equation is derived using the Leibniz integral rule.
Note that the above is a properly defined density function, since integrating over the real line wrt. µ gives
one.
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Every period, agents observe the realization of the growth rate with which they update

their beliefs about the current period’s mean growth rate. They then observe signals that

contain information about the shock to the mean growth rate and form their beliefs about

next period’s mean growth rate knowing that it follows the process (2). However, similar

to Detemple and Murthy (1994), Zapatero (1998) and Scheinkman and Xiong (2003), the

agents disagree about the interpretation of this information.

All agents observe the common signal

smt “ ρtε
µ
t `

a

1´ ρ2t ε
m
t , (5)

where ρt P r0, 1s represents information quality and εm is i.i.d. Np0, 1q. Learning from the

realized growth rate and the common signal decreases the dispersion in beliefs. The common

signal is unobservable to the econometrician and this assumption is necessary to explain two

things: (i) the fact that forecasters’ beliefs react to signals other than the observed realized

growth rates and (ii) the predictability of the quarter-ahead growth rate by the mean forecast.

Agents also observe a continuum of uninformative signals, indexed by i. Each one of

these signals is the common signal sm distorted by some independent noise,

sit “ ηsmt `
a

1´ η2εit, @i P r0, 1s, (6)

where the εi’s are i.i.d. Np0, 1q and η P r0, 1s. Nevertheless, each agent believes that one

of these signals carries additional information. Specifically, agent i believes that signal i is

generated as follows:

sit “
i ζtε

µ
t `

a

1´ ζ2t ε
i
t, @i P r0, 1s, (7)

for some ζt P r0, 1s, where “i indicates agent i’s beliefs. Agent i correctly considers the rest

of the signals as uninformative. For ease of reference we call signals i P r0, 1s as individual

signals, even though all signals are public.15 The variable ζt is common to all agents and

controls the differential interpretation of the available information. In reality, this may be

due to different underlying assumptions stemming from different education, experiences,

observed histories, culture, age and so on. For example, Malmendier and Nagel (2011) find

that individual experiences of macroeconomic shocks affect future expectations and financial

15We could also assume that the individual signals are private as long as all agents believe that no other
agent possesses additional information, so that they have no reason to learn from prices and attribute different
demands for assets to differences in opinions.
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risk taking. Essentially, agents have different models in mind with which they interpret the

information and ζt represents the differential interpretation of common information.

The true correlation between the individual signals and the common signal is given by η,

whereas each agent believes that her signal has a correlation with the common signal equal to

ζtρt. We impose, therefore, a rationality constraint that ζtρt has to equal η at all times. This

implies that the differential interpretation of common information is inversely proportional

to quality of information, i.e. ζt “ η{ρt. As a result, η P r0, 1s is the disagreement parameter

and ρt P rη, 1s.

Proposition 1 derives the dynamics of the distribution of beliefs and the common uncer-

tainty.

Proposition 1. The uncertainty about the mean growth rate evolves according to

v2t`1 “ ϕ2
µκtv

2
t ` σ

2
µAv,t`1.

where

κt –
σ2
c

σ2
t

, σt –
b

σ2
c ` v

2
t and Av,t –

p1´ ζ2t qp1´ ρ
2
t q

1´ ζ2t ρ
2
t

.

Further, if in period t the distribution of beliefs µit is Gaussian with mean µ̄t and variance

ν̄2t , then the distribution of beliefs in period t ` 1 is also Gaussian with mean and variance

given by

µ̄t`1 “ p1´ ϕµqµc ` ϕµκtµ̄t ` ϕµp1´ κtqgt`1 ` σµAµ,t`1s
m
t`1,

ν̄2t`1 “ ϕ2
µκ

2
t ν̄

2
t ` σ

2
µAν,t`1.

where

Aµ,t –
ηζtp1´ ρ

2
t q ` ρtp1´ ζ

2
t q

1´ ζ2t ρ
2
t

and Aν,t –
ζ2t p1´ ρ

2
t q

2p1´ η2q

p1´ ζ2t ρ
2
t q

2
.

Since ζt “ η ˜ ρt then

Aµ,t “ ρt, Aν,t “
η2p1´ ρ2t q

2

ρ2t p1´ η
2q

and Av,t “
pρ2t ´ η

2qp1´ ρ2t q

ρ2t p1´ η
2q

.

The mean forecast µ̄ follows an autoregressive process just like the mean growth rate

and it is driven by two shocks. The first is the growth rate gt`1 which allows the agents

to update their beliefs on µt and the sensitivity to this shock depends on the persistence
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of and the uncertainty about µ–lower uncertainty implies higher value for κ. The second

shock is the common signal sm and the sensitivity to this shock depends on Aµ, which in

turn depends on all three parameters, η, ζ and ρ, that determine the true and perceived

informativeness of the signals. For example, when the common signal is fully informative,

i.e. ρ “ 1, then Aµ takes its maximum value of 1. When the common signal is uninformative

(ρ “ 0) then the common signal still affects the average beliefs with a sensitivity of Aµ “ ηζ

because η determines the correlation of the individual signals with the common signal and ζ

the perceived informativeness of the individual signals. When the differential interpretation

is at its maximum (ζ “ 1) then Aµ “ η due to the fact that the agents only consider their

individual signals that have a correlation with the common signal equal to η.

The dispersion in beliefs ν̄ does not depend either on the signals or the growth rate

realizations, but it depends on the true and perceived informativeness of the signals. The first

term shows how the dispersion decays due to learning, depending on the level of uncertainty

and the persistence of the mean growth rate. The second term is the shock to dispersion

which is either zero or positive. It is zero when either the common signal is perfectly

informative (ρ “ 1) or all individual signals are perfectly correlated with the common signal

(η “ 1). Imposing the restriction ζ “ η{ρ then the term Aν reaches the maximum value of

one when the common signal bears no information and information quality is at its minimum,

i.e. η “ ρ “ 0 and ζ “ 1.

The final element of the disagreement model is the process of the information quality

ρ, which is essential to capture several features of the data, most importantly the large

fluctuations in dispersion. We assume that ρ is generated as follows:

ρt “ η ` p1´ ηqΦpχt ` σρε
ρ
t q (8)

χt “ φχχt´1 ` p1´ φχqµχ ` βχpgt ´ µ̃t´1q ` σχε
χ
t , (9)

where ερ and εχ are i.i.d. Np0, 1q. Φp¨q denotes the standard normal cumulative distribution

function so that ρt P rη, 1s. The combination of transitory shocks ερ and persistent shocks εχ

is enough to capture well the autocorrelation structure of the forecast dispersion. Further,

the dependence on growth rate surprises pgt ´ µ̃t´1q is necessary given that growth is nega-

tively correlated with changes in dispersion. The quantity µ̃ represents some weighted mean

forecast, which is an equilibrium variable and will be derived later. The reason for not using

µ̄t is because otherwise we would need to have both variables in the state vector, that would

make the computations of the equilibrium prices much more demanding. The effect of this

13



choice on the estimated model parameters and the properties of the disagreement model is

negligible.

3.3 Data and estimation

To estimate the model we use aggregate consumption data and data from the Survey of Pro-

fessional Forecasters (SPF). We use the annual consumption data provided by the National

Income and Product Accounts (NIPA) from 1929 to 2017 and compute the per-capita con-

sumption of non-durable goods and services. The annual growth rates where then adjusted

for inflation by subtracting the growth in the annual average CPI index–data taken from

the Bureau of Labor Statistics (BLS). We simulate the model at quarterly frequency and

time-aggregate to compute annual moments.

From the SPF, we use the real GDP forecasts for the current quarter and for the quarter

ahead, made by professional forecasters. The data is quarterly and span the period from

1968Q3 to 2016Q4. Every quarter there are between 9 and 83 professional forecasts with

an average of 38.5 and standard deviation of 12. From the level data we compute growth

rates which then we adjust for population growth (computed from NIPA tables) to obtain

real quarterly per-capita growth forecasts. For every quarter we then compute the cross-

sectional average forecast (µ̄) and a measure for the dispersion in forecasts. To lessen the

effect of outliers we compute the dispersion as the distance between two percentiles, where

the percentiles are those of a normal distribution half a standard deviation left and right

from the mean. The dispersion measure corresponds, thus, to the cross-sectional standard

deviation in the case the distribution of forecasts is Gaussian. We also collect quarterly data

for real per-capita GDP growth over the same period as the SPF data. We thus analyze the

moments of the average forecast and the dispersion in forecasts in relation to the variable in

concern.

To compute model moments we run 1,000 simulations with 400 periods each and a burn-

in of 100 periods. The model is estimated using the Simulated Method of Moments, trying

to match 16 moments with 10 parameters. Table 1 shows the moments for the data alongside

those of the estimated model. The parenthesis next to each data statistic is the standard

error estimated using the Newey and West (1987) method and 16 lags. The parenthesis next

to each model moment shows the t-statistic of the hypothesis that the data moment is equal

to the model value. From the table we see that the differences between the model and the

data are statistically insignificant, with the highest t-statistic being 1.28 and the rest less

than 1. Table 2 shows the estimated model parameters.
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The model matches almost perfectly the mean, volatility and first-lag autocorrelation of

annual consumption growth, shown in Panel A. Panel B shows moments related to beliefs.

The average forecast µ̄ is quite volatile–the volatility is standardized by the volatility of

the related variable (GDP growth in the data and consumption growth in the model)–and

relatively persistent; both captured well by the model. The average and the volatility of the

forecast dispersion ν̄, standardized by the volatility of the related variable, are both quite

high and the model matches them almost perfectly. The model also captures quite well the

autocorrelation structure of the forecast dispersion as given by lags 1, 4, 8 and 12. As a

result, χ, which is the variable driving ρ (and ζ), is estimated to be quite persistent with

φχ “ 0.965. The power of the average forecast to predict the quarter ahead growth is shown

by the relevant correlation of 0.54 in the data and 0.51 in the model. The model also explains

the low correlation between changes in the average forecast and the growth rate. The model

explains these two statistics with the common signal sm and the parameters η and µχ. An

increase in either of these parameters increases the sensitivity of the average forecast µ̄ to the

common signal and, hence, the volatility of µ̄; as a result, the correlation between changes in

µ̄ and growth rate realizations decreases. A higher µχ also implies higher predictive power

for the average forecast because µχ determines the average information quality, as seen from

equations (8) and (9). On the other hand, an increase in the disagreement parameter η does

not increase the predictive power, because it introduces uninformative fluctuations in the

mean forecast through higher disagreement and higher correlation among individual signals.

A statistic that is of particular interest is the negative correlation between forecast dis-

persion changes with the related growth variable, which is -0.20 in the data and -0.17 in the

model. The model generates this correlation by having most of the fluctuations in ρ be driven

by growth rate surprises. The positively estimated βχ implies that the information quality

increases decreases with positive growth rate surprises, which has important implications for

the equity premium.

4 Investor preferences and market equilibrium

So far, the disagreement model was analyzed and estimated irrespective of investor prefer-

ences, wealth distribution and market structure. These elements are required to complete

the economy and generate asset pricing predictions. We assume that markets are complete

so that agents can choose their optimal consumption paths through trading.
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4.1 Risk preferences

All agents live forever and exhibit identical power utility preferences with external habit;

Eit
8
ÿ

τ“0

βτ
pCi

t`τ ´Ht`τ q
1´γ ´ 1

1´ γ
, @i P r0, 1s, (10)

where Ci denotes the consumption of agent i and H the common external habit. The

subjective discount factor is β ă 1 and γ ą 0 is the utility curvature parameter. When

γ “ 1 the preferences take the logarithmic form. The “difference” habit preferences we

adopt are similar to those of Constantinides (1990) and Campbell and Cochrane (1999). The

same analytical results can be provided with “multiplicative” habit preferences, similar to

Sundaresan (1989), Abel (1990) and Xiouros and Zapatero (2010), however, the “difference”

habit form allows us to explain the high market Sharpe ratio. Specifically, the Arrow-Pratt

measure of relative risk aversion in a certain period t is given by γ Ci
t{pC

i
t ´Htq. Thus, lower

consumption or higher level of habit implies higher risk aversion.

Following Campbell and Cochrane (1999) we specify the process of the log surplus con-

sumption ratio st – ln rpCt ´Htq ˜ Cts, where C represents the per-capita consumption

level. The log surplus consumption ratio follows the autoregressive process

st`1 “ φhst ` p1´ φhqs̄` λtpgt`1 ´ µ̃tq,

where s̄ is the unconditional mean and λt is the potentially time-varying conditional volatility.

Campbell and Cochrane (1999) also assume such a process with the difference that we

introduce the quantity µ̃, which is some cross-sectional weighted mean forecast and to be

defined later. The degree of risk aversion depends on how volatile the marginal utility is next

period, which is given by pCt`1´Ht`1q
´γ “ expr´γpst`1` ct`1qs, and, hence, it depends on

the conditional volatilities of st`1 and the log consumption risk. More accurately, the degree

of risk aversion is (approximately) given by γ p1`λtq and the price of risk is (approximately)

given by the degree of risk aversion times the amount of risk, i.e. γ p1` λtqσ̃t. The quantity

σ̃t is the aggregate consumption growth volatility under the market beliefs, to be defined

later, and is determined in equilibrium together with µ̃.16

For our analysis it is convenient to define the zero mean state variable ωt – p1´φhqpst´s̄q,

16The choice of µ̃ and σ̃ was for computational tractability.
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which follows the autoregressive process below:

ωt`1 “ φhωt ` p1´ φhqλtpgt`1 ´ µ̃tq. (11)

Note that as φ Ñ 1–when φ “ 1 then s follows a random walk–the variance of ω goes to

zero. To complete the risk preferences, we need to specify λt. Following Campbell and

Cochrane (1999), we choose λt so that the consumption surplus ratio (and ω) does not affect

the risk-free rate. Variations in the consumption surplus ratio also generate variations in

the elasticity of intertemporal substitution whereas fluctuations in the risk aversion generate

fluctuations in the precautionary savings. Offsetting these two effects yields the specification

for λ. To do so we consider a homogeneous agent economy, which is the case with no

disagreement (ζ “ η “ 0), where the stochastic discount factor (SDF) is given by the

marginal rate of intertemporal substitution of the representative agent that consumes the

per-capita consumption:

β

ˆ

Ct`1 ´Ht`1

Ct ´Ht

˙´γ

“ β exp r´γµ̃t ` γωt ´ γ p1` λtqpgt`1 ´ µ̃tqs . (12)

The risk-free rate is then given by the negative logarithm of the conditional expected SDF.

The term related to habit is ´γωt ` 0.5rγ p1 ` λtqσ̃ts
2 which we equate to its steady state

value. Letting λt “ θ when ωt “ 0 we thus obtain

λt “

c

p1` θq2 ´ 2
ωt
γσ̃2

t

´ 1. (13)

In addition to β and γ, the preferences are thus determined by the habit persistence φh and

θ ě 0. When φh ă 1 the time-varying λ generates variations in the price of risk. Since our

focus is the effects of disagreement, we initially consider the case of φh “ 1 where ω and λ

are constant and equal to zero and θ, respectively.

4.2 The market equilibrium

Agents maximize their utility (10) every period subject to their period budget constraint.

Since markets are complete, the period budget constraints can be replaced by the intertem-

poral budget constraint according to which the present value of an agent’s consumption

stream should be less or equal to the initial total wealth, which equals the present value of

the income stream plus the initial financial wealth. The present value of a stream of cash-
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flows can be written using the state price process p, where p0pztq gives the price at time 0 of

a unit of consumption in state zt. Thus, the intertemporal budget constraint is written as

8
ÿ

t“0

ż

Ci
t p0pztqdzt ď W i

0, (14)

where W i
0 is the initial total wealth of agent i.

The economy is in equilibrium when agents choose their consumption processes optimally

and the financial markets clear. Due to completeness, financial markets clear if and only if

the consumption good market clears in all states. The market clearing condition in a given

period t is then given by setting the integral of the consumption across agents equal to the

per-capita consumption Ct. Equivalently, we can set the integral of the consumption surplus

shares across agents equal to one,

Ct “

ż 1

0

Ci
tdi ô 1 “

ż 1

0

αitdi, where αit –
Ci
t ´Ht

Ct ´Ht

. (15)

Note that the consumption surplus distribution across agents, pαi, i P r0, 1sq, has the same

properties as a probability density of a continuous variable. Based on this distribution we

define another distribution which is what determines asset prices; namely, the consumption

surplus share distribution across beliefs, which we denote with αtpµq. It is defined similarly

to ntpµq, but instead of equal weights we use consumption surplus shares.17 The mean and

variance of this distribution are given by,

µ̃t –

ż 1

0

αitµ
i
tdi and ν̃2t –

ż 1

0

αitpµ
i
t ´ µtq

2di. (16)

We refer to µ̃t as the weighted mean forecast, which is endogenously determined in equilibrium

and is the quantity we used to specify the process of χ in (9) and the process of the log

consumption surplus ratio s. Next, we characterize the equilibrium allocations and state

prices with the following proposition.

17Similar to ntpµq, we define the consumption surplus distribution of types in some period t as follows:

αtpµq –
d

dµ

ż 1

0

αitHpµ´ µ
i
tqdi “

ż 1

0

αitδpµ´ µ
i
tqdi.

where Hpxq is the Heaviside function, equal to 1 for x ě 0 and 0 otherwise and whose derivative is the Dirac
delta function, δpxq.
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Proposition 2. In equilibrium, the consumption surplus shares evolve according to

αit`1 “ αit
φpgt`1;µ

i
t, σ

2
t q

1{γ

ş1

0
αjt φpgt`1;µ

j
t , σ

2
t q

1{γdj
, i P r0, 1s,

and the price of state zt`1 in period t is given by

ptpzt`1q “ β

ˆ

Ct`1 ´Ht`1

Ct ´Ht

˙´γ

fpzt`1|Ft, gt`1q

„
ż 1

0

αit φpgt`1;µ
i
t, σ

2
t q

1{γdi

γ

,

where σt is defined in Proposition 1 and fpzt`1|Ft, gt`1q denotes the density of state zt`1

conditional on the information at time t and the realization gt`1.

Agents in maximizing their utility attempt to smooth their consumption surplus shares

both across states and across time. In the absence of belief heterogeneity there is perfect risk-

sharing, in which case the consumption surplus shares are constant. However, disagreement

is incompatible with perfect risk sharing because this would imply disagreement about the

state prices and, hence, of the prices of the financial securities. Since in equilibrium all

agents agree on prices, they deviate from risk sharing and their consumption surplus shares

vary over time. Specifically, they increase in states that they consider relatively more likely

compared to the rest of the agents, and decrease otherwise.

The final element we need to determine allocations and prices in equilibrium is the ini-

tial wealth distribution across agents. To provide analytical results, we use the approach in

Xiouros and Zapatero (2010), also employed by Cvitanić and Malamud (2011) in the con-

text of heterogeneous beliefs, whereby we make a convenient assumption about the initial

endogenous consumption distribution. Specifically, the equilibrium consumption processes

and state prices admit closed form expressions if the initial consumption surplus share dis-

tribution across beliefs is Gaussian. We have already assumed that the initial distribution

across beliefs, n0pµq is Gaussian with mean µ̄0 and variance ν̄20 . We thus assume that the

initial wealth distribution is such that α0pµq is Gaussian with mean µ̃0 and variance ν̃20 .

This implies that relatively pessimistic agents would need to have a bit more wealth than

average to (partially) protect themselves form the expensive states following negative shocks.

Alternatively, we can assume that agents begin with a common prior, i.e. ν̄ “ 0, in which

case we need not impose any restriction on the initial wealth allocation.

Proposition 3. In equilibrium, the consumption surplus share distribution across beliefs

αtpµq is Gaussian at all times t ě 0 and the law of motion of the mean and variance are
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given by

µ̃t`1 “ p1´ ϕµqµc `
ϕµκt
1` ξt

µ̃t ` ϕµ

ˆ

1´
κt

1` ξt

˙

gt`1 ` σµAµ,t`1s
m
t`1,

ν̃2t`1 “
ϕ2
µκ

2
t

1` ξt
ν̃2t ` σ

2
µAν,t`1,

where

ξt –
ν̃2t
γσ2

t

.

The quantities κt, σt, Aµ,t and Aν,t are defined in Proposition 1. Further, let rP denote the

probability measure under which the distribution of gt`1 conditional on Ft is Gaussian with

mean µ̃t and variance σ̃2
t – σ2

t p1`ξtq. Then, the one-period stochastic discount factor (SDF)

under the probability measure rP, defined by Mpzt, zt`1qdrPtpzt`1q– ptpzt`1qdzt`1, is given by

lnMpzt, gt`1q “ ln β `
1´ γ

2
lnp1` ξtq ´ γµ̃t ` γωt ´ γ p1` λtqpgt`1 ´ µ̃tq,

where λt is as specified by (13). Finally, the state of the economy is given by z “ pµ̃, ν̃, v, χ, ωq

and is driven by the shocks pg, sm, εχ, ερq.

Proposition 3 together with the law of motion of v (Proposition 1) and the laws of motion

of χ and ω, shown by equations (8), (9) and (11), fully characterize the dynamics of the state

of the economy and the SDF that prices financial assets.

4.3 Implications of large vs small economies

Proposition 3 shows some important features of our model, especially in relation to models

of small economies with finite numbers of agents. Arguably, the continuum of types is a more

realistic representation of financial markets. Apart from this, the important distinction is the

following: In our model the state and, hence, asset pricing quantities that are functions of

the state, are stationary; whereas the literature has mostly analyzed models with states and

asset pricing quantities that are only asymptotically stationary.18 What this means for our

model is that we can study the unconditional asset pricing moments that do not depend on

the initial condition. Whereas, the literature in analyzing asymptotically stationary models

has produced interesting results that depend on the initial conditions, which are not drawn

from the stationary distribution. They effectively study the dynamics of such economies in

18A process is asymptotically stationary if it is stationary only in the limit.
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their transitions to their stationary distributions, while the asset pricing moments change

with the horizon. Yet, this may not be a serious shortcoming of such models because in

many cases it takes a very long time to converge to the stationary distribution. Even so, the

implications for asset prices still differ because in an economy with few types the convergence

path is stochastic while with infinite types the path is deterministic.

To explain the above comments we first consider the case of constant information quality

and we begin from the fact that the relevant state that describes the beliefs in the economy

is the endogenous allocation of consumption across beliefs. With n agents there are 2n ´ 1

state variables. For example, in a model with two agents the three state variables are the

consumption share–for this discussion we omit habit–of one of the agents and the beliefs of

the two agents, or three independent functions of these variables.19 Yan (2008) shows that

in a model with a finite number of agents one agent survives and asset prices converge to

the valuations of the surviving agent. This means that the stationary distribution is that of

one state variable, the beliefs of the surviving agent, and asset prices are those implied by

a homogeneous economy. Obviously, the implications of disagreement in such a model only

come from the transition to the stationary state, where the initial condition must assume a

non-negligible amount of consumption for all agents. This reflects the asymptotic stationarity

of these models.

Moving to the behavior of the transition path, consider that, with a finite number of

agents, all 2n ´ 1 state variables are stochastic and produce non-trivial dynamics for asset

prices. For example, Dumas, Kurshev and Uppal (2009) analyze their model of one rational

and one overconfident agent and find that, out of the three state variables, the difference

in the beliefs of the two agents is the main driver of the excess volatility in asset prices.

Our model, however, generates a very different result. The difference in beliefs, which is

represented by the variable ν̃, is non-stochastic because with constant information quality

Aν is also constant and ν̃ converges deterministically to a constant long-run state. What

we infer from this is that, as we increase the number of agents the “stochasticity” of the

difference in beliefs diminishes and completely vanishes when the number of agents becomes

infinite. Our conclusion, therefore, is that in a world with constant information quality the

dispersion in beliefs is probably neither stochastic nor a source of shocks to asset prices. For

this reason, we only focus on the stationary dynamics of our model, which are “trivial” in

the case of constant information quality.

19Interestingly, the consumption distribution across beliefs in our model is represented by only two vari-
ables, mean and standard deviation, instead of 2n´ 1. This facilitates considerably the study of the quan-
titative implications of the model as well as the qualitative analysis.
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The only stochastic element of beliefs in our model with constant information quality is

the consumption (surplus) weighted mean forecast µ̃. This leads us to the study of Atmaz

and Basak (2018) who also analyse a model with a continuum of agents where the implica-

tions come from the weighted mean forecast. Despite this, unlike ours, their model is only

asymptotically stationary, because the dispersion converges deterministically to zero, even

though at a very slow rate. Nevertheless, their analysis and conclusions are quite general

because their focus is on how the transition dynamics of the stock price depend on the initial

level of dispersion and not the unconditional asset pricing moments. Namely, how the aver-

age expectation behaves and affects the stock price for different initial values of dispersion.

Many of their qualitative results hold true in our model where we do not have a vanishing

dispersion.

4.4 Speculation and state dynamics

Here we show that ξt is a measure of the speculative activity, which is central to all the effects

of disagreement, and then see how it affects the dynamics of the state of the economy. But

first, we point out that when there is no disagreement (ζt “ η “ 0) there is no dispersion in

beliefs (νt “ 0), since Aν,t “ 0, and the consumption surplus shares are constant. Further, in

this case µ̃t equals µ̄t and σ̃t equals σt at all times. The dynamics of the homogeneous agent

economy are, thus, driven by the weighted mean forecast µ̃t, the uncertainty vt (if ρt ą 0)

and λt which determines the degree of risk aversion.

The introduction of disagreement (η ą 0) changes the dynamics of the economy because

of speculation. By speculation we refer to the fact that agents invest in financial assets to

deviate from perfect risk sharing in a way that is optimal according to their beliefs. As

already discussed after Proposition 2, agents increase their consumption surplus shares in

states that they consider more likely relative to the rest of the market. This consumption

reallocation changes the probability measure rP, through changing both the weighted mean

forecast µ̃ and the weighted dispersion ν̃. Before we see how this depends on speculation we

provide a measure for the speculative activity.

Lemma 1. Let the speculative activity in period t be defined as the cross-sectional variance of

the sensitivity of the log growth in the consumption surplus to the log aggregate consumption

growth at gt`1 “ µ̃t. That is, speculation is defined as the cross-sectional variance of

B

Bgt`1
log

ˆ

Ci
t`1 ´Ht`1

Ci
t ´Ht

˙ˇ

ˇ

ˇ

ˇ

gt`1“µ̃t
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weighted by the consumption surplus shares. The speculative activity is then given by ξt.

Naturally, the speculative activity is zero when there is no disagreement, increases with

dispersion ν̃, which itself decreases with information quality, and decreases with the utility

curvature parameter γ. Note that we define the speculative activity in terms of the growth

in consumption surpluses so that it is independent of habit. We do so to separate the various

effects, because the cross-sectional variation in consumption growth depends also on λt.

We can now examine how the speculative activity ξt affects the dynamics of the distribu-

tion of beliefs starting with µ̃t. As shown in Proposition 3, the weighted mean forecast µ̃ is

driven by the aggregate consumption growth and the common signal, just like µ̄, but with a

difference in the coefficient of g. We note first that the coefficient of the common signal Aµ,t

is always equal to the information quality ρt and independent of disagreement η (Proposition

1). What this means is that for any given path of ρt the level of disagreement, determined by

η, does not affect the way that the common signal sm affects µ̃t. Nevertheless, speculation

increases the volatility of µ̃ by making it more sensitive to shocks to aggregate consumption

growth, as a result of wealth reallocation. Since agents bet on states that they consider more

likely, every period wealth reallocates from agents whose beliefs µit happen to be far away

from the realization gt`1 to agents whose beliefs happen to be close to the realized value.

This effect can be clearly seen by the fact that the coefficient of gt`1, given by 1´κt˜p1`ξtq,

increases with ξt. When we compare this coefficient with the equivalent coefficient in the law

of motion of µ̄ (Proposition 1), given by 1´κt, we deduce that approximately κtξt represents

the reallocation of consumption surplus shares across types.20 Naturally, lower uncertainty

(higher κt) increases the effect of speculation.

Turning to the dispersion in beliefs we point out again that ν̃ is independent of both g and

sm and in the absence of shocks to information quality (constant Aν) it follows a deterministic

path toward a long-run steady state. The reason lies with the law of large numbers which

makes all the factors that affect beliefs to have predictable effects on dispersion. At the

steady state these factors offset each other. The same holds true for the uncertainty, which

means that with constant information quality (Aµ and Av are also constant) dispersion,

uncertainty and speculation become constant once they reach their corresponding steady

states.

The dispersion ν̃ is driven by three factors: wealth reallocation, learning and information

quality. Its law of motion (Proposition 3) has two terms. The first term shows how ν̃2

“decays”–the decay factor being ϕ2
µκ

2
t ˜ p1 ` ξtq–due to wealth reallocation and learning.

20Using a first-order approximation around ξt “ 0 we obtain that 1´ κt ˜ p1` ξtq « 1´ κt ` κtξt.
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The factor 1˜p1` ξtq represents the decrease in dispersion due to the reallocation of wealth

and the factor κ2t represents the decrease in dispersion due to learning from the realization

of g. Both higher speculation and greater prior uncertainty (low κt) lead to greater decrease

in dispersion. One might think that speculation would make the decrease in dispersion

depended on the realization of g, but this is not the case for the same reason that the

decrease in the uncertainty is independent of g. The second term, σ2
µAν,t`1, does not allow

the dispersion to vanish in the presence of disagreement (η ą 0). Every period, the dispersion

receives a positive shock whose size depends on disagreement, since Aν increases with η, but

also limited by the information quality, since Aν decreases with ρ. For example, if the

common signal is fully informative (ρ “ 1) then Aν equals zero.

4.5 Speculation and state prices

We close this section with an analysis of the equilibrium SDF that will give us the necessary

intuition to understand how disagreement affects asset prices in our model. The probability

measure rP under which we express the SDF was chosen because it highlights the various

effects. Under this probability measure, the aggregate consumption growth has a mean equal

to the weighted average expectation. An increase in this mean implies that the economy

as a whole expects higher consumption growth in the future, which decreases the discount

rates, but also expects higher cash-flow growth for the risky assets. Under rP the amount of

aggregate risk is equal to the risk as perceived by all agents, σt, increased by the speculative

activity as follows: σ̃t “ σt
?

1` ξt. The intuition is that σ̃ represents some “average”

individual consumption risk which increases by speculation. In fact, in the absence of habit σ̃2
t

is approximately the cross-sectional average of the individual consumption growth variance,

using consumption shares as weights.21 What this implies is that the economy, because of

speculation, prices assets as if the aggregate consumption risk were higher than it is.

The final element is the factor p1 ` ξtq
0.5 p1´γq. It shows the effect of disagreement and

speculation on the risk-free discount rate, since it does not depend on the realization of gt`1.

Given that ξt ě 0, it states that disagreement affects the discount rate either downwards

or upwards, depending on whether agents are more or less risk averse than a logarithmic

investor.22 This effect comes from the fact that when γ ą 1 pessimists have a stronger effect

21See proof of Lemma 1.
22Jouini and Napp (2006a, 2007) calls this factor the aggregation bias and provide an analysis using a

more general utility specification. An earlier result connected with this, is provided by Varian (1985) who
shows that each state price is affected either upwards or downwards by heterogeneity in beliefs depending
on certain properties of the utility function. The aggregation bias is the common component of the effect on
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on prices than optimists and the other way round for γ ă 1. To see why, consider the price

in period t of a state gt`1, in relation to the beliefs of agent i about the particular state,

ptpgt`1q “ βPitpgt`1q
ˆ

αit`1
αit

¨
Ct`1 ´Ht`1

Ct ´Ht

˙´γ

,

with a slight abuse of notation where Pitpgt`1q denotes the conditional “probability” of state

gt`1 according to agent i. Then, suppose that agent i becomes more “optimistic” about

the state in the sense that Pitpgt`1q increases. Given that the price of the state does not

change, the agent will want to increase her consumption surplus share ait`1. The direction of

the effect is given by the first derivative of ait`1 with respect to Pitpgt`1q. Now consider the

strength of this effect in relation to the probability Pitpgt`1q, that is, the second derivative

which depends on γ:

B2ait`1
BPitpgt`1q2

“
αit`1

γ Pitpgt`1q2

ˆ

1

γ
´ 1

˙

ĳ 0 when γ ¡ 1.

Finally, consider a case where the dispersion in beliefs about the particular state increases,

in the sense that the relative optimists become more optimistic and the relative pessimists

become more pessimistic by the same “amount”. Then, what the above relation implies for

γ ą 1 is that the pessimists will want to decrease their consumption surplus shares by more

than what the optimists want to increase theirs. For the equilibrium to be restored, the

state price needs to adjust. Obviously, the pessimists will not decrease their consumption

surplus shares as much and the optimists will increase theirs more than they would if the

state price remained the same. As a result, the state price will adjust downwards. The

opposite happens when γ ă 1, in which case the optimists want to react more strongly and

for the pessimists to be able to supply the additional consumption desired by the optimists,

the price of the state needs to increase.

The dispersion in beliefs affects all state prices, some more and some less. The factor

p1`ξtq
0.5 p1´γq represents the “average” effect across states. The variation of the effect across

states is reflected in σ̃t, that is, how the speculative activity augments the variance of gt`1

under rP.

all state prices. In our paper we reserve the term bias to refer to the difference between the weighted mean
forecast µ̃ and the true conditional mean µ.
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5 Representative agent and asset prices

In this section we study some key asset pricing effects of heterogeneity in expectations. We

start by deriving an equivalent representative agent economy which shows how we can obtain

equivalent effects from different elements. Specifically, the heterogeneous expectations econ-

omy with stochastic information quality is equivalent to a representative or homogeneous

agent economy with time-varying subjective discount factor and a modified uncertainty pro-

cess. If information quality is constant, then the equivalent representative agent has constant

but different subjective discount factor and uncertainty. Then, we derive the risk-free rate

and the price of risk and conduct a comparative statics analysis of the model with constant

information quality.

The equilibrium admits a representative agent representation, in the sense that there is a

homogeneous or representative agent economy with certain beliefs and preferences that gener-

ates the same asset prices. Suppose asset j is the claim to the cash-flow stream pDj
t`τ , τ ą 0q.

Assuming the usual transversality condition to exclude asset bubbles, the price of the asset

is given by the present value of its future cash-flows,

P j
t “

rEt
“

Mpzt, gt`1q
`

P j
t`1 `D

j
t`1

˘‰

“ rEt

«

8
ÿ

τ“1

Mt,t`τD
j
t`τ

ff

, (17)

where rE denotes the expectation under the probability measure rP and the stochastic discount

factor (SDF) between periods t and t ` τ is denoted with Mt,t`τ “
śτ´1

s“t Mpzs, gs`1q. An

economy is, thus, equivalent in its pricing implications if it has the same SDF under the

probability measure rP.

Proposition 4. Consider a representative (or homogeneous) agent economy, where the rep-

resentative (or each) agent has the same preferences as the agents in the heterogeneous agent

economy but with a subjective discount factor given by pβt – β p1` ξtq
1´γ
2 . Further, the repre-

sentative (or each) agent believes that the conditional volatility of µt and the informativeness

of the common signal are given by

pσµ,t – σµ

d

A2
µ,t ` Av,t `

Aν,t
γ

and pρt –
Aµ,t

b

A2
µ,t ` Av,t `

Aν,t
γ

,

respectively. Then, this economy is equivalent in its pricing implications to the heterogeneous
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agent economy. Since ζt “ η ˜ ρt then

A2
µ,t ` Av,t `

Aν,t
γ
“ 1`

ˆ

1

γ
´ 1

˙

Aν,t ĳ 1 when γ ¡ 1.

The adjustment of the subjective discount factor shows that the first effect of disagree-

ment on asset prices is similar to higher (lower) impatience or pessimism (optimism) if γ ą 1

(γ ă 1), in the sense that disagreement pushes all prices down (up), since β̂t ă β (β̂t ą β).

The adjustment in relation to the conditional volatility of µ and the informativeness of the

common signal are required so that the uncertainty of the representative agent is equal to

v2t ` ν̃
2
t ˜γ. This indicates that in relation to consumption risk and its effect on asset prices,

uncertainty and speculative activity are equivalent. The last two adjustments are also re-

quired so that the effect of sm on the expectation of the representative agent is the same as

the effect on µ̃.

5.1 The risk-free rate

The continuously compounded risk-free rate is given by rft “ ´ ln rEtpMt`1q.

Lemma 2. The continuously compounded risk-free discount rate is given by,

rft “ ´ lnpβq ` γµ̃t `
γ ´ 1

2
lnp1` ξtq ´

1

2
γ2p1` θq2σ2

t p1` ξtq.

The effects of disagreement are clear. The risk-free rate is driven by the weighted mean

forecast µ̃t, the speculative activity ξt, which depends on the weighted dispersion ν̃, and the

uncertainty v, which is part of σt. The third term represents the effect already discussed

in the previous section, whereby dispersion alongside the speculative positions taken by

the agents affect the discount rate depending on whether γ is lower or higher than one.

Specifically, with γ ą 1, the “pessimists” of each state have a stronger influence causing all

state prices to drop and, as a result, the risk-free rate increases. The fourth term represents

the precautionary savings motive, which becomes stronger with speculation and depends

on two things: Firstly, it depends on the average risk aversion γp1 ` θq, where 1 ` θ is

the amplification generated by habit. Secondly, it depends on the cross-sectional “average”

consumption risk as given by σt
?

1` ξt. The last two terms go in opposite directions when

γ ą 1. Typically the third term is larger in magnitude, which implies that when γ ą 1

the risk-free rate increases with ξ. In the opposite case, higher dispersion always pushes the

risk-free rate down.

27



Disagreement affects both the average level and the volatility of the risk-free rate. Lower

average information quality implies higher average speculative activity ξ and more volatile

µ̃. Further, more volatile information quality generates more volatile speculative activity. In

the case of constant information quality, the risk-free rate is driven only by µ̃.

5.2 The price or risk

In an economy with heterogeneous beliefs, the equilibrium relation between risk and return

is not unique because it depends on the probability measure. For this reason we move in two

steps, starting with deriving an expression for returns. Consider an asset with a conditionally

log-normal payoff equal to eg, whose one-period log-return is denoted with r and its excess

log-return is given by,23

rt`1 ´ r
f
t “ gt`1 ´ µ̃t ´

1

2
p1` ξtqσ

2
t ` γp1` λtqp1` ξtqσ

2
t . (18)

Clearly, the expected excess return of the asset depends on beliefs and the heterogeneity in

beliefs about g translates into heterogeneity in beliefs about asset returns. For agent i, the

expected excess return can be approximated using the log-normal return as follows:

Eitprt`1 ´ r
f
t q `

1

2
σ2
t “

„

µit ´ µ̃t
σt

` γp1` λtqp1` ξtqσt ´
1

2
ξtσt



σt.

In the above expression we have used not only agent i’s expectation but also the aggregate

risk as perceived by all agents, σt. Thus, the expression in the bracket shows the price of

risk for agent i, so that the expected excess return is given by the price of risk times the

amount of risk. The price of risk is then composed of three terms. The second term is the

price of risk in the homogeneous agent case, i.e. γp1 ` λtqσt, augmented by the amount of

speculation as it is multiplied by p1` ξtq. The third term is a Jensen’s inequality term that

arises when there is speculation and works in the opposite direction; that is, the partial effect

of speculation through this Jensen’s inequality term is to decrease the price of risk. Finally,

the first term shows the relative optimism of agent i which implies that the relative optimists

will have higher price of risk. Larger optimism is accompanied with larger exposure to the

23To derive the return of this asset we first derive the expression for its price which is given by
rEt rMt`1e

gt`1s. The log-return is then equal to the log-payoff minus the log-price. The log-return for a
general log-normal payoff is derived in Lemma 12 in the Appendix.
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aggregate risk, as shown by the logarithmic growth in individual consumption surplus:

log

ˆ

Ci
t`1 ´Ht`1

Ci
t ´Ht

˙

“
µit ´ µ̃t
γσ2

t

pgt`1 ´ µ̃tq ´
pgt`1 ´ µ̃tq

2 ` pµ̃t ´ µ
i
tq

2

2γσ2
t

` Lpzt, gt`1q.

The above expression is derived from Proposition 2 and Lpzt, gt`1q is agent independent.

We now define the price of risk, denoted with qt, as the price of risk of the agent that

happens to have the correct beliefs, meaning that the particular agent’s expectation is given

by the true (unobservable) conditional mean.

Lemma 3. The price of risk, defined as qt – Etprt`1´ rft q ˜ σt` 0.5σt, where rt`1 refers to

the return of the asset whose payoff is egt`1 shown in equation (18), is given by

qt “ ´
µ̃t ´ µt
σt

` γp1` λtqp1` ξtqσt ´
1

2
ξtσt.

There are three main factors that drive the price of risk: The first is the habit relative

to consumption, where an increase in the level of habit (lower ω) increases λt. Note that in

the case where φh “ 1, λt is constant and equal to θ. In this case, the price of risk is driven

by the other two factors. The second factor is the amount of speculation whose net effect is

determined by the sign of the quantity 2γp1` λtq ´ 1. In the typical case where agents have

a degree of risk aversion higher than one-half an increase in speculation increases the price

of risk. The first term shows the third factor, which is the bias of the economy in relation to

the true growth rate. It states that the true expected excess returns of risky assets fluctuate

as the representative agent’s forecast fluctuates around the true conditional mean. When

the economy exhibits a positive bias (µ̃t ą µt) risky assets are overpriced relative to the

risk-free rate and thus under the true probability measure are expected to “underperform”.

5.3 Comparative statics with constant information quality

Our results and qualitative analysis so far has shown how disagreement affects both the level

and variation of the risk-free rate and the price of risk. However, armed with an estimated

disagreement model for a large economy we can focus on the quantitative implications.

As a first step we consider an economy with constant information quality and study the

speculative activity, the price of risk and the risk-free rate through a comparative statics

analysis where we vary the information quality and the utility curvature parameter. The

rest of the parameters take their estimated values, shown in Table 2. For each parameter

29



set, we analyze the steady state. The convergence to the steady state is very fast, where the

various quantities reach the steady state within a distance of 1% in less than 10 quarters.

For a given information quality, where ζ “ η ˜ ρ, the coefficients Aµ, Av and Aν are

as given in Proposition 1. Panel A of Figure 1 shows these coefficients as functions of ζ,

that ranges between η and 1, ζ “ η corresponding to perfect information quality (ρ “ 1)

and ζ “ 1 corresponding to the lowest information quality (ρ “ η). Naturally, Aν which

determines the level of the consumption surplus weighted dispersion ν̃ increases with ζ. The

coefficient Aµ determines the effect of the common signal on the mean forecast which is equal

to the information quality ρ. The steady states of the uncertainty and ν̃ are given by the

solution to the following system of equations:

ν̃2 “ ϕ2
µ

γσ2
c

γpσ2
c ` v

2q ` ν̃2
¨

σ2
c

σ2
c ` v

2
ν̃2 ` σ2

µAν , v2 “ ϕ2
µ

σ2
cv

2

σ2
c ` v

2
` σ2

µAv. (19)

The steady state of the dispersion ν̄ is computed in a similar fashion. Panel B of Figure 1

shows the plots of v, ν̄ and ν̃ for two values of γ, 0.5 and 5. Clearly, the dispersion measures

decrease with information quality. We also see that ν̃ increases with γ, which we formally

prove below, as well as that ν̃ converges to ν̄ as γ tends to infinity. The reason is that, more

risk averse agents speculate less and, thus, less wealth is reallocated to those agents whose

beliefs are more correct in hindsight.

The coefficient Av (Panel A), which determines the level of the uncertainty, and the

uncertainty v (Panel B) are hump-shaped, because at the upper bound of information quality

the common signal is fully informative and at the lower bound the individual signals are

perceived to be fully informative. In Panel C we plot the speculative activity, given by

ν̃2 ˜ pγv2q, for three different values of γ. We see that it increases exponentially with ζ,

especially when the utility curvature parameter is low. In Panel D we show the individual

consumption risk σ̃, which increases with both disagreement and uncertainty. When γ is

sufficiently low, the per-capita consumption risk monotonically decreases with information

quality, as indicated by the case of γ “ 0.5. In this case, even though the uncertainty

decreases beyond a certain value of ζ, the increase in ν̃2 ˜ γ in larger. Otherwise, the

per-capita consumption risk is hump-shaped.

Given that the speculative activity is sensitive to the utility curvature parameter when

this is low, the next question is whether for sufficiently low values of γ the speculative activity

can help explain the high price of risk observed in the data. In the next lemma we show first

that the price of risk always increases with the utility curvature parameter.
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Lemma 4. Let ζ be constant and let pv, ν̃q be the solution to the system of equations (19).

Then the following hold:

lim
γÑ8

ν̃ “ ν̄, lim
γÑ0

ν̃ “ σµ
a

Aν ,
Bν̃

Bγ
ą 0,

lim
γÑ8

ξ “ 0, lim
γÑ0

ξ “ 8,
Bξ

Bγ
ă 0,

Bpγξq

Bγ
“

1

σ2

Bν̃2

Bγ
ą 0.

Therefore, we also have that,

Bqt
Bγ

“ ´
1

2

Bξ

Bγ
σ ` p1` λtq

ˆ

1` ξ ` γ
Bξ

Bγ

˙

σ ą 0,

where σ “
a

σ2
c ` v

2.

To understand the result on the price of risk, consider the case where there is no habit

(λt “ 0) and no bias (µ̃t ´ µt), so that the price of risk is given by q “ γp1` ξqσ ´ 1
2
ξσ. In

the absence of disagreement, the price of risk becomes γσ, that is, it is given by the product

of the consumption risk and the coefficient of relative risk aversion. The introduction of

disagreement generates speculation and increases the “individual” consumption risk, σ̃ “

σ
?

1` ξ. In fact, when γ tends to zero the individual consumption risk tends to become

infinite.24 Nevertheless, the rate at which the “individual” consumption risk increases is

never as high as the rate at which γ decreases. As a result, the price of risk is always smaller

when agents are less risk-averse, independently of how large is the dispersion in beliefs.

The next question is then whether speculation can help generate a high price of risk. The

answer is negative in the absence of habit, because speculation can only marginally increase

the price of risk for large values of γ. From Lemma 3 we know that in the absence of a bias,

i.e. µ̃t “ µt, and with no habit (θ “ 0) speculation increases the price of risk by p1` 0.5ξtq.

Looking at Panel C of Figure 1 we infer that for γ “ 5.0 the maximum possible increase in

the price of risk is less than 10%. However, we would need a much higher value for γ with

CRRA preferences to come close to explaining the observed price of risk. At such higher

values for γ, the impact of speculation is negligible. The only case where speculation can

significantly increase the price of risk is if γ is low and the risk aversion coming from habit,

i.e. θ is high.

In Figure 2 we plot the risk-free rate and the price of risk against ζ, for three different

values of γ: 0.5, 1.5 and 5. In Panels A and C, the value of θ depends on γ, so that the degree

24In our model the utility curvature parameter cannot be zero, otherwise speculation is infinite and all
asset prices collapse to zero.
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of risk aversion γp1 ` θq is constant and equal to 25. We choose this value, because about

this much degree of risk aversion is needed to explain the risk-return relation in the data.

These plots are useful to understand how these quantities vary across time when information

quality is stochastic.

In Panel C, by keeping the degree of risk aversion constant across parameter sets, all

three models generate the same price of risk for maximum information quality. We then see

that the price of risk is much more sensitive to information quality when γ is equal to 0.5,

because with lower γ the speculative activity increases more with ζ. For γ “ 5, the price of

risk is hump-shaped because the speculative activity is weak and the effect of the uncertainty

is stronger.

The risk-free rate plotted in Panel A shows that it becomes more sensitive to information

quality as γ deviates from 1. The risk-free rate varies considerably with information quality

even when γ “ 1.5, in which case it varies from around 0% to around 10%. These plots

indicate that the risk-free rate in a model with time-varying information quality will fluctuate

considerably, when γ deviates from 1.

In Panels B and D we keep the value of θ constant and only vary γ across the three

graphs. These plots are useful to understand how the average price of risk and risk-free rate

depend on γ across models.

In Panel B we notice that the risk-free rate corresponding to γ “ 5 is not monotonic in

information quality. Compared to Panel A, the value of θ is bigger implying stronger precau-

tionary savings motive, which works in the opposite direction to the effect of disagreement–

see discussion after Lemma 2.25 Up until a value around ζ “ 0.4, a decrease in information

quality makes the precautionary savings motive even stronger, which in turn makes the risk-

free rate even smaller. Eventually, the effect of disagreement prevails and beyond ζ “ 0.4

the risk-free rate becomes decreasing in information quality.

Finally, in Panel D we see the result of Lemma 4, according to which the price of risk is

always increasing in γ, independently of the level of information quality.

5.4 Speculation, the equity premium and the equity volatility

A fundamental question is whether speculation helps to explain the high equity premium

and the high stock return volatility. The equity premium is (approximately) the product

of the price of risk, the stock return volatility and the correlation between stock returns

25See the expression of the risk-free rate in Lemma 2. The last term represents the precautionary savings
motive and the third term represents the effect of disagreement.
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and aggregate consumption growth. We have already analyzed how disagreement affects the

price of risk, with the main conclusion being that disagreement can significantly affect the

price of risk if γ is low and θ is high. We now need to examine how disagreement affects the

other two factors that determine the equity premium.

There are two main ways in which disagreement affects the equity volatility. We know

that stock prices increase either due to a decrease in discount rates or an increase in expected

cash-flow growth. The first effect comes from the fact that the weighted mean forecast µ̃

increases cash-flow growth and decreases the risk-free discount rate. If the net effect is non-

zero then speculation may increase the volatility of stock prices if it increases the volatility

of µ̃. In Figure 3 we plot the ratio of the unconditional volatility of µ̃ to the unconditional

volatility of µ for four different values of γ ranging from 0.1 to 5.0. We note that in all these

cases the highest volatility is obtained with full information (ρ “ 1 and ζ “ η). We then note

that in some cases, e.g. for γ “ 5.0 and γ “ 1.5, the volatility of µ̃ decreases monotonically

as the information quality decreases, while in the other two cases at the beginning the

volatility decreases with ζ and then increases. Therefore, only in certain cases an increase in

disagreement through lower information quality will generate more volatile mean forecast,

where the opposite is typically true.

The second effect is present only when information quality is stochastic. We have seen

that speculation increases both the risk-free rate and the price of risk for γ ą 1. Therefore, a

decrease in information quality increases future speculation and, thus, increases the discount

rates and decreases stock prices. Thus, the more volatile is information quality the more

volatile is the stock price and the magnitude of the effect depends mainly on three parameters:

(i) risk aversion γ where lower γ increases speculation, (ii) risk aversion coming from habit θ,

where higher θ implies larger fluctuations in the price of risk, and (iii) the persistence of the

shocks to information quality, where more persistence implies larger effects on stock prices.

Therefore, higher and more volatile information quality leads to higher equity volatility.

This excess volatility leads to an increase in the equity premium if such fluctuations are cor-

related with the aggregate consumption growth. This is true for the estimated disagreement

model where shocks to information quality are almost exclusively driven by consumption

growth shocks. Specifically, positive shocks lead to increased information quality and with

a γ ą 1 an increase in information quality leads to an increase in stock prices and, thus a

positive correlation with consumption growth.

The conclusion of the above analysis is that disagreement may significantly affect the

equity premium if γ is low, θ is high and information quality is stochastic. David (2008)
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provides a disagreement model with two agents, constant information quality and CRRA

preferences, which accounts for about half of the equity premium when γ is lower than

one. David (2008) attributes this principally to the significant increase in the “individual”

consumption risk. His model generates an apparently contradictory result, because of two

elements that are absent in our model. The first element is that in his model one of the two

agents is pessimistic who, given the beliefs of the other agent, on average survives over 30

years of simulated data. As a result, the economy exhibits significant negative bias which

generates a significant average price of risk. Lemma 3 shows how the price of risk increases

when the bias becomes negative. In our model the average bias is zero because the data do

not show any indications of an average bias. The average professional forecast in our sample

period (1961Q3:2016Q4) is 0.39% growth per quarter, compared to the average growth rate

of 0.30% over the same period and 0.40% over the entire sample period (1947Q1:2016Q4). In

addition, the average professional forecast is a strong predictor of the quarter ahead growth,

as shown in Table 1, with a correlation of 0.54.

The average bias is unrelated to risk aversion but it is needed for risk aversion to have

an effect on the equity premium through the return volatility. In his model, risk aversion

affects the quantity of risk through fluctuations in the cross-sectional dispersion. As we

have already discussed, in a two agent model the dispersion is stochastic which, as shown

by Dumas, Kurshev and Uppal (2009), generates significant excess volatility. This excess

volatility is higher when agents are less risk averse because the increased speculation makes

the consumption shares more volatile. However, we have already shown that in a large econ-

omy with constant information quality the dispersion is non-stochastic. Thus, the argument

that disagreement may significantly contribute to explaining the observed equity premium

with CRRA preferences and constant information quality does not carry over to our model.

6 Asset prices in a calibrated economy

Given the estimated model of disagreement, we can now calibrate the preferences and study

the quantitative implications for asset prices. We study the price properties of three assets;

the aggregate consumption claim, the one-period risk-free rate and the claim to the stock

market dividend. Given that the stock market dividend process differs substantially from

the aggregate consumption process, we specify the following log dividend growth process:

gdt`1 “ µc ` βd ¨ pgt`1 ´ µcq ` σdε
d
t`1,
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where εd is iid. standard normal. The exposure to the aggregate log consumption growth is

set to βd “ 2.15, to match the correlation between g and gd, and the idiosyncratic volatility

is set to σd “ 0.0575, to match the volatility of gd in the data.

The asset price data is quarterly and cover the period between 1927Q1 to 2016Q4. The

risk-free rate in the data is taken to be the 3-month nominal T-bill rate, obtained from

CRSP, adjusted for quarter ahead expected inflation. The expected inflation is estimated

using a fitted AR(1) process on the quarterly inflation series obtained from the Bureau of

Labor Statistics, where inflation is estimated as the change in the CPI index. For the stock

market return we use the CRSP value-weighted return including distributions. In addition,

we impute the price-to-dividend ratio for the stock market using also the value-weighted

returns excluding dividends. Because dividends are highly seasonal, we compute the price-

to-dividend ratio as the price at the beginning of a quarter divided by the average quarterly

aggregate dividend over the following year. For the same reason, we calibrate the model’s

dividend process to the annual dividend growth series in the data, by time-aggregating the

quarterly series simulated with the model.

To calibrate the model we need to choose four parameters, whose values are shown in

Table 3: (i) The subjective discount factor β is chosen to match the average risk-free rate.

(ii) The utility curvature parameter γ is chosen to match the volatility of the risk-free rate.

(iii) The volatility of the log surplus consumption ratio at the average state θ allows us to

match the stock market Sharpe ratio (SRm). (iv) The habit persistence φh is chosen to

match the first-lag autocorrelation of the stock market log price-to-dividend ratio (pd).

Table 5 shows various statistics in relation to asset prices for the data and for the model.

Model 1 refers to the full model with both time-varying information quality and time-varying

risk aversion. The parentheses next to the data estimates show standard errors. The paren-

thesis next to a model statistic shows the t´statistic of the hypothesis that the data estimate

is equal to the value given by the model. The model matches well the quantities that is cali-

brated to, namely the autocorrelation of pd with a t´statistic of 0.88, the mean and volatility

of rf with t´statistics of 0.16 and 0.10, respectively, and SRm with a t´statistic of 0.11.

The model dividend process captures well the corresponding statistics in the data, matching

almost exactly the volatility of the aggregate log annual dividend growth and its correlation

with the aggregate log annual consumption growth.

The model also captures well the means and volatilities of the stock market return (rm)

and the equity premium (rm ´ rf ). Further, it matches the autocorrelation of the risk-free

rate, which is equal to 0.65, and generates a low correlation between the risk-free rate and the
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log price-to-dividend ratio, which is border line statistically different from the data estimate,

with a t´statistic of 1.96.

Moving on to the pd-ratio we see that the model generates a quite high volatility of 0.31,

yet it is low compared to our data estimate of 0.44. Other studies, however, report lower

data estimates that are similar to our model’s prediction.26 Using similar data, Boudoukh,

Michaely, Richardson and Michael (2007) report a volatility of 0.41 excluding share re-

purchases and between 0.29 and 0.33 including share repurchases, depending on how the

repurchases are measured. As for the average pd-ratio, for our model it is 4.34, which is a bit

low compared to our data estimate of 4.71. Boudoukh, Michaely, Richardson and Michael

(2007) report estimates between 4.54 and 4.66.27 The low model average is mostly due to the

fact that the average market return in the model (1.82%) is higher than in the data (1.59%).

The higher average market return is due to the higher market return volatility generated by

the model.

The utility curvature parameter γ was calibrated to 1.17. With similar preferences,

Campbell and Cochrane (1999) and Wachter (2006) use a value of 2.0. In our case, the

value for this parameter is pinned down by the volatility of the risk-free rate. As we have

already discussed, given the fluctuations in the speculative activity, a higher value for γ

would imply a higher volatility for the risk-free rate, as it can also be inferred from Panel A

of Figure 2. Also, higher γ implies lower elasticity of inter-temporal substitution and, thus,

larger fluctuations coming from changes in the weighted mean forecast µ̃. Our estimate of

the risk-free rate volatility is conservative given that we adjust for the expected rather than

the realized inflation. With a higher γ, the model can generate even higher volatility for

the pd-ratio. For example, with γ “ 1.4 the model explains entirely our estimate of the

volatility in the pd-ratio, but with twice as much volatility in the risk-free rate. Overall, the

benchmark calibration captures very well the main moments of the stock market prices and

returns, of the risk-free rate and the correlation between them.

In addition, the model explains the strong negative relation between the stock market and

the dispersion in forecasts. In the data this correlation is ´0.57 while the model generates

a stronger negative correlation of ´0.76. The difference is statistically significant, but the

model was not calibrated to fit this moment.

Finally, we also report moments of the log price-to-consumption ratio (pc) and the returns

26Wachter (2006) reports a volatility of the log price-to-dividend ratio of 0.31, Campbell and Cochrane
(1999) report 0.27, Gabaix (2012) reports 0.33 and Bansal and Yaron (2004) report 0.29.

27Boudoukh, Michaely, Richardson and Michael (2007) report annual log dividend yield statistics which
we transform to quarterly pd-ratio statistics by taking the negative value and adding ln 4.
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of the aggregate consumption claim (rc). Since we lack a data counterpart, we compare these

moments to those of the stock market. The moments of the pc-ratio are comparable to those

of the pd-ratio, though it is less volatile. The average returns of the consumption claim

are very similar to the market returns in the data, but with lower volatility, due to the

lower volatility in cash-flows. Despite this, the equity premium of the consumption claim is

very close to the stock market equity premium in the data. Thus, the Sharpe ratio of the

consumption claim is higher, close to 0.20, compared with the stock market Sharpe ratio of

0.14. This is due to the fact that the stock market in the model carries some idiosyncratic

volatility, mostly due to the idiosyncratic dividend shocks.

6.1 Quantitative analysis

Next we quantify the various effects and analyze how the model explains the main moments

of the stock market price, stock returns and the risk-free rate. The analysis supports the

view that the time-varying information quality is an important determinant of asset prices.

It generates significant fluctuations in stock prices, it helps explain the equity premium and

the low correlation between the risk-free rate and stock prices.

We start the analysis by first seeing how the asset pricing moments change when we turn

off the time-varying risk-aversion and the time varying information quality. For Model 2 we

turn off the time-varying risk aversion by setting φh “ 1, which results in a constant risk

aversion equal to γ ˆ p1 ` θq. The rest of the model parameters (see Table 3) are kept the

same. For Model 3, we additionally set σρ, βχ and σχ to zero to obtain constant information

quality. The rest of the parameters are kept the same, apart from an adjustment to β so that

Model 3 also matches the average risk-free rate. The asset pricing moments of the various

models are shown in Table 5 while Table 4 shows several moments of state variables.

The first thing we note is that the volatility of the log price-dividend ratio falls from 0.31

to close to zero (0.02) when we remove both the time-varying risk aversion and the time-

varying information quality. What this means is that the fluctuations of the weighted mean

forecast (µ̃), which is the only state variable in Model 1, account for a negligible amount of

stock price volatility. The volatility of the stock market excess return in Model 3 of 6.54%

is almost entirely generated by dividend growth, which has an annual volatility of 11.10%.

Looking at the consumption claim, we see that the volatility of the log price-consumption

ratio is zero with precision of two decimal places.

To see why the mean forecast has a negligible effect on stock prices, we derive an approx-
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imate expression of the sensitivity of the pd-ratio to changes in the mean forecast,

Bpdt
Bµ̃t

«
βd ´ γ

1´ φµZt
, (20)

where Zt is the price-dividend ratio of the one-period dividend claim, which is very close to

one and at the steady state it is equal to 0.994. We see that a change in µ̃ has the usual

discount rate effect given by γ, the inverse of the EIS, and the cash-flow effect given by βd.

In our model the cash-flow effect is stronger, since βd “ 2.15 and γ “ 1.17. The value of the

above sensitivity is 4.23, which together with the volatility of µ̃ (0.56% shown in Table 4)

gives a volatility for the pd-ratio of only 0.023. We can compare this result with the model

of Bansal and Yaron (2004) where fluctuations in growth expectations are important.28 The

main difference is that they assume φµ to be equal to 0.979, which is much higher than our

estimate of 0.773. In our model, the parameter φµ is jointly estimated and largely reflects the

persistency in the mean forecast. Thus, according to our model disagreement and speculation

cannot have a significant effect on the stock price volatility through fluctuations in µ̃.

Next, we introduce time-varying information quality in Model 2, which increases the

pd-ratio volatility to 0.16 and the pc-ratio volatility to 0.14. Comparing these moments

across the three models we see that the time-varying information quality accounts for about

half of the stock price volatility generated by the model and it is as important as the time-

varying risk aversion. We have already explained in Section 5.4 that with a low γ, high θ

and persistent shocks to information quality (φχ “ 0.965), a negative shock to information

quality leads to a persistent increase in discount rates and a significant drop in stock prices.

We also note that the stock market Sharpe ratio (SRm) increases from 0.08 in Model 1 to 0.14

in Model 2. The reason is because the stochastic information quality is almost exclusively

driven by aggregate consumption growth shocks, where a positive growth shocks leads to a

increase in information quality. This implies that the stock market fluctuations coming from

the stochastic information quality require a positive risk premium.29

Introducing further the time-varying risk aversion increases even more the stock price

and stock return volatility, as well as the equity premium, and leaves all other moments

virtually unaltered, including the stock market Sharpe ratio. The stock price fluctuations

generated by the time-varying risk aversion also require a risk premium because the ω is

28Bansal and Yaron (2004) consider a model where the expected growth rate is observable and, thus,
µ̃ “ µ. They use the following parameters: βd “ 3, 1{EIS “ 1{1.5, φµ “ 0.979 that give a sensitivity of
close to 90. Together with a volatility for µ̃ of 0.17% gives a volatility for the pd-ratio of around 0.15.

29Given the estimated process for χ, the term βχpgt`1 ´ µ̃tq accounts for more than 99% of the variance
of the shocks to χ.
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driven by aggregate consumption growth shocks.

In the data, the dispersion in forecasts is strongly negatively correlated with the pd-ratio.

The model replicates this behavior firstly because information quality is an important driver

of the stock price and has a high correlation with dispersion ν̄. The high correlation is evident

by the fact that χ, which drives information quality, has a correlation of ´0.75 with ν̄, as

shown in Table 4. Secondly, information quality and risk aversion are strongly correlated,

since the correlation between χ and ω is 0.90, which makes ν also highly correlated with ω

and risk aversion.

Next, we look at the volatility of the risk-free rate and note that in Model 1, the fluctu-

ations of µ̃ are an important driver of the risk-free rate, since they generate a volatility of

0.61. The introduction of stochastic information quality in Model 2 increases the volatility to

0.85. Looking at the expression of the risk-free in Lemma 2 we see that the other important

driver is the speculative activity ξ. Table 4 shows that ξ is weakly negatively correlated with

µ̃, with a correlation of ´0.24. What these numbers imply is that the speculative activity

is as important for the risk-free rate as the mean forecast. The weak negative correlation

between these two factors and the fact that both increase the risk-free rate also explains

why the autocorrelation of the risk-free rate decreases from 0.76 to 0.65. The introduction

of time-varying risk aversion in Model 3 does not affect the risk-free rate.

In addition to the above analysis, we plot the risk-free rate and the log price-to-dividend

ratio against all the state variables in Figure 4. For each plot, we vary one state variable while

the rest are kept at their steady states. The gray area in each plot shows the unconditional

distribution of the corresponding state variable. Starting with Panels A and B, we see that

µ̃ has a negligible effect on the pd-ratio but a significant effect on the risk-free rate. The

same holds true for ν̃ and v, where from Panels C and D we see that they have very small

effects on the stock price but significantly affect the risk-free rate. The explanation is that,

even though µ̃, ν̃ and v affect the risk-free rate, what is important for the long-lived assets

as the stock is persistent shocks to the discount rates. However, neither of these three state

variables is particularly persistent as shown from Table 4.

The important factors for stock prices are shown in Panels E and F, where we plot the pd-

ratio against χ, that drives information quality, and ω, that drives risk aversion, respectively.

These two state variables do not affect the risk-free rate. Both of these state variables are

quite persistent with autocorrelations of 0.953 for χ and 0.968 for ω. Either an increase in

χ (increase in information quality) or in ω (decrease in risk aversion) leads to a persistent

decrease in discount rates and an increase in stock prices. The variable ω affects only the
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price of risk, whereas information quality through its effect on speculation affects both the

price of risk and the risk free rate.

We close this section by noting that the low correlation between the pd-ratio and the

risk-free rate in our model is firstly due to the fact that different state variables matter

for these two quantities. Secondly, the state variables χ and ω that are important for the

pd-ratio are weakly correlated with µ̃ and v (see Table 4) that are significant drivers of the

risk-free rate.

7 Additional empirical evidence

The main result of our analysis is that information quality with disagreement is an important

driver of stock prices, through the fact that shocks to information quality cause persistent

shocks to discount rates. For relevant empirical evidence we need to find some variable that is

highly correlated with information quality and see whether it predicts future interest rates.

The only available quantity is the cross-sectional dispersion in macroeconomic forecasts,

which in our model is denoted with ν̄. In addition to this variable we construct a measure for

ξ by estimating with the model a quadratic relation between ξ and ν̄. The estimated model

has a regressionR2 of 0.99. We then run univariate predictive regressions of cumulative future

risk-free rates over various horizons, from 1 quarter up to 28 quarters, using as predictors

either 1˜ p1` ξq or ν̄. The results are shown in Table 6.

In Panel A we have the estimated coefficients of the constructed predictive variable

p1 ` ξq´1 for the data and Model 1.30 We see that all coefficients estimated from the data

are negative and increasing in magnitude. For the first few horizons the coefficients are

statistically significant at the 10% level and beyond the 12-quarter horizon the coefficients

become statistically significant at the 5% level. Running the same regressions on simulated

data from the model yields very similar results. The coefficients are all negative, increasing

in size and very close to those estimated from the data. For horizons longer than 8 quar-

ters, the difference between the data coefficients and the model coefficients are statistically

insignificant.

In Panel B we show the regression coefficients when we use as predictor the macroe-

conomic forecast dispersion ν̄. The data coefficients are all positive and increasing with

horizon. Also, almost all of them are statistically significant at the 5% level, except for

quarter 1. The model yields very similar results where all coefficients estimated from the

30Model 2 generates identical results.
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data are statistically indistinguishable from those estimated for the model.

Finally, to see how well the model is able to explain the stock market fluctuations,

we perform Campbell-Shiller variance decompositions of the pd-ratio. We decompose its

variance to fluctuations in cumulative dividend growth, stock market returns and the pd-

ratio 60 quarters ahead (pd60). The stock market returns are further decomposed into excess

returns and the risk-free rate. In the data we see that 12% of the fluctuations are due

to fluctuations in dividend growth, 70% due to fluctuations in returns and 16% due to

fluctuations in pd60. For Model 1, fluctuations in pd60 have very little explanatory power of

the pd-ratio volatility with 2%, which implies that the model does not generate some more

persistent effects found in the data. Fluctuations in future returns are associated with 109%

of the fluctuations in the pd-ratio, out of which 91% is due to excess returns and 19% due

to the risk-free rate. Dividend growth offsets 10% of the variations, even though there is

positive dependence of stock prices on cash-flow growth. The reason is that dividend growth

is positively correlated with interest rates, and high future interest rates are associated with

low stock prices.

Overall, the model generates similar patterns to what we see in the data with most of

the stock price fluctuations being associated with future stock excess returns. However, with

the exception of the coefficient associated with excess returns for all other coefficients the

difference between the data and the model is statistically significant. What is interesting

though is that the model coefficients vary a lot across simulations. In Model 2, there is

stronger dependence on fluctuations in the risk-free rates, not surprisingly since there are

no fluctuations in risk-aversion. In Model 3, the principal driver of stock prices is dividend

growth, but as we have discussed earlier, it explains very little of the total variations.

8 Conclusions

In this study we develop and solve a model of heterogeneous expectations in a large economy,

where the conditional growth rate changes every period and agents update their beliefs

through common information they observe. In doing so, they disagree in how they interpret

this information depending on the information quality. We find that information quality

fluctuates over time and has important asset pricing effects. According to the calibrated

model, the fluctuating information quality with disagreement explains one-third to one-half

of the stock price fluctuations and about the same portion of the equity premium.

We start our analysis by estimating the model of disagreement using data on professional
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forecasts. According to the estimated model, information quality is volatile, persistent and

almost exclusively driven by aggregate growth shocks, where a positive shock increases in-

formation quality. We then add power utility preferences with external habit to the model,

derive the equilibrium and the representative agent formulation and study the asset pricing

implications.

We first show that some of the predictions generated by small economies with two or

finite number of agents extend to a large economy with an infinite number of agents. The

first prediction that holds in both cases is that heterogeneity in beliefs affects the risk-free

discount rate either upwards or downwards, depending on whether the utility curvature

parameter (the constant relative risk aversion in the case of no habit) is higher or lower

than one. The second prediction that also holds in small economies is that the speculative

activity increases the individual consumption risks, which increases the price of risk. Both

of these effects depend on the dispersion in forecasts. However, some other predictions

that are important in small economies do not extend to our model. Specifically, in small

economies when information quality is constant the forecast dispersion is stochastic, which

makes the effects on the risk-free rate and the price of risk stochastic. These stochastic effects

generate excess volatility in asset prices. However in a large economy, by virtue of the law of

large numbers, the forecast dispersion evolves deterministically and converges rapidly to a

constant steady state, making the heterogeneous agent economy observationally equivalent

to a homogeneous agent economy and having a negligible effect on the stock price volatility.

The negligible stock price volatility effect comes from how disagreement affects the volatil-

ity of the mean forecast. First, contrary to several earlier studies that analyze more stylized

models,we find that an increase in disagreement does not necessarily increase the volatility of

the mean forecast. In fact, for a typical parameter set, a decrease in information quality that

increases disagreement leads to a decrease in the volatility of the mean forecast. Regardless,

because of the fact that the estimated persistence in the conditional mean growth rate is not

high enough, fluctuations in the mean forecast, while important for the risk-free rate, are

not quantitatively important for the stock price.

The model explains the main moments of stock returns and the risk-free rate as well

as the low correlation between them. In addition, the model explains the strong negative

correlation between the dispersion in macroeconomic forecasts and the stock price, as well as

the fact that the dispersion in forecasts predicts risk-free rates. We hereby provide a channel

through which information quality affects asset prices. The quantitative implications make

this factor fundamental in understanding asset prices on the aggregate.
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Appendix A Proofs

In the following results ϕpx;µ, σ2q denotes the normal density with mean µ and standard

deviation σ. The first three lemmas are required for the subsequent results.

Lemma 5. The following relation holds

ϕpx; y, σ2
xqϕpy;µy, σ

2
yq “ ϕpx;µy, σ

2
y ` σ

2
xqϕ
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y;
xσ2
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σ2
x ` σ

2
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xσ
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y
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˙

and therefore
ż `8

´8

ϕpx; y, σ2
xqϕpy;µy, σ

2
yqdy “ ϕpx;µy, σ

2
y ` σ

2
xq.

Proof. It is equivalent to stating that if x “ y` ε where y „ Npµy, σ
2
yq and ε „ Np0, σ2

xq and

if y and ε are independent then x „ Npµy, σ
2
y ` σ

2
xq.

Lemma 6. Suppose that z “ ax ` by where x „ Npµx, σ
2
xq, y „ Npµy, σ

2
yq and x and y are

independent. Then we have that
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Proof. This is a straight-forward application of the Bayes’ theorem with densities:

fpx|zq “
fpz|xqfpxq

fpzq
“
ϕpz; ax` bµy, b

2σ2
yqϕpx;µx, σ

2
xq

ϕpz; aµx ` bµy, a2σ2
x ` b

2σ2
yq

where f denotes density.

Lemma 7. Let hpiq for i P r0, 1s be a density function. Let also εi’s, one for each agent, be

i.i.d. random (continuous) variables with probability distribution P. Then, the mass of i in

a set B P r0, 1s, for which the realization of εi is in a set A is equal to PpAq times the mass

of B, with probability one, that is

ż 1

0

hpiq1pi P Bq1pεi P Aqdi “ PpAq
ż

B

hpiqdi.

Further, let A “ p´8, gpxqs, then:

ż

B

hpiqδrgpxq ´ εisdi “
dPrεi ď gpxqs

dx
“ fεrgpxqsg

1
pxq

ż

B

hpiqdi.
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Proof. Observe first that the above holds in expectation.

E
„
ż 1

0

hpiq1pi P Bq1pεi P Aqdi



“

ż 1

0

hpiq1pi P BqE r1pεi P Aqs di “ PpAq
ż

B

hpiqdi,

because of the independence of hpiq and εi and the fact that the εi’s are i.i.d. Next observe

that the variance of the integral is zero, since the expectation of the integral squared equals

the expectation squared,

E

«

ˆ
ż 1

0

hpiq1pi P Bq1pεi P Aqdi

˙2
ff

“ E
„
ż

B

ż

B

hpiqhpjq1pεi P Aq1pεj P Aqdidj



“ PpAq2
ż

B

ż

B

hpiqhpjq1pj ‰ iqdidj ` PpAq
ż

B

hpiq2pdiq2

“ PpAq2
„
ż

B

hpiqdi

2

`
“

PpAq ´ PpAq2
‰

ż

B

hpiq2pdiq2

“ PpAq2
„
ż

B

hpiqdi

2

.

Therefore, the integral is equal to its expectation with probability one. The second result

uses the first result to derive the density function of the distribution of agents with the same

signals, e.g. being equal to gpxq. First, for A “ p´8, gpxqs we obtain

ż

B

hpiq1rεi ď gpxqsdi “

ż

B

hpiqHrgpxq ´ εisdi “ Prεi ď gpxqs

ż

B

hpiqdi, .

Then, differentiate both sides with respect to x, using the Leibniz integral rule, to obtain

the result:

d

dx

ż

B

hpiqHrgpxq ´ εisdi “
d

dx
Prεi ď gpxqs

ż

B

hpiqdi,

6

ż

B

hpiq
B

Bx
Hrgpxq ´ εisdi “ fεrgpxqsg

1
pxq

ż

B

hpiqdi,

6

ż

B

hpiqδrgpxq ´ εisdi “ fεrgpxqsg
1
pxq

ż

B

hpiqdi,

where fεp¨q is the density function of the εi’s.

When the growth rate of the economy is realized in some period, all agents update their

beliefs about the mean growth rate in a Bayesian way as shown by the next lemma.
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Lemma 8. Let the prior beliefs of agent i about µt be given by Npµit, v
2
t q. Then, once gt`1

is observed, the posterior beliefs about µt are formed as follows:

µt|Ft`1 „
i N

`

κtµ
i
t ` p1´ κtqgt`1, κtv

2
t

˘

, @i P r0, 1s, (A21)

where κt – σ2
c{pσ

2
c ` v

2
t q.

Proof. This is a straightforward application of Lemma 6.

Given, the beliefs about the informativeness of the private and public signals, agent i

filters the information about the shock εµ to the mean growth rate from the signals si and

sm.

Lemma 9. Given the beliefs about the informativeness of the signals sm and si, as given

by equations (5) and (7), respectively, agent i forms beliefs about the new innovation εµt as

follows:

εµt |s
i
t, s

m
t „

i N

ˆ

sitζtp1´ ρ
2
t q ` s

m
t ρtp1´ ζ

2
t q

1´ ζ2t ρ
2
t

,
p1´ ζ2t qp1´ ρ

2
t q

1´ ζ2t ρ
2
t

˙

, @t, i P r0, 1s

Proof. We use Lemma 6 to obtain the conditional distribution εµt |s
m
t given assumption (5).

We apply again Lemma 6 to obtain the conditional distribution εµt |s
m
t , s

i
t, given assumption

(7) and the distribution of εµt |s
m
t . Alternatively, the result is obtained from the following

(omitting time subscripts): fpεµ|sm, siq 9 fpsm|εµq fpsi|εµq fpεµq.

We close the beliefs process of an agent by combining the individual posterior beliefs

pµt|Ft`1q and the individual filtering pεµt`1|s
i
t`1, s

m
t`1q.

Lemma 10. Agent i’s beliefs about the state of the economy in period t ` 1 are given by

µt`1|Ft`1 „
i N

`

µit`1, v
2
t`1

˘

, where

µit`1 “ p1´ ϕµqµc ` ϕµκtµ
i
t ` ϕµp1´ κtqgt`1 ` σµ

sit`1ζt`1p1´ ρ
2
t`1q ` s

m
t`1ρt`1p1´ ζ

2
t`1q

1´ ζ2t`1ρ
2
t`1

v2t`1 “ ϕ2
µκtv

2
t ` σ

2
µAv,t`1.

where

Av,t`1 –
p1´ ζ2t`1qp1´ ρ

2
t`1q

1´ ζ2t`1ρ
2
t`1

.

Proof. From the law of motion of µ, given by (2), we know that the conditional (on Ft`1)

distribution of µt`1 is normal given that the conditional distributions of µt and εµt`1 are
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normal. To obtain the conditional moments of µt`1 we use Lemma 5 noting that the beliefs

about εµt`1 are independent of those about µt.

Proof of Proposition 1. From Lemma 10, we know that

µit`1 “ p1´ ϕµqµc ` ϕµκtµ
i
t ` ϕµp1´ κtqgt`1 ` σµ

sit`1ζt`1p1´ ρ
2
t`1q ` s

m
t`1ρt`1p1´ ζ

2
t`1q

1´ ζ2t`1ρ
2
t`1

,

where sit`1 “ ηsmt`1 `
a

1´ η2εit`1, as specified in (6). We substitute in sit`1 and for ease of

notation we skip time subscripts and write the above equation as follows: µ1i “ a0`a1µi`a2εi,

where µi denotes beliefs in period t and µ1i those in period t` 1. The distribution of beliefs

in a given period t defined by:

ntpµq–

ż 1

0

δpµ´ µitqdi,

where δp¨q is the Dirac delta function. Then, the distribution of beliefs in period t ` 1 is

given by

nt`1pµ
1
q “

ż 1

0

δpµ1 ´ µ1iqdi “

ż 1

0

δpµ1 ´ a0 ´ a1µi ´ a2εiqdi.

In the above, the Dirac delta function indicates when µ1i “ µ1. We then integrate over all

possible values of µi and use Lemma 7

nt`1pµ
1
q “

ż 1

0

ż

δpµ1 ´ a0 ´ a1µ´ a2εiqδpµ´ µiqdµ di,

“

ż ż 1

0

δpµ1 ´ a0 ´ a1µ´ a2εiqδpµ´ µiqdi dµ,

“

ż ż 1

0

δ

ˆ

µ1 ´ a0 ´ a1µ

a2
´ εi

˙

di

ż 1

0

δpµ´ µiqdi dµ,

“

ż

1

a2
φ

ˆ

µ1 ´ a0 ´ a1µ

a2
; 0, 1

˙

ntpµqdµ “

ż

φpµ1; a0 ` a1µ, a2qntpµqdµ.

We next use the fact that ntpµq “ φpµ; µ̄t, ν̄
2
t q and use Lemma 5 to obtain:

nt`1pµ
1
q “

ż

φpµ1; a0 ` a1µ, a2qφpµ; µ̄t, ν̄
2
t qdµ “ φpµ1; a0 ` a1µ̄t, a

2
1ν̄

2
t ` a

2
2q.
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Therefore, substituting back the coefficients a0, a1 and a2, we obtain

µ̄t`1 “ p1´ ϕµqµc ` ϕµκtµ̄t ` ϕµp1´ κtqgt`1 ` σµ
ηζt`1p1´ ρ

2
t`1q ` ρt`1p1´ ζ

2
t`1q

1´ ζ2t`1ρ
2
t`1

smt`1,

ν̄2t`1 “ pϕκtq
2ν̄2t `

˜

σµ
ζt`1p1´ ρ

2
t`1q

a

1´ η2

1´ ζ2t`1ρ
2
t`1

¸2

,

which completes the proof.

Proof of Proposition 2. Agents maximize their utility (10) subject to their budget constraint

(14). Fixing a state zt, we can derive the optimality condition of consumption in that state.

The set of first-order conditions of the agent’s optimization problem is characterized by

βt
“

αit pCt ´Htq
‰´γ

dPi0pztq “ p0pztqdzt (A22)

In the above optimality condition it is implicit that αit, Ct and Ht are functions of the state

zt. Let ptpzt`1q “ p0pzt`1q{p0pztq be the price of consumption in state zt`1 as of period t.

Dividing equation (A22) for state zt`1 with the same condition in period t we obtain the

optimal marginal rate of intertemporal substitution,

β

ˆ

αit`1 pCt`1 ´Ht`1q

αit pCt ´Htq

˙´γ

dPitpzt`1q “ ptpzt`1qdzt`1 @i P r0, 1s, (A23)

where Pitpzt`1q “ Pipzt`1|Ftq represents the beliefs of agent i in period t for the state zt`1

next period. Solving for αit`1 we obtain

αit`1 “ αit
Ct ´Ht

Ct`1 ´Ht`1

ˆ

βf it pzt`1q

ptpzt`1q

˙
1
γ

,

where f it pzt`1qdzt`1 “ dPitpzt`1q is the conditional density function according to the beliefs

of agent i in period t for state zt`1 next period. Since agents hold heterogeneous beliefs only

in relation to gt`1 we can express the conditional density function as follows: f it pzt`1q “

f it pgt`1qfpzt`1|Ft, gt`1q. We substitute this into the above expression of αit`1, integrate over

the set of agents, apply the market clearing condition (15) and solve for ptpzt`1q:

ptpzt`1q “ β

ˆ

Ct`1 ´Ht`1

Ct ´Ht

˙´γ

fpzt`1|Ft, gt`1q

„
ż 1

0

αitf
i
t pgt`1q

1{γdi

γ

.
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We know from (1) and (3) that f it pgt`1q “ φpgt`1;µ
i
t, σ

2
c ` v

2
t q and substituting in the above

expression we obtain the equilibrium condition for ptpzt`1q. Finally, we substitute the expres-

sion for ptpzt`1q into (A23) and use the decomposition of f it pzt`1q to obtain the result.

In the following lemma, we express the integral that appears in Proposition 2 in terms

of normal density function.

Lemma 11. Omitting time subscripts, let the consumption surplus distribution across beliefs

αpµq be Gaussian with mean µ̃ and variance ν̃2, while the agents’ beliefs are given by f ipgq “

φpµi;σ2
c ` v

2q. Then, we have that

ż 1

0

αiφpg;µi, σ2
c ` v

2
q
1{γdi “ φ

ˆ

g; µ̃, σ2
c ` v

2
`
ν2

γ

˙1{γ
˜
d

σ2
c ` v

2

σ2
c ` v

2 ` ν̃2{γ

¸1´1{γ

.

Proof. We substitute this into the integral of the above equation and solve the integral by

using the consumption distribution over beliefs αtpµq “ φpµ; µ̃t, ν̃
2
t q. We do this below,

skipping the time subscripts.

ż 1

0

αiφpg;µi, σ2
c ` v

2
q
1{γdi “

ż 1

0

ż `8

´8

αiφpg;µ, σ2
c ` v

2
q
1{γδpµ´ µiqdµdi

“

ż `8

´8

φpg;µ, σ2
c ` v

2
q
1{γ

ż 1

0

αi δpµ´ µiqdidµ

“

ż `8

´8

φpg;µ, σ2
c ` v

2
q
1{γαpµqdµ

“

ż `8

´8

φpg;µ, σ2
c ` v

2
q
1{γφpµ; µ̃, ν̃2qdµ

“
?
γ
´

a

2πpσ2
c ` v

2q

¯1´1{γ
ż `8

´8

φ
`

g;µ, γpσ2
c ` v

2
q
˘

φpµ; µ̃, ν̃2qdµ

“
?
γ
´

a

2πpσ2
c ` v

2q

¯1´1{γ

φpg; µ̃, γpσ2
c ` v

2
q ` ν̃2q,

where the last equation is obtained using Lemma (5). Next, note that

φpg; µ̃, γpσ2
c ` v

2
q ` ν2q “ φ

ˆ

g; µ̃, σ2
c ` v

2
`
ν2

γ

˙1{γ
»

–

?
γ

˜

d

2π

ˆ

σ2
c ` v

2 `
ν̃2

γ

˙

¸1´1{γ
fi

fl

´1
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Combining the above results and rearranging we obtain the result,

ż 1

0

αiφpg;µi, σ2
c ` v

2
q
1{γdi “ φ

ˆ

g; µ̃, σ2
c ` v

2
`
ν2

γ

˙1{γ
˜
d

σ2
c ` v

2

σ2
c ` v

2 ` ν̃2{γ

¸1´1{γ

.

Proof of Proposition 3. We first derive the equilibrium stochastic discount factor (SDF) un-

der the probability measure rP, under which gt`1|Ft „ Npµ̃t, σ̃
2
t q, where σ̃2

t – σ2
t ` ν̃2t {γ.

Plugging in the result of Lemma 11 into the expression for ptpzt`1q derived in Proposition 2

we obtain

ptpzt`1q “ β

ˆ

Ct`1 ´Ht`1

Ct ´Ht

˙´γ

p1` ξtq
1´γ
2 fpzt`1|Ft, gt`1qφ

`

gt`1; µ̃, σ̃
2
t

˘

,

where

ξt –
ν̃2t
γσ2

t

and σ̃2
t “ σ2

t p1` ξtq.

By the definition of the probability measure rP we have that

drPpzt`1|Ftq “ fpzt`1|Ft, gt`1qφ
`

gt`1; µ̃, σ̃
2
t

˘

dzt`1

where fpzt`1|Ft, gt`1q denotes the objective conditional probability density function of the

state z. Under this probability measure, the price of a state zt`1 in period t is given by

ptpzt`1qdzt`1 “Mpzt, zt`1qdrPpzt`1|Ftq

where M is the SDF under rP. Finally, we solve for M , where β rpCt`1 ´Ht`1q{pCt ´Htqs
´γ

is given by (12) and (13), and note that the conditional variation of the SDF depends only

on gt`1; that is, the only priced risk is the aggregate consumption risk.

We next show that the consumption surplus share distribution across beliefs αtpµq is

Gaussian at all times, given that the initial distribution α0pµq is Gaussian, and derive the

law of motion of the mean and variance of this distribution. The first step is to show that,

if in period αtpµq is Gaussian with mean µ̃t and variance ν̃2t q, then after the realization of

gt`1 and before any updating of beliefs the consumption surplus share distribution over the

beliefs held in period t is also Gaussian with mean µ̃t`1 “
1

1`ξt
µ̃t `

ξt
1`ξt

gt`1 and variance

ν̃2t “ ν̃2t ˜ p1 ` ξtq. Plugging in the result of Lemma 11 into the law of motion of the
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consumption surplus shares derived in Proposition 2 we obtain

αit`1 “ αit

ˆ

φpgt`1;µ
i
t, σ

2
t q

φpgt`1; µ̃t, σ̃2
t q

˙1{γ

p1` ξtq
γ´1
2γ “ αit

φ pgt`1;µ
i
t, γ σ

2
t q

φ pgt`1; µ̃t, γ σ̃2
t q
.

The consumption surplus share distribution in period t ` 1 over the beliefs in period t is

then given by,

ż 1

0

αit`1δpµ´ µ
i
tqdi “

ż 1

0

ż

αit`1δpx´ µ
i
tqδpµ´ xqdx di

“

ż ż 1

0

αit
φ pgt`1;µ

i
t, γ σ

2
t qq

φ pgt`1; µ̃t, γ σ̃2
t q
δpx´ µitqδpµ´ xqdi dx

“

ż

δpµ´ xq

φ pgt`1; µ̃t, γ σ̃2
t q

ż 1

0

φ
`

gt`1;µ
i
t, γ σ

2
t

˘

αitδpx´ µ
i
tqdi dx

“
1

φ pgt`1; µ̃t, γ σ̃2
t q

ż

δpµ´ xqφ
`

gt`1;x, γ σ
2
t

˘

αtpxqdx

“
φ pgt`1;µ, γ σ

2
t qαtpµq

φ pgt`1; µ̃t, γ σ̃2
t q

Since αtpµq “ φpµ; µ̃t, ν̃
2
t q and from the first result of Lemma 5 we have that

φ
`

gt`1;µ, γ σ
2
t

˘

¨ φpµ; µ̃t, ν̃
2
t q “φ

`

gt`1; µ̃t, γ σ̃
2
t

˘

¨ φ

ˆ

µ;
µ̃tγ σ

2
t ` gt`1ν̃

2
t

γ σ̃2
t

,
σ2
t ν̃

2
t

σ̃2
t

˙

Using the above and the definition of ξt we obtain the result,

ż 1

0

αit`1δpµ´ µ
i
tqdi “ φ

ˆ

µ;
1

1` ξt
µ̃t ` gt`1

ξt
1` ξt

,
ν̃2t

1` ξt

˙

.

which is the result.

The final step, which is similar to the proof of Proposition 1, is to incorporate the updating

of beliefs derived in Lemma 10. The consumption surplus share distribution over beliefs in

period t` 1 is given by

αt`1pµ
1
q “

ż 1

0

αit`1δpµ
1
´ µ1iqdi “

ż 1

0

αit`1δpµ
1
´ a0 ´ a1µi ´ a2εiqdi,

where µ1i stands for µit`1, µi stands for µit and the equation µ1i “ a0 ` a1µi ` a2εi stands for

µit`1 “p1´ ϕµqµc ` ϕµκtµ
i
t ` ϕµp1´ κtqgt`1 ` σµAµ,t`1 s

m
t`1 ` σµ

a

Aν,t`1ε
i
t`1.
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Therefore, we obtain that

αt`1pµ
1
q “

ż

φpµ1; a0 ` a1µ, a2q

ż 1

0

αit`1δpµ´ µiqdidµ

“

ż

φpµ1; a0 ` a1µ, a2qφ

ˆ

µ;
1

1` ξt
µ̃t `

ξt
1` ξt

gt`1,
ν̃2t

1` ξt

˙

dµ

“ φ

ˆ

µ1; a0 ` a1

ˆ

1

1` ξt
µ̃t `

ξt
1` ξt

gt`1

˙

, a21
ν̃2t

1` ξt
` a22

˙

Substituting back the coefficients a0, a1 and a2, we obtain

µ̃t`1 “ p1´ ϕµqµc ` ϕµ
κt

1` ξt
µ̃t ` ϕµ

ˆ

1´
κt

1` ξt

˙

gt`1 ` σµAµ,t`1 s
m
t`1,

ν̃2t`1 “
pϕκtq

2

1` ξt
ν̃2t ` σ

2
µAν,t`1.

Finally, we note that the SDF is a function of µ̃, ν̃, v and ω. In addition, χ is required for

the values of ρ and ζ. The shocks g and sm drive the law of motion of µ̃ and ω, while the

shocks εχ and ερ determine the other three state variables.

Proof of Lemma 1. We know that

log

ˆ

Ci
t`1 ´Ht`1

Ci
t ´Ht

˙

“ log

ˆ

αit`1pCt`1 ´Ht`1q

αitpCt ´Htq

˙

and using Proposition 2 we can express the above as

log

ˆ

Ci
t`1 ´Ht`1

Ci
t ´Ht

˙

“ log

ˆ

Ct`1 ´Ht`1

Ct ´Ht

˙

` log

˜

φpgt`1;µ
i
t, σ

2
t q

1{γ

ş1

0
αjt φpgt`1;µ

j
t , σ

2
t q

1{γdj

¸

“ log

ˆ

Ct`1 ´Ht`1

Ct ´Ht

˙

`
1

2γ

„

pgt`1 ´ µ̃tq
2

σ̃2
t

´
pgt`1 ´ µ

i
tq

2

σ2
t



`
1

γ
log

σ̃t
σt

“ lpzt, gt`1q ´
pgt`1 ´ µ

i
tq

2

2γσ2
t

,

where lpzt, gt`1q is agent independent. The first derivative of the above with respect to gt`1

evaluated at gt`1 “ µ̃t is given by

B

Bgt`1
log

ˆ

Ci
t`1 ´Ht`1

Ci
t ´Ht

˙
ˇ

ˇ

ˇ

ˇ

gt`1“µ̃t

“
µit ´ µ̃t
γσ2

t

`
Blpzt, gt`1q

Bgt`1

ˇ

ˇ

ˇ

ˇ

gt`1“µ̃t

.
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Taking the cross-sectional variance of the above derivative and using the consumption surplus

shares αit as weights yields that the speculative activity is given by ξt “ ν̃2t ˜ pγσ
2
t q.

Proof of Proposition 4. By construction, the marginal rate of intertemporal substitution is

given by M as derived in Proposition 3. Therefore, we only need to show that the beliefs

of the representative agent are given by rP. We use Lemma 10 to derive the evolution of the

beliefs of the representative agent. Her beliefs about µt are represented by µt|Ft „
r Nppµt, pv

2
t q.

We set ζt`1 “ 0, σµ “ pσµ,t`1 and ρt`1 “ pρt`1 to obtain

pµt`1 “ p1´ ϕµqµc ` ϕµpκtpµt ` ϕµp1´ pκtqgt`1 ` pσµ,t`1pρt`1s
m
t`1,

pv2t`1 “ ϕ2
µpκtpv

2
t ` pσ2

µ,t`1p1´ pρ2t`1q,

where pκt – σ2
c{pσ

2
c ` pv2t q. The beliefs of the representative agent are given by gt`1|Ft „

r

Nppµt, σ
2
c ` pv2t q, so it suffices to show that pµt “ µ̃t and pv2t “ v2t ` ν̃2t {γ in all periods. We

suppose that these hold true for t “ 0, then we need to show that if these relations are true

for period t then they also hold true for period t` 1. The initial condition is not restrictive,

since the equivalence holds true asymptotically for any initial condition.

Using the laws of motion of v, given in Proposition 1, and of ν̃, given in Proposition 3,

and noting that κt ˜ p1` ξtq “ pκt we have that,

v2t`1 ` ν̃
2
t`1{γ “ ϕ2

µκtv
2
t ` σ

2
µAv,t`1 `

1

γ

ˆ

ϕ2
µ

κ2t
1` ξt

ν̃2t ` σ
2
µAν,t`1

˙

,

“ ϕ2
µ

κt
1` ξt

ˆ

p1` ξtqv
2
t ` κt

ν̃2t
γ

˙

` σ2
µ

ˆ

Av,t`1 `
Aν,t`1
γ

˙

,

“ ϕ2
µpκt

„ˆ

1`
ν̃2t

γpσ2
c ` v

2
t q

˙

v2t `
σ2
c

σ2
c ` v

2
t

ν̃2t
γ



` σ2
µ

ˆ

A2
µ,t`1 ` Av,t`1 `

Aν,t`1
γ

´ A2
µ,t`1

˙

,

“ ϕ2
µpκt

ˆ

v2t `
ν̃2t
γ

˙

` pσ2
µ,t ´ σ

2
µA

2
µ,t`1,

“ ϕ2
µpκtpv

2
t ` pσ2

µ,t`1 ´ pσ2
µ,t`1pρ

2
t`1 “ pv2t`1,

where we have used the definitions of pσµ,t and pρt. Finally, it is also true that pµt`1 “ µ̃t`1

since pκt “ κt ˜ p1 ` ξtq and, by construction, pσµ,t`1pρt`1 “ σµAµ,t`1. Finally, if γ “ 1 and

ζt “ η˜ρt then A2
µ,t`1`Av,t`1`Aν,t`1˜γ “ 1, using the expressions derived in Proposition

1.
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Proof of Lemma 2. From Proposition 3, which gives the equilibrium stochastic discount fac-

tor and the probability measure to price all assets, it follows that

rft “ ´ ln rEtpMt`1q “ ´ lnpβq `
γ ´ 1

2
lnp1` ξtq ` γpµ̃t ´ ωtq ´ ln rEt

`

e´γp1`λtqpgt`1´µ̃tq
˘

“ ´ lnpβq `
γ ´ 1

2
lnp1` ξtq ` γpµ̃t ´ ωtq ´

1

2
γ2p1` λ2t qσ̃

2
t ,

where µ̃t and σ̃2
t are the conditional mean and variance of gt`1, respectively, under the

probability measure rP. Further, by Proposition 3, we have σ̃2
t “ σ2

t p1 ` ξtq. Finally, we use

the definition of λt shown in equation (13) to obtain the result.

Lemma 12. Suppose that the one-period log payoff of an asset j is conditionally normally

distributed and given by

cj0,t ` c
j
1,tpgt`1 ´ µ̃tq ` c

j
2,tε

j
t`1

where εj is an idiosyncratic and standard normally distributed risk. Then, the excess log

return is given by

rjt`1 ´ r
f
t `

1

2
σ2
i,t “ cj1,tpgt`1 ´ µ̃tq ` c

j
2,tε

j
t`1 ` γc

j
1,tp1` λtqp1` ξtqσ

2
t ´

1

2
pcj1,tq

2ξtσ
2
t

Proof. We first compute the equilibrium price of asset j in period t, pjt , using the result

of Proposition 3 that gives the equilibrium stochastic discount factor and the probability

measure to price all assets, as follows:

pjt “ rEt
´

Mt`1 e
cj0,t`c

j
1,tpgt`1´µ̃tq`c

j
2,tε

j
t`1

¯

“ βp1` ξtq
1´γ
2 e´γpµ̃t´ωtq`c

j
0,t rEt

´

ec
j
2,tu

j
t`1

¯

rEt
´

erc
j
1,t´γp1`λtqspgt`1´µ̃tq

¯

“ βp1` ξtq
1´γ
2 exp

"

´γpµ̃t ´ ωtq ` c
j
0,t `

1

2
pcj2,tq

2
`

1

2

“

cj1,t ´ γp1` λtq
‰2
σ̃2
t

*

“ exp

"

´rft ` c
j
0,t `

1

2

“

pcj2,tq
2
` pcj1,tq

2σ̃2
t

‰

´ γcj1,tp1` λtqσ̃
2
t

*

,

since by Proposition 3, under rP we have gt`1|Ft „ Npµ̃t, σ̃
2
t q, and rft is given in Lemma 2.

The excess return is then given by

rjt`1 ´ r
f
t “ cj0,t ` c

j
1,tpgt`1 ´ µ̃tq ` c

j
2,tε

j
t`1 ´ lnppjtq ´ r

f
t ,

which gives the result once we substitute in the expression for pjt and σ̃2
t .
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Proof of Lemma 3. From Lemma 12 we know that the return on the asset whose payoff is

given by egt`1 is given by

rt`1 ´ r
f
t `

1

2
σ2
t “ pgt`1 ´ µ̃tq ` γp1` λtqp1` ξtqσ

2
t ´

1

2
ξtσ

2
t .

The price of risk is defined as

qt –
E
”

rt`1 ´ r
f
t

ı

` 0.5σ2
t

σt

and applying expectations to the return equation above, where Epgt`1q “ µt, gives the

result.
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The graphs show several quantities of the model with constant information quality (ρ) as functions of ζ “ η{ρ

and for several values of the utility curvature parameter pγq. The rest of the parameters are as in Table 2.

The parameter ζ ranges from η to 1. Panel A shows the A coefficients as given in Proposition 1 for the case

ζ “ η ˜ ρ. Panel B shows the steady state values for v, ν̄ and ν̃. Panel C shows the speculative activity (ξ)

as given by Lemma 1 and Panel D the representative agent consumption risk σ̃ as given in Proposition 3.

Figure 1: Static analysis (η “ 0.247) – Quantities related to beliefs
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Table 1: Disagreement model estimation

The data is quarterly. The real aggregate consumption growth series (g) was computed from the per-
capita consumption of non-durable goods and services (NIPA) deflated by the annual CPI index (BEA)
and cover the period from 1947Q2 to 2015Q3. The beliefs data, where µ̄ denotes the mean forecast and
ν̄ the standard deviation of forecasts, were obtained from the Survey of Professional Forecasters, span
the period from 1968Q3 to 2015Q3 and correspond to the real GDP quarter-ahead forecasts. The data
standard errors (s.e.) were Newey and West (1987) estimated using 16 lags. The model statistics are
the averages across 1,000 simulations of 400 quarters each (with a burn-in of 100 quarters). The model
t-statistics (t ´ stat.) correspond to the differences between the model and the data statistics. For a
variable x, µpxq denotes the sample mean, σpxq the standard deviation, ackpxq its k-lag autocorrelation
and corrpx, yq the correlation with variable y. Each model was estimated using the Simulated Method of
Moments, matching all moments shown, except the time-series mean of the cross-section average forecast
µpµ̄q because this is given by µc, the unconditional mean of g. The estimated parameters are shown in
Table 2.

Data Model
Statistic Description est. s.e. avg. t´ st

A. Annual (time-aggregated) consumption growth (data: 1930 - 2017)

µpgaq Mean consumption growth 1.74 (0.27) 1.74 (0.01)
σpgaq Volatility of consumption growth 2.70 (0.67) 2.70 (0.00)
ac1pg

aq Autocorrelation of consumption growth 0.48 (0.05) 0.50 (0.49)

B. Quarterly mean forecast, forecast dispersion and growth (data: 1968Q3 - 2016Q4)

µpµ̄q Average of mean forecast 0.39 (0.05) 0.44 (0.90)
σpµ̄q{σpgq Standardized volatility of mean forecast 0.47 (0.03) 0.49 (0.51)
ac1pµ̄q Autocorrelation of mean forecast 0.80 (0.03) 0.77 (0.92)

µpν̄q{σpgq Standardized average of forecast dispersion 0.27 (0.03) 0.28 (0.08)
σpν̄q{σpgq Standardized volatility of forecast dispersion 0.15 (0.01) 0.15 (0.11)

ac1pν̄q Lag 1 autocorrelation of forecast dispersion 0.71 (0.05) 0.77 (1.28)
ac4pν̄q Lag 4 autocorrelation of forecast dispersion 0.58 (0.08) 0.52 (0.72)
ac8pν̄q Lag 8 autocorrelation of forecast dispersion 0.43 (0.05) 0.42 (0.34)
ac12pν̄q Lag 12 autocorrelation of forecast dispersion 0.32 (0.05) 0.34 (0.34)

corrpµ̄t, gt`1q Growth predictability by average forecast 0.54 (0.05) 0.51 (0.52)
corrp∆µ̄, gq Correlation of average forecast changes with growth 0.13 (0.07) 0.16 (0.34)
corrpν̄t, gt`1q Growth predictability by forecast dispersion -0.06 (0.11) -0.11 (0.41)
corrp∆ν̄, gq Correlation of forecast dispersion changes with growth -0.20 (0.07) -0.17 (0.39)
corrpµ̄, ν̄q Correlation between forecast mean and dispersion -0.28 (0.17) -0.20 (0.48)
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Table 2: Estimated model parameters - quarterly frequency

Description Parameter Value
Unconditional mean of consumption growth µc 0.436%
Volatility of consumption growth shocks σc 0.754%

Volatility of shocks to consumption growth conditional mean σµ 0.474%
Persistence of consumption growth conditional mean ϕµ 0.773

Correlation between common and individual signals η 0.247
Volatility of common signal informativeness idiosyncratic shocks σρ 1.11

Mean of common signal informativeness factor µχ -0.366
Persistence of common signal informativeness factor ϕχ 0.965
Sensitivity of common signal informativeness factor to growth shocks βχ 30.0
Volatility of common signal informativeness factor idiosyncratic shocks σχ 0.257%

Table 3: Model configurations - quarterly frequency

Model 1 is the full model, Model 2 has constant risk aversion and Model 3 has constant risk aversion
and constant information quality. Model 1 parameters were chosen to fit the average risk-free rate,
the volatility of the risk-free rate, the stock market Sharpe ratio and the persistence of the Stock
market price-to-dividend. For Model 3 we adjust the β parameter to fit the average risk-free rate.

Description Parameter Model 1 Model 2 Model 3
Subjective discount factor β 0.982 0.982 0.9744
Utility curvature parameter γ 1.17 1.17 1.17
Conditional volatility of ω at steady state θ 23 23 23
Degree of risk aversion at the average state (at ω “ 0) γ ¨ p1` θq 26.91 26.91 26.91
Log consumption surplus ratio persistency φh 0.985 1.0 1.0
Constant information quality (σρ “ βχ “ σχ “ 0) ζ no no yes

Table 4: State variable moments - Model 1

The table shows the correlations, means, standard deviations (stdev), first-lag autocorrelation
(ac1) of the state variable, for Model 1. They are computed as the averages across 1,000
simulations of 400 quarters each (with a burn-in of 100 quarters).

Correlations mean stdev ac1
µ̃ ν̃ v χ ω µ̄ ν̄ ξ

µ̃ 1.00 -0.23 0.06 0.36 0.27 0.98 -0.23 -0.24 0.435 0.557 0.763
ν̃ 1.00 -0.18 -0.73 -0.67 -0.20 0.99 0.95 0.272 0.151 0.710
v 1.00 0.06 0.13 0.02 -0.20 -0.42 0.358 0.085 0.567
χ 1.00 0.90 0.30 -0.75 -0.69 -0.368 0.954 0.953
ω 1.00 0.22 -0.70 -0.66 0.000 0.015 0.968
µ̄ 1.00 -0.20 -0.19 0.439 0.515 0.770
ν̄ 1.00 0.95 0.291 0.163 0.777
ξ 1.00 0.149 0.145 0.674
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The graphs show the risk-free rate, as given by Lemma 2, and the price of risk, as given by Lemma 3, of

the model with constant information quality (ρ) as functions of ζ “ η{ρ and for several values of the utility

curvature parameter pγq. The rest of the parameters are as in Table 2. The parameter ζ ranges from η to 1.

Panels A and B show the risk-free rate for the state µ̃ “ µc and for β “ 0.99. Panels C and D show the price

of risk for the state µ̃ “ µ. For Panels A and C the parameter θ depends on γ and given by θ “ 25˜ γ ´ 1.

For Panels B and D the θ is equal to 15..

Figure 2: Static analysis (η “ 0.247) – Risk-free rate and price of risk
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The graph shows the ratio of the volatility of the mean forecast to the volatility of the conditional mean

for several values of the utility curvature parameter pγq. The rest of the parameters are as in Table 2. The

inverse of the information quality ranges from η to 1.

Figure 3: Static analysis (η “ 0.247) – Volatility of mean forecast
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Table 5: Asset pricing statistics – Data and models

The table shows a number of asset pricing moments for the data and three different
model configurations. Model 1 refers to the full model, Model 2 refers to the model with
constant risk aversion and Model 3 refers to the model with both constant risk aversion
and constant information quality–see parameters in Tables 2 and 3. For a variable x, µpxq
denotes the sample mean, σpxq the standard deviation, ackpxq its k-lag autocorrelation
and corrpx, yq the correlation with variable y. The notation is as follows: pd denotes the
log price-to-dividend ratio for the stock market dividend claim, rf the log risk-free rate,
rm the log stock market return, SRm the stock market Sharpe ratio using log returns, gd

is the log growth rate of the stock market dividend claim, pc the log price-to-consumption
ratio of the aggregate consumption claim, and rc the log return of the consumption claim.
The standard errors for the data estimates s.e. are estimated using the Newey and West
(1987) method with 16 lags. For each model we report the averages of 1,000 simulations
of 400 quarters each (with a burn-in of 100 quarters). The t´statistics for the models
t´ st refer to the hypotheses that the data estimates are equal to the model averages.

Data Model 1 Model 2 Model 3
Data s.e. avg. t´ st avg. t´ st avg. t´ st

µppdq 4.71 (0.09) 4.34 (4.10) 4.64 (0.77) 5.91 (13.43)
σppdq 0.44 (0.05) 0.31 (2.38) 0.16 (5.33) 0.02 (7.82)
ac1ppdq 0.97 (0.01) 0.96 (0.88) 0.94 (2.22) 0.76 (14.17)

µprf q 0.14 (0.13) 0.16 (0.16) 0.16 (0.17) 0.16 (0.17)
σprf q 0.84 (0.09) 0.85 (0.10) 0.85 (0.11) 0.61 (2.44)
ac1pr

f q 0.65 (0.05) 0.65 (0.03) 0.65 (0.03) 0.76 (2.24)

µprmq 1.59 (0.47) 1.82 (0.50) 1.41 (0.37) 0.71 (1.87)
σprmq 10.52 (1.55) 11.66 (0.74) 8.99 (0.99) 6.56 (2.55)
ac1pr

mq -0.03 (0.09) 0.01 (0.54) 0.02 (0.58) 0.03 (0.69)

µprm ´ rf q 1.44 (0.49) 1.66 (0.44) 1.25 (0.39) 0.54 (1.83)
σprm ´ rf q 10.53 (1.55) 11.61 (0.70) 8.94 (1.02) 6.54 (2.57)
ac1pr

m ´ rf q -0.03 (0.09) -0.00 (0.33) -0.00 (0.34) -0.00 (0.33)

SRm 0.14 (0.06) 0.14 (0.11) 0.14 (0.06) 0.08 (0.91)

corrppd, ν̄q -0.57 (0.07) -0.76 (2.45) -0.77 (2.70) –
corrprf , ν̄q 0.26 (0.11) 0.51 (2.35) 0.51 (2.33) –
corrppd, rf q 0.08 (0.15) -0.20 (1.96) -0.14 (1.57) 1.00 (6.28)

µpgdq 1.45 (0.97) 1.74 (0.30) 1.74 (0.30) 1.74 (0.30)
σpgdq 11.10 (2.87) 11.10 (0.00) 11.10 (0.00) 11.10 (0.00)
ac1pg

dq 0.18 (0.09) 0.29 (1.18) 0.29 (1.18) 0.29 (1.18)
corrpg, gdq 0.52 (0.15) 0.52 (0.01) 0.52 (0.01) 0.52 (0.01)

µppcq 4.71 (0.09) 4.54 (1.85) 4.87 (1.85) 7.17 (43.94)
σppcq 0.44 (0.05) 0.25 (3.47) 0.14 (5.56) 0.00 (8.17)
ac1ppcq 0.97 (0.01) 0.96 (0.47) 0.95 (1.07) 0.76 (14.17)

µprcq 1.59 (0.47) 1.54 (0.09) 1.21 (0.81) 0.35 (2.63)
σprcq 10.52 (1.55) 7.13 (2.18) 4.87 (3.64) 0.98 (6.15)
ac1pr

cq -0.03 (0.09) 0.02 (0.64) 0.03 (0.74) 0.44 (5.32)

µprc ´ rf q 1.44 (0.49) 1.38 (0.13) 1.04 (0.81) 0.19 (2.54)
σprc ´ rf q 10.53 (1.55) 7.06 (2.23) 4.78 (3.69) 0.77 (6.28)
ac1pr

c ´ rf q -0.03 (0.09) -0.00 (0.33) -0.00 (0.33) -0.00 (0.34)
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Table 6: Predicting risk-free rate

This table reports the β coefficients of the univariate predictive regressions

rft,t`T “ α` βxt ` εt,t`T ,

where rft,t`T denotes the cumulative log risk-free rate, that is rft,t`T “
řT
t“1 r

f
t`τ´1, where rft

denotes the log risk-free rate between period t and t` 1. In Panel A the predictive variable x is
1˜ p1` ξq, whose values in the data is estimated based on Model 1. In Panel B the predictive
variable x is ν̄ whose values in the data is given by the cross-sectional dispersion in professional
forecasts. The t´statistics for the data t´ st are estimated using the Newey and West (1987)
method with 16 lags. Model 1 refers to the full model and Model 2 refers to the model with
constant risk aversion. We report the averages of 1,000 simulations of 400 quarters each (with
a burn-in of 100 quarters). The t´statistics for the models t ´ st refer to the hypotheses that
the data estimates are equal to the model averages.

A. rft,t`T “ α` βp1` ξtq
´1 ` εt,t`T

T “ 1 T “ 2 T “ 4 T “ 8 T “ 12 T “ 16 T “ 20 T “ 24 T “ 28
Data -0.01 -0.03 -0.06 -0.13 -0.21 -0.29 -0.38 -0.45 -0.52
t´ st (1.71) (1.84) (1.84) (1.86) (1.93) (2.05) (2.16) (2.25) (2.39)

Models 1–2 -0.05 -0.08 -0.13 -0.23 -0.32 -0.40 -0.46 -0.51 -0.55
st.dev. 0.01 0.02 0.04 0.08 0.12 0.16 0.19 0.23 0.26
t´ st (3.78) (3.06) (2.01) (1.33) (0.94) (0.71) (0.48) (0.32) (0.14)

B. rft,t`T “ α` βν̄t ` εt,t`T

T “ 1 T “ 2 T “ 4 T “ 8 T “ 12 T “ 16 T “ 20 T “ 24 T “ 28
Data 1.40 2.78 5.70 11.84 18.47 25.28 32.31 38.52 45.21
t´ st (1.91) (2.00) (1.98) (1.98) (2.02) (2.13) (2.26) (2.35) (2.49)

Models 1–2 2.68 4.50 7.59 13.48 18.86 23.49 27.38 30.62 33.27
st.dev. 0.73 1.40 2.74 5.31 7.70 9.97 12.12 14.13 16.04
t´ st (1.75) (1.24) (0.65) (0.27) (0.04) (0.15) (0.34) (0.48) (0.66)
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Table 7: Campbell-Shiller variance decomposition

This table reports the Campbell-Shiller variance decomposition of the stock mar-
ket log price-to-dividend ratio, pd, into fluctuations in cash-flow growth gd, the
risk-free rate rft , the stock market excess return ret`1 “ rmt`1 ´ r

f
t and the stock

market price dividend ratio 60 quarters ahead pd60. rmt`1 and rft denote the log
stock market return and the log risk-free rate, respectively, between period t and
t ` 1. The standard errors for the data estimates s.e. are estimated using the
Newey and West (1987) method with 16 lags. Model 1 refers to the full model,
Model 2 refers to the model with constant risk aversion and Model 3 refers to
the model with both constant risk aversion and constant information quality.
For each model we report the averages of 1,000 simulations of 400 quarters each
(with a burn-in of 100 quarters). The t´statistics for the models t´ st refer to
the hypotheses that the data estimates are equal to the model averages.

gd ´rm ´re ´rf pd60 σpreq σprf q σppdq
Data 0.12 0.70 0.79 -0.09 0.16 10.53 0.84 0.44
s.e. (0.08) (0.12) (0.21) (0.12) (0.06) (1.55) (0.09) (0.05)

Model 1 -0.10 1.09 0.91 0.19 0.02 11.61 0.85 0.31
st.dev. 0.37 0.43 0.43 0.11 0.12 0.01 0.00 0.06
t´ st (2.74) (3.25) (0.57) (2.39) (2.26) (0.70) (0.10) (2.38)

Model 2 -0.11 1.13 0.71 0.42 -0.01 8.94 0.85 0.16
st.dev. 0.73 0.78 0.80 0.24 0.12 0.00 0.00 0.03
t´ st (2.80) (3.49) (0.37) (4.38) (2.74) (1.02) (0.11) (5.33)

Model 3 1.34 -0.33 0.56 -0.89 -0.01 6.54 0.61 0.02
st.dev. 3.00 3.01 2.70 0.63 0.09 0.00 0.00 0.00
t´ st (9.87) (6.67) (1.02) (6.79) (2.75) (2.57) (2.44) (7.82)
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The graphs show the pd-ratio and the risk-free rate (rf ) as functions of the state variables in Model 1.

For each graph, we vary the corresponding state variable, while the rest of the variables are kept at their

steady states. The gray areas show the unconditional distributions of the state variables. Where we plot

two quantities, the “left” corresponds to the left axis and “right” to the right axis.

Figure 4: The pd-ratio and the risk-free rate (rf )–Model 1
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