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Abstract
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Hal Weizman: “What is the efficient-markets hypothesis and how good a working model

is it?”

Eugene Fama: “It’s a very simple statement: prices reflect all available information.

Testing that turns out to be more difficult, but it’s a simple hypothesis.”

Richard Thaler: ”I like to distinguish two aspects of it. One is whether you can beat the

market. The other is whether prices are correct.”

— Are Market Efficient, Chicago Booth Review, Jun 30, 2016

“Since 1988, Renaissance’s signature Medallion fund has generated average annual re-

turns of 66 percent. The firm has recorded trading gains of more than one hundred billion

dollars. Simons himself is worth twenty-three billion dollars.”

— The Man Who Solved the Market: How Jim Simons Launched the Quant Revolution,

Gregory Zuckerman, 2019

1 Introduction

Fama (1970, 1991, and 1998) defines an efficient market as informationally efficient, i.e., prices in an

efficient market reflect all available information. In other words, in an efficient market, all information

has already been incorporated into prices and there does not exist any pricing error. If there exists no

pricing error, prices can only change when new information is available. This implies that no one can

benefit from predicting the correction of prices based on any asymmetry of historical information and

that there is no such thing as “beating” the market. In short, a necessary condition for an efficient

market is that prices are unpredictable. This logic lends us a clear and simple path to examine the

market efficiency through the study of predictability.

However, historically, the predictability, especially the out-of-sample (OOS) predictability, is not

clear in the literature. Because of the literature’s inability of coming up with a method that delivers

robust predictability, Richard Thaler further distinguishes two aspects of market efficiency with his

two questions: (1) can we beat the market, and (2) are prices correct? These questions dissect the

study of market efficiency to subjects about the predictability and the correctness of prices. He points

out that the nonexistence of predictability does not necessarily imply the correctness of prices and vice

versa. This way of thinking leaves the room for discussions on the correctness of prices, even if OOS

predictability cannot be established. Unfortunately, without clear OOS predictability, discussions on

market efficiency are complicated and confusing.

In practice, famous stock investors, such as Jim Simons’ Renaissance Technologies, seem to con-

stantly outperform the stock market through their private trading strategies that predict the future. In

other words, there seem existing meaningful predictability that has been explored by these successful
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investors. The success of these investors can be due to 3 potential reasons corresponding to 3 forms of

market efficiency. First, the market can be completely inefficient. In such a market, prices reflect very

limited information and do not even fully reflect the information about past returns. The prices are thus

predictable with the past returns. Second, the market can be efficient in the weak form1. In a weakly

efficient market, prices reflect only the information about the past returns and the prices incorporate

the public information including corporate announcements and macroeconomic news with a lag. In-

vestors can take the advantage of the lag and trade on the incorporation of information. Third, the

market can be efficient in the semi-strong form. In such a market, prices reflect all public information

with no lag, but the investors who have monopolistic access to private information can benefit from

trading on the private information. If we can closely examine the way a successful trading strategy

beats the market and generate excess profit, we can better understand market efficiency.

For this purpose, we introduce a novel application of machine learning classification methods to

the finance literature. We frame the classic asset pricing problem as a machine learning classification

problem. Instead of focusing on numeric value predictions, we bucketize the stock returns with the

cross-sectional deciles and split the returns into 10 return states. Using the historical information,

including the individual stock returns with a lag of at least 1 month, the annual financial information

with a lag of at least 6 months, the quarterly financial information with a lag of at least 4 months, the

corporate event news with a lag of at least 1 month and the macroeconomic indicators with a lag of

at least 1 month, we apply classification methods to predictively classify the future return states of

individual stocks and form portfolios based on the predictive classification.

We show that our machine learning classification methods are powerful in portfolio allocation and

our portfolios can produce huge OOS profits. Comparing to the empirical findings in the earlier litera-

ture, such as Goyal and Welch (2008) and DeMiguel et al. (2009), it is surprising that our classification

portfolios, among other machine learning portfolios, can constantly generate OOS gains to a level that

the traditional methods cannot achieve. What leads to the success of classification portfolios in OOS

comparisons? Among the three potential reasons above that can bring such OOS performance, what

is the specific reason that the machine learning portfolios can outperform the market? Given the suc-

cess of these machine learning methods in the portfolio allocation, are the market prices correct? We

choose machine learning classification methods with the specific purpose to look into these questions.

The introduction of the classification methods provides unique benefits for us in both the modeling

process and the evaluation process. We take advantage of a clear relation between the classification

methods and the information theory. We measure the quality of information extracted from the pre-

dictors with cross-entropy and train our models with the optimization goal of reducing information
1The weak form suggests that today’s stock prices reflect all the data of past prices and that no form of technical analysis

can be effectively utilized to help investors make trading decisions. Under this form, investors can use fundamental infor-
mation in the financial statement to identify over- and undervalued stocks to outperform the market. The semi-strong form
efficiency theory suggests all information that is public be used to determine a stock’s current price and thus investors cannot
utilize either technical or fundamental analysis to outperform the market. This form suggests only private information can
help investor make profit. The strong form implies all information—both public and private information—is completely
accounted for in current stock prices. Investor cannot outperform the market regardless of information we use.
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uncertainty. The classification methods also allow us to directly measure model performance through

accuracy calculated as the correct proportion of predictive classification. Measuring prediction perfor-

mance through accuracy is not only easy and explicit but also allows us to conduct formal statistical

tests. We further introduce the binomial test to compare our prediction accuracies against the no

information accuracy.

The no information accuracy is the highest accuracy that a classifier with no information or limited

information can provide. Specifically, the no information accuracy is the accuracy delivered by a naive

classifier, which labels the return state of each observation in our sample with the most populated

return state in the sample. Based on the rational investor assumption which leads to the efficient

market hypothesis, investors have consistent beliefs and enough information about the distribution of

macroeconomic variables (Sargent 1994, Barberis and Thaler 2003). If the market is efficient and

all information is reflected by prices, investors know about the return distribution but are not able to

predict the future beyond the distribution of the returns. The no information accuracy is thus a theory

implied benchmark to evaluate whether there exists information about the relation, as captured by a

model, between future return states and historical information. Through a set of binomial tests against

the no information accuracy, we trace the good performance of our classification portfolios to the

statistically significant prediction accuracies. This further implies that our models provide meaningful

information about the relation between future return states and historical information. Future return

states are thus conditional on historical information and the predictability is established.

Historically, the asset pricing literature was not fortunate enough to come up with strategies that

can constantly beat the market in the OOS comparisons in terms of both economic and statistical met-

rics. For example, Goyal and Welch (2008) examine the market return predictability of the popular

predictors and conclude that the popular predictors are not systematically better than the historical

mean in the OOS prediction comparisons. DeMiguel, Garlappi and Uppal (2009) examine a range of

traditional methods and conclude that the portfolio allocation based on these methods is not system-

atically better than the naÃ¯ve portfolio allocation. For a while, the literature could not confirm the

OOS performance of any strategy. This inability to replicate the OOS predictability seemed to support

market efficiency.

In the recent development of finance machine learning, many methods are identified to be able to

constantly produce OOS gains that are of multiple folds of what the market can provide. The examples

include Rossi (2018), Gu, Kelly and Xiu (2020) and Chen, Pelgers and Zhu (2020), etc. Following

the steps of finance machine learning literature, we propose a new way of creating successful machine

learning trading strategies that deliver clear OOS predictability and thus profitability. Built upon our

strategies with clear OOS performance, we examine the market efficiency through a thorough analysis

and attempt to provide novel insights.

In summary, our findings supply profound insights. First, the significance of accuracies indicates

the existence of statistically meaningful predictability. Second, if there exists absolutely no pricing

errors, our models should not be able to deliver OOS predictive accuracies that are higher than the
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no information accuracy. In other words, the statistically significant OOS predictability of our mod-

els suggests that there does exist pricing errors. Third, coupled with the OOS economic metrics that

demonstrate the profitability of our classification portfolios, the significance of accuracies indicates

that the pricing errors are not minimum and arbitrage opportunities do exist across trading periods.

The market corrects the errors in the latter trading periods. Investors applying modeling methods sim-

ilar to ours can make profits systematically higher than what the market can offer with significantly

better risk-return tradeoffs. Therefore, the prices may not be correct. Fourth, this further implies

that sophisticated investors can generate information about market prices through their ability to use

complex analytical tools. The generated information may not be available to the public and thus may

create information asymmetry that sophisticated investors can benefit from. Fifth, the fact that past re-

turns and past corporate announcements contribute to the OOS predictability questions the weak-form

and the semi-strong form market efficiency. Sixth, we also document that there exists a substantial

imbalance in the return state transition process. The transitions related to extreme return states are

with higher certainty indicating lower market efficiency, which brings up the question about the role

that the market segments of extreme return states play in market efficiency. Our findings on market

efficiency are consistent with the microstructure literature which shows theoretically that the informa-

tion efficiency is conditional and a full informationally efficient market is impossible (Grossman and

Stiglitz 1980). The investors who devote resources to obtain information are thus compensated by the

market. At the same time, our findings on market efficiency are also consistent with recent literature

indicating that prices are lazy and information may be included in the prices with lags (Cohen, Malloy

and Nguyen 2020).

1.1 Contribution

Our contribution to the asset pricing literature is six-fold. First, we make methodological contribution

to the empirical asset pricing literature. We introduce the machine learning classification methods

specialized in single-label multi-class classification. We take a unique angle and reframe the classic

asset pricing problem about risk premium explanation and return predictability as a classification

problem on the return state transitions. Instead of focusing on numerical value predictions, we focus on

the prediction of probabilities associated with future return states. Specifically, we put individual stock

returns into 10 cross-sectional return states and study the transitions of return states conditional on

historical information. We demonstrate 2 machine learning model architectures, 4 types of algorithms

and 22 models. Specifically, we include shallow neuron networks, deep neuron networks, random

forests, dropout additive regression trees and stochastic gradient boosted trees.

Second, we answer Thaler’s question about whether we can beat the market through the novel

application of classification methods. In the OOS comparisons, the predictions of the classification

models can generate average returns, volatility of the returns, skewness of the returns, Sharpe Ratios

(SR), certainty equivalent returns (CEQ), and maximum drawdowns (Max DD) that are better than
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what the market can provide. For example, in our combined OOS test covering 196301:201912, our

best zero investment long-short portfolio can achieve an OOS SR of 0.76 with equal weights and an

OOS SR of 0.45 with value weights. The market portfolio delivers an OOS SR of 0.19 and an OOS

SR of 0.21 for the two corresponding weighting schemes during the same time period. Note that our

SRs are not adjusted by annualization nor R square. Either adjustments can significantly magnify the

SR. Despite of using less training data and including only the stocks listed on 3 major exchanges,

the performance of our portfolios are competitive and on par with the performance reported in the

literature with other methods and the entire CRSP universe including assets that are not stocks. The

SR of 0.76 delivered by our best equal-weight model is higher than the SR of 0.707 by the best

equal-weight portfolio reported by Gu et al. (2020). The SR of 0.45 delivered by our best value-

weight portfolio is higher than the SR of 0.38 delivered by the best value-weight portfolio reported

by Gu et al. (2020). The good performance of our portfolios is not from neither taking high leverage

nor the concentration of portfolio weights in the microcap stocks. None of our portfolios requires

leverage beyond the relax of short selling constraints. When we eliminate the bottom 5% and 10%

capitalization stocks, the performance of our portfolios does not disappear.

Third, our introduction of accuracy as a performance metric and the adoption of binomial test

contribute to the predictability literature and expands the toolbox for empirical asset pricing studies.

We carefully analyze the in-sample (IS) and the OOS prediction accuracies and provide explanation

of the good portfolio performance from the angle of information theory. We introduce the accuracy

as a metric to evaluate the overall performance of the classification models. The direct measurement

of the accuracy as the correct proportion of predictions is only available to classification problems. In

numeric value predictions, all metrics are based on prediction errors and it is hard to directly measure

the accuracy of predictions. We trace the good performance of our classification portfolios to the

accuracy of the return state predictions.

Fourth and most importantly, we further introduce the binomial test to the asset pricing literature,

which enables us to conduct meaningful statistical test on the prediction accuracy. We also introduce

the no information accuracy, which is the highest accuracy that a classifier using no information can

provide. Across multiple setups, we show that our models deliver statistically meaningful predictabil-

ity and are time-invariantly applicable to generate predictions of future return states. The binomial

tests on prediction accuracies against the no information accuracy has profound meaning to the study

of market efficiency. The no information accuracy is an accuracy under the assumption of efficient

market. In other words, the no information accuracy is the highest accuracy of prediction assuming

that no further information can be generated to describe the relation between future prices and his-

torical information. Therefore, a binomial test on the prediction accuracy against the no information

accuracy is not only a test on the predictability but also a test of the market efficiency. The statistical

significance found in our binomial tests against the no information accuracy implies the generation

of information through our models about future return states based on historical observations. This

piece of information is not reflected by the current prices and therefore not shared by the majority of
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market participates. At the same time, this piece of information does generate OOS profitability. This

naturally brings up the question about the correctness of the prices, i.e., the prices may not be correct

as people can make profit with public information.

More specifically, combining the predictability of our models, the information generation and

the OOS economic gains, our findings show that the prices will move toward the same direction as

what the generated information indicates. This means that the market will gradually incorporate the

information known privately to the sophisticated investors and move towards the price level that reflect

the information produced by complex tools ex ante. Our findings indicate that, across the entire CRSP-

COMPUSTAT sample, there are systematic trading opportunities based on historical information to

generate excess profits on a monthly basis. Considering the size of the economic gains, the profitability

that can be generated by trading on the information from complex tools may not be ignorable. This

profit related to the generated information should have been eliminated by arbitrage. Therefore, the

current market prices may not be correct or may not fully reflect all public information. This also

answers Thaler’s second question.

The generation of the new information also has an important implication that is directly related to

the strong-form market efficiency. The information generation shows that the sophisticated investors,

such as Renaissance Technologies, who are able to understand and use complex tools that are similar

to machine learning classification methods, can generate information about future return states from

their interpretation of historical observations. They can apply the new information to their trading.

The generated information, depending on the analytical tools, are likely to remain unique and monop-

olistic. In other words, the private information may not need to be insider information that is known

to the management team of a firm and can be generated based on analyzing historical information.

This means that there is a possibility for sophisticated investors to manually introduce information

asymmetry to the market.

We are the first to introduce the binomial test and the accuracy metric in the study of return

predictability and market efficiency. By far, the binomial test on the prediction accuracy that indicates

the new information generation is also a unique contribution to the finance machine learning literature

and the market efficiency literature. The generation of new information also helps explain the good

performance of successful portfolio allocation strategies from an information point of view.

Fifth, we compare the easiness of predicting different return state transitions and look into our

models’ strategy that produces the good prediction accuracy. We demonstrate the true return state

transition probability matrix. It shows that the return state transitions are not uniformly distributed.

The center of the true transition probability matrix is distributed more uniformly, which indicates a

higher level of uncertainty. The corners of the true transition probability matrix are with the highest

transition probabilities indicating a lower level of uncertainty. The different levels of uncertainty

may imply the different levels of the market efficiency among the segments of the market. Higher

uncertainty is related to lower predictability, indicating higher level of market efficiency and vice

versa. We show that our models benefit the most from the most certain transitions and almost give
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up on the more uncertain transitions. We are among the first to supply the asset pricing literature an

economic insight of the success of the machine learning portfolio allocation.

Sixth, through our demonstration of the classification methods, we analyze the training process.

We contribute to the identification of the important predictors of return states and the understanding

of market efficiency in its weak from and semi-strong form. We construct cross-sectional tests in the

spirit of Fama and French (2018) by splitting the CRSP sample into odd number months and even

number months. The cross-sectional OOS tests show that our models have good CS OOS explanatory

power. In addition, we look into the training process of the CS models and the time series (TS)

models. In the training process of both the CS models and the TS models, the industry information,

the corporate announcements, the macroeconomic indicators and the historical return information all

make important contribution. As all our predictors are lagged by at least 1 month and many of the firm

characteristics are lagged by at least 6 months, these findings are interesting to the study of market

efficiency, especially considering that we do not update our models in the TS OOS testing periods

with at least a time length that is close to 30 years2. Coupled with the OOS portfolio performance

based on the model predictions, we conclude that the lagged public information, including the past

returns and the historical corporate announcements, can help predict future return states. The returns

are predictable and there may be a lag for the market to reflect all the public information including the

past returns and the historical corporate announcements.

In summary, combined with our points made on the predictability and the information generation,

our findings show that there is still room for the market efficiency to improve. We compare two time

periods of our time series OOS tests and confirm that the predictability of the models decreases in

the second half of the CRSP sample (199201:201912). This can be caused by the smaller number of

observations in the first half of the CRSP database or the improvement of the market efficiency in the

latter half of the CRSP sample.

1.2 Literature

We review the recent development in the finance machine learning literature below. Our review is

by no means an exhaustive list of the works in the finance machine learning literature and we try to

include the works that are the closest to ours in a chronological order (as of the draft date) based on

the publication date for the published papers and the latest update date for the working papers. We

categorize the papers based on the model implementations.

2We are looking into dissecting the insights for weak form and strong form market efficiency by separately developing
models that use only past trading information and models that use only past corporate news. Results will be included in the
next update of the draft.
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1.2.1 Characteristics

Brandt, Santa-Clara and Valkanov (2007) is a pioneer in leveraging characteristics in the portfolio

allocation problem. They parameterize the portfolio weight of each stock as a function of the stock’s

characteristics and they estimate the weights of the stocks included in the portfolio with the maxi-

mization of the representative investor’s utility. The optimal portfolio relative to holding the market

provides an in-sample (IS) CEQ gain of 11.1% and 5.4% OOS CEQ gain. Green, Hand and Zhang

(2016) is the pioneer of studying the large number of firm characteristics. They construct a sample of

more than 100 firm characteristics based on stock performance and financial information. They show

that there are 12 characteristics that are reliably independent in contributing to the return predictability

during their sample period and the predictability drops after 2003.

1.2.2 Tree Models

Moritz and Zimmermann (2016) introduce the regression trees in the cross-sectional pricing. Using

the regression trees they show that the past short-term returns are the most important predictors for

the future returns. They sort the portfolios with tree structure. They show that the conditional port-

folio sorts through tree structure improve predictions significantly over Fama-MacBeth regression.

Rossi (2018), using boosted trees, documents that the non-linearity of the popular Goyal and Welch

(2008) predictors can time the market. He emphasizes that the relation between predictors and the

best allocation to risky portfolios is non-linear. Brayzgalova, Pelger and Zhu (2020) demonstrate the

advantages of applying pruning in the selection of the sorting methods to improve the empirical asset

pricing models.

1.2.3 Neuron Networks

Chen, Pelger and Zhu (2020) focus on the neuron network models and asset pricing. They combine

3 neuron networks and essentially generalize the linear pricing kernel under the framework of neuron

networks. They introduce the generative adversarial neuron network models to the playground of fine

search of the best SDF by identifying the assets that are hardest to model. They also enforce the non-

arbitrage constraint to the loss function in the architecture of the networks. Aubry, Kraussl, Manso

and Spaenjers (2020) introduces the machine learning methods to the playground of illiquid assets.

Specifically, they apply neuron networks to a data with one million painting auctions based on visual

and non-visual characteristics of the art pieces. They show that their methods perform drastically

better than the traditional pricing methods. Feng et al. (2019) propose the use of neuron networks in

the extraction of hidden features and augment the hidden features in the pricing models.
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1.2.4 Tree Models and Neuron Networks

Gu et al. (2020) demonstrate the powerful pricing capability of the neuron network models and the tree

models. Their experiments show the possibility to double the performance of leading regression-based

strategies. They also try to form OOS portfolios by predicting the stock returns first and then forming

portfolios the stocks based on predicted return. Their best equal-weight strategy coming from a 4

hidden layer neuron network delivers a shockingly 27.1% return on annualized basis. In a concurrent

work of ours, Wolff and Echterling (2020) construct 37 stock characteristics and also characterize the

portfolio allocation problem as classification problem. They apply neuron networks and tree models to

S&P 500 constituents with 21 years of weekly data. They show that their models can also be applied to

STOXX Europe 600. Bianchi, Buchner and Tamoni (2020) apply machine learning methods including

neuron networks and tree models to the bond market. They demonstrate the superior performance of

the machine learning methods in predicting bond returns.

1.2.5 Related Works

The two closest related works to our paper are Gu et al. (2020) and Wolff and Echterling (2020).

Our paper is distant in many aspects from Gu et al. (2020). First, our introduction of classification is

fundamentally different from the implementation of Gu et al. (2020). In fact, we view the portfolio

allocation as a selection problem of the stocks, while Gu et al. (2020) view the portfolio allocation as

an estimation problem of the stock returns. In other words, we model on the probabilities of return

state transitions conditional on historical information and Gu et al. (2020) model on the numeric value

of returns. Taking the neuron network models as an example, our neuron network models all include

a soft-max output layer of 10 neurons that gives us the probabilities of a stock being in one of the

10 return states in one period ahead, while neuron network models in Gu et al. (2020) all have a

linear output layer of 1 neuron and output a return prediction. Similarly, our boosted tree models are

based on multi-class probabilities, while the boosted tree models in Gu et al. (2020) are based on

linear regressions. Our output gives a better sense of relative performance of stock returns and the

probability of occurrence.

Our paper is also very different from Wolff and Echterling (2020). First, we model on monthly

returns covering 196301:201912 including all 26302 stocks out of all 33004 securities. We include

332 predictors covering historical returns, firm characteristics and macro indicators, while Wolff and

Echterling (2020) include 37 predictors and 21 years of weekly data (199901:201912). In addition,

to the specific purpose of our study, we characterize the returns into 10 return states independent of

market return, while Wolff and Echterling use binary categorization with reference to market return.

The most important aspect that distinguishes our paper from Gu et al. (2020) and Wolff and Echter-

ling (2020) is the scope of the studies. We choose machine learning classification methods specifically

because of their relation with the information theory and the testing metrics that can be adopted. Be-

yond the modeling aspects and the predictive power, we attempt to examine market efficiency and
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supply answers to Thaler’s questions. We also aim at providing new economic intuition about why

the machine learning methods can produce portfolios that outperform the market. Through our com-

prehensive analysis and the demonstration of our 22 models, we show explicitly that the investors can

generate new information and the market is unbalanced in terms of the transition probabilities.

The reminder of the paper proceeds as the follows. We specify the models, metrics and the em-

pirical setup in Section 2. In Section 3, we demonstrate the OOS performance of our classification

based portfolios with economic and statistical metrics. We analyze the performance through accuracy

and discuss binomal tests. We also provide insights about the portfolio allocation strategies generated

by the classification portfolios. In Section 4, we document the cross-sectional explanatory power and

predictor contribution. We conclude in Section 5.

2 Methodology

We provide the general description of our methods in this section. We explain the basics of our mod-

eling procesess and tests, including our model specifications, validation and hyperparameter tuning,

testing metrics and sample split. We try to provide details so that people with limited experience in

machine learning know about the terminologies and the model specifications.

2.1 Model Training and Validation

2.1.1 A Brief Introduction to Classification and Information Theory

A classification problem is a choice making problem. For example, given a picture capturing an

animal with 2 possible outcomes, cat and dog, a classification problem can be framed as the question:

is the animal in the picture a cat? This is a binary choice question. If the answer is yes, we know

that the picture captures a cat. If the answer is no, the picture captures a dog. This is a typical binary

classification problem with one class being the cat pictures and the other class being the dog pictures.

The task in this classification problem is to find a strategy to label a picture to be either a picture of cat

or a picture of dog. A strategy is referred as a classifier or a model in machine learning literature. If we

have a classifier that always guess that the animal captured by any picture is a cat, then this classifier

is a naive binary classifier. The classification outcome of a given picture, i.e. cat or dog, is called the

label of the picture. A classification problem is not limited to have 2 candidate outcomes nor a single

label. For example, the question that asks “what is the weather tomorrow?” is a multi-label multi-

class classification problem. Specifically, for example, an answer to the question can include 2 labels,

one about the weather condition and the other about temperature. The candidate outcome weather

conditions can include rainy, snowy, sunny, etc. The candidate outcome temperature can include 3

levels: hot, mild and cold. In this paper, we frame our portfolio allocation practice as a single label

multi-class classification problem.
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In Table 1, we demonstrate how we frame a portfolio allocation problem as a classification prob-

lem. We cross-sectionally rank individual stock returns by trading month, put them into their corre-

sponding deciles and use the deciles as the classes of return states. For example, if a stock falls into the

lowest decile in a trading month, we define the true label of the stock as the class of return state 1. A

stock in return state 1 means that the stock delivers a return that is among the worst performing returns

of the trading month. A stock in return state 10 indicates that the stock are among the stocks delivering

the best performing returns of the trading month. In later sections, we refer to the return states with

the numbers specified in Table 1. In short, small number returns states indicate bad performing return

states while large number return states indicate good performing states. Note that we make the lower

bound as the inclusive bound. Therefore, we have slightly unbalanced 10 classes.

In the Section 6 of Claude Shannon’s (1948) seminal paper, Shannon introduces the concept of

bit as the unit for information and the famous Shannon entropy, or information entropy (entropy here-

after), as the measure of the average level of information, or the amount of randomness, in the unit

of bits. An arbitrary parent choice question, for example, can be decomposed into a series of bi-

nary choice sub-questions and the entropy summarizes the average number of the binary choice sub-

questions to answer such that the parent choice question can be answered. Higher entropy means that

there is more uncertainty. The entropy can be defined as

Entropy(S) =− p+ log2 p+− p− log2 p−,

where S is a Bernoulli trial with 2 possible outcomes {+,−} that are mutually exclusive and p+and

p− = 1− p+ represent the probabilities of the two possible outcomes respectively. When the entropy

is seen as an uncertainty measure of the information, the greater the entropy is the greater the

uncertainty is. In a binary case, the entropy is at its largest when p+ = 1− p− = 0.5. In other words,

a Bernoulli distribution that are close to a binary outcome discrete uniform distribution is with the

highest uncertainty and is more likely to yield surprising outcome. When a Bernoulli distribution

departs from the binary outcome discrete uniform distribution, the uncertainty decreases and a

random draw from the Bernoulli distribution is more likely to deliver an unsurprising outcome.

Specifically, for example, consider the weather outcomes of snow versus not snow during winter,

Florida has a lot lower uncertainty of snow comparing to the uncertainty level of snow in Missouri,

since the probability distribution of snow versus not snow in Florida is skewed to towards snow and

concentrated in not snow while the probability distribution of snow is closer to uniform distribution

in Missouri.

A generalization of entropy to compare the difference between two probability distributions yields

the cross entropy. Given a parent choice question and our best strategy to form binary choice sub-

questions, the cross entropy measures the average number of binary choice sub-questions that we need
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to answer with our best strategy in the environment with the true probability. In the training process

of a machine learning model, we have the observed probability distribution and we will select the best

strategy, through comparing the candidate estimates of the distributions, to form the binary choice

sub-questions and answer the parent choice question. The best strategy is associated with the lowest

cross-entropy and thus also with the lowest information uncertainty. The information uncertainty is

associated with the possibility of information loss. In other words, the cross-entropy can be thought as

a measure to compare the observed probability distribution and the predicted probability distribution.

2.1.2 Loss Function and Optimization

In a training process of multi-class classification problem, we want to minimize the overall errors and

balance the by-class performance of the classifier. Popular choices of loss functions includes accu-

racy, information gain based on entropy, mean error across the classes, etc. We adopt cross entropy

as the loss function to minimize the information uncertainty between our predicted distribution and

the observed distribution. Specifically, we achieve this through comparing our predicted distribution

against the true distribution with cross entropy. The formal definition of cross entropy is:

Cross Entropy =Epi log2
1
p̂i

=∑
i

pi log2
1
p̂i
,

where pi is the observed probability of outcome i and p̂i is the predicted probability. Higher cross

entropy represents higher information uncertainty associated with the use of the predicted probability

to approximate the observed probability. In other words, higher cross entropy represents lower infor-

mation decoding quality with the predicted probability comparing to the observed probability. When

we train a classification model, for each iteration of weight update, we aim at minimizing the cross

entropy through the adjustment in model weights. When we conduct hyperparameter training in the

format of grid search, we also select the best model based on cross entropy. By using cross entropy

as the criterion to adjust weights and select hyperparameters, we can obtain a model that reduces the

uncertainty of the information extraction.

2.1.3 Model Specification, Validation and Hyperparameter Tuning

We describe the models we consider in Table 2. We include 2 architectures covering shallow neu-

ron networks, deep neuron networks, dropout additive regression trees, random forest and gradient

boosting machine, total of 22 separate models. In our specification and model training, to understand

the effect of the major architectural parameters, which control the model complexity, we do not add

the architectural parameters, such as the number of hidden layers in a neuron network or the number
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of maximum depth in a tree model, into the hyperparameter tuning process. Through training and

evaluating models with the different key parameter specification, we can see a clear trend later that the

differences in the key structural parameters have a strong influence on the performance of the models.

Specifically, we include neuron networks with 1 to 4 hidden layers. Our tree models are with

maximum depths of 2 to 8. The number of hidden layers controls the complexity of interaction across

predictors. The number of maximum depth limits the maximum number of leaves that a tree can

grow. The complexity of computation can increase exponentially as we increase the depth of the

tree models. The last column in Panel A of Table 2 presents the structural capacity of our models.

The numbers in curly brackets correspond to the number of neurons in the specific hidden layer. For

example, the model ANN4 128 has 128 neurons in the first hidden layer, 64 neurons in the second

layer, 32 neurons in the third hidden layer and 16 neurons in fourth hidden layer. Thus, the numbers

of neurons in the curly brackets for ANN4 128 is {128,64,32,16}. For our DART models, beyond the

important parameters summarized in Panel A, we also specify the dropout rate as 10%. This dropout

rate can help generalize the model. To save on computation resources, we also apply early stopping

mechanism to all of our models. If a model in training process does not improve the loss function by

at least 0.00001 for 3 consecutive rounds, the training stops.

Panel B in Table 2 presents the additional specification information that applies only to neuron

network models. Relu is the popular choice of activation function for the hidden layers in the recent

finance machine learning literature. However, we did not use Relu as the hidden layer activation

function. We want to avoid the dead neurons in the deeper layers of deeper networks. Our selection

of Tanh function is famous for its robustness. Because our interest of the study is the return states

as classes, we specify the output layer with SoftMax function, which transforms the inputs from the

last hidden layer to the probabilities. We set the output layer to include 10 neurons, corresponding

to 10 possible return states. For each instance fed to our neuron networks, each neuron in the output

layer will produce a probability representing the likelihood that the instance belongs to the associated

return state. In the end, we categorize a stock to one of the return states associated with the highest

probability.

In any of our neuron networks, we have 3 layers of transformations starting from the input layer.

Consider a neuron network with 1 input layer, 1 hidden layer of 1 neuron and 1 output layer with 10

neurons. Let us denote the input layer as X . We form transformation through activation function taking

linear combination of the input layer as its input. The transformation is defined as Z = σ(α0 +αT X),

where σ is the Tanh function. Then, we further transform the output of the Tanh function through

another linear combination and connect linear combination with the output layer of SoftMax function.

Specifically, we first collect the linear combination taking Z as input and denote the linear combination

as Tk = β0k +βkZ, where k is the number of neurons in the output layer. Then, we connect T ’s to the

observations through the SoftMax function g(T ) = eTk

∑
10
l=1 eTl

. During training, we adjust the weights in

all layers and bring the SoftMax function to produce probabilities for individual observations as close

to the real probabilities as possible. In a tree model, the logic is similar but different. In our tree
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models, the training process is done with the sub-sample of individual classes. Each tree will select

a class of return state and use the subsample of the training set containing the selected return state

to learn and adjust the weights. The weights of different trees are not directly interacting with each

other until the summarizing step when the model pulls all the information about individual classes

together and conducts a majority vote process to decide the prediction. When the majority vote step

takes place, the probabilities of individual classes will be summarized and scaled to reflect the overall

probabilities with a summation of 1.

Panel C of Table 2 presents the hyperparameters that we want to tune with our validation strategy.

As we separate the architectural parameters from the hyperparameter set to help us understand more

about the influence of model complexity, we only have limited number of hyperparameters to tune with

our model. Specifically, for neuron networks, we tune L1 regularization parameter which decides the

penalty put on the weights similar to the regularization in the lasso regression. Our neuron networks

prefer the finite L1 regularization. We tune the sampling rate for training data and the sampling rate

for the predictors as a control for generalization of the tree models. We take cross validation as the

validation strategy for hyperparameter tuning. We choose cross validation, instead of constructing

a separate validation sample as being implemented by Chen et al. (2020) and Gu et al (2020), to

take the advantage of the data coverage and avoid the loss of OOS testing observations. Sepcifically,

we separate the training data set into 5 subsamples in chronological order and conduct 5-fold cross

validation.

2.2 Performance Evaluation

In order to better communicate our empirical findings, we describe the metrics that we refer to. For

model-based portfolio allocations, it is important for us to understand both the economic performance

and the statistical performance. Therefore, we list out both the economic metrics and the statistical

metrics.

2.2.1 Economic Metrics

The purpose to evaluate a model based portfolio economically is to understand whether the portfolio

is successful in terms of commonly used traditional measures. Specifically, we refer to Sharpe Ratio

(SR) and Certainty Equivalent Return (CEQ) in the evaluation of the risk-return trade-off. Portfolios

with better performance in terms of risk-return trade-off have higher SR and CEQ. We define SR as

SR =
E(R−R f )

σ(R−R f )
,

where R is the return generated from a portfolio of interest and R f is the risk free rate of return. For

the long-short portfolios, we define the SR as
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SRlong−short =
E(Rlong−Rshort)

σ(Rlong−Rshort)
,

where Rlong is the return generated from holding the long position of of the predicted good performing

stocks and Rshort is the return generated from holding the long position of the predicted bad performing

stocks. We define the long-short SR in this way as the long-short portfolio is a theoretically zero

investment portfolio. Following DeMiguel, Garlappi and Uppal (2009), we define CEQ as

ĈEQk =µ̂k−
γ

2
σ̂

2
k ,

where µ̂k is the estimated mean of the return from the asset k and σ̂2
k is the variance of the return. γ in

the above expression stands for the risk aversion coefficient and we specify γ = 1 following DeMiguel

et al (2009) and Goyal and Welch (2008).

In addition to these most popular economic metrics, we also provide basic metrics to evaluate the

profit and loss. We specify the cumulative return as

Yt:t+n =
t+n

∏
i=t

(1+Ri)−1

, where Ri is the return from the portfolio of interest in the month i and n stands for the number of

periods in the investment window. Our cumulative return is therefore defined as the product of gross

return net of the initial investment cost. We take the notation of our cumulative return and include

maximum drawdown in our evaluation defined as the following:

MaxDDt:t+n =min
t:t+n
{Yi+1−Yi

Yi
},

where i is a trading month during the investment window t : t +n. Finally, following Gu et al. (2020),

we provide turnover defined as

Turnover =
1
n

t+n

∑
i=t

(
∑

j

∣∣∣∣∣w j,i+1−
w j,i(1+ r j,i+1)

∑k wk,i(1+ rk,i+1)

∣∣∣∣∣
)
,

where w j,i represents the weight of stock j during month i in a portfolio.
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2.2.2 Statistical Metrics

For our classification models, we introduce and report a range of metrics that focuses on model accu-

racy from both the angle of overall accuracy and the angle of balancing the prediction accuracy across

different classes. To better present the statistical metrics, suppose that we have a binary classification

problem and a classifier making predictions. Consider the following matrix which compares the true

values and the predicted values:

Reference Positive Reference Negative

Predicted Positive A B

Predicted Negative C D

, where the rows indicates the predicted value and the columns are the reference of ground truth. The

letters A, B, C and D stand for the number of observations. Specifically, for example, A stands for the

number of the observations with the true positive label that also are predicted to have positive label. In

such case, A is the number of correctly predicted positive observations, or the true positives. Similarly,

D is the number of correctly predicted negative observations, or the true negatives. B and C stand for

false positives and false negatives. A matrix that compares the number of predicted observations with

the ground truth is called a confusion matrix.

With the basics of the confusion matrix being introduced, we can further introduce the popular

metrics that evaluate the performance of a classification model. First, referring back to the confusion

matrix example above, we define sensitivity and specificity as

Sensitivity =
A

A+C

Speci f icity =
D

B+D
.

Sensitivity measures the accuracy of the predicted positives, while the specificity measure the accuracy

of the predicted negatives.

In an ideal situation for a binary classification problem, we want to maximize the overall accuracy

or the number of A+D and at the same time keep a balance between making positive and negative

predictions. A classic example can be the detection of cancer. The proportion of cancer patient over

the entire population who take the cancer screening is a relatively small number. Therefore, in such

situation, a classifier can gain a very high accuracy if the classifier just simply predictively label all

people in the cancer screening as negative. However, the classifier will then fail to detect any potential

cancer patient. Another example is about information. For a extremely skewed distribution such as

the chance of raining in Sahara desert, telling the information receiver that the rare event will happen,

eg., it is going to rain in Sahara desert, carries more information comparing to telling the information

receiver that the outcome associated with the largest possibility is likely to happen, eg., it is not
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going to rain in Sahara desert. When we train a machine learning model, the overall accuracy is just

one aspect that we care. We also care about whether the model generates new information and has

meaningful detection rate for each class. Thus, balancing the true positives and the true negatives is

important.

Similar to sensitivity and specificity, we can have prevalence and detection prevalence. The preva-

lence measures the ground truth percentage of the sample being positive and the detection prevalence

measures the predicted percentage of the sample being positive. Specifically,

Prevalence =
A+C

A+B+C+D

Detection Prevalence =
A+B

A+B+C+D
.

Beyond the above metrics that look into individual aspects of the predictions, there are 3 comprehen-

sive metrics: the F1 score, the balanced accuracy and Cohen’s Kappa:

F1 =
(1+β 2)×Precision×Recall
(β 2×Precision)+Recall

Balanced Accuracy =
Sensitivity+Speci f icity

2
,

κ =
po− pe

1− pe

where β in the F1 score is the type II error. The precision and the recall in F1 score are defined as

Precision = A
A+B and Recall = A

A+C . po =
A+D

A+B+C+D in κ is the relative agreement observed between

the ground truth and the prediction, while pe = p+ + p− measures the probability that the agree-

ment between the prediction and the ground truth is random, where p+ = A+B
A+B+C+D ·

A+C
A+B+C+D and

p− = C+D
A+B+C+D ·

B+D
A+B+C+D . Note that F1 does not take into account the true negatives and thus have

limitation on evaluating the results with consideration on the balance between true positives and the

true negatives.

2.2.3 Accuracy and Binomial Test: A Novel Empirical Framework

In addition to the above metrics, we also introduce accuracy as a direct statistical metric of prediction

performance. An accuracy is defined as the associated model’s proportion of correct predictions.

We also introduce a formal test on the statistical significance of the prediction accuracy. For any

classification problem, after the classifier makes the prediction, we have two types of observations, the

correctly classified observations and the incorrectly classified observations. Therefore, the prediction

for an observation is a Bernoulli trial for a classifier. The number of correctly classified observations

can be seen as the number of successes and the number of incorrectly classified observations can be
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seen as the number of failures. Following this logic, the prediction accuracy measured as the number

of correctly classified observations over the total number of observations is a type of success rate.

This enables us to conduct a standard binomial test to compare the success rates. Specifically, we can

test the accuracies of our models against some accuracy of a benchmark classifier and we can further

understand whether our models can provide more information than what the benchmark classifier

provides.

2.2.4 Selection of Benchmark Classifier

Since the efficient market hypothesis suggests that the market is efficient and there does not exist

relation between future returns and historical information, price changes are decided with new infor-

mation to be released. Consequently, we want a benchmark classifier that makes predictions based on

limited information or no information to reflect the implication of the efficient market hypothesis. In

general, there are two types of classifiers we can consider. First, we can consider a random classifier.

Second, because the investors are rational and the prices in efficient market reflect the expected future

prices, investors have rational understanding over the distribution of prices as required by the consis-

tent beliefs which leads to market efficiency. Thus, we can consider a classifier with distributional

information of returns. Discussion about the inclusion of classifiers with distributional information of

returns is provided in the next subsection.

We want to be conservative. Therefore, from those classifiers using limited or no information,

we want to select a classifier that produces the highest possible accuracy. We consider 5 candidate

benchmark classifiers. First, we consider a random classifier that takes into account absolutely no

information. The random classifier labels each OOS observation with a random label from return state

1 to return state 10 with equal probabilities. The accuracy level of the random classifier reflects the

situation where no relation exists between future return states and historical information. Second, we

consider a random classifier that randomly labels OOS observations with probabilities based on the

observed IS return state probability mass function. Third, we consider a naive classifier that labels

OOS observations with the most populated IS return state. The second and the third benchmarks

represent the situation where market knows the IS distributional information of return states. The ma-

chine learning literature argues that if the distributional information of the response variable is the only

information or the only useful information, classifying all observations predictively into the majority

class is the best guess. Our multiple comparison test confirms this argument. Fourth, we consider a

random classifier that randomly labels OOS observations with the knowledge about OOS return state

distribution. Fifth, we consider an accuracy by a naive classifier that labels OOS observations with the

most populated OOS return state. The fourth and fifth benchmarks are enhanced versions of their IS

counterparts.
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2.2.5 Discussion on Classifier with Distributional Information of Returns

There are three reasons for us to consider the benchmarks reflecting the distributional information

about return states. First, it is a convention in machine learning literature to test predictability against

the naive classifier as a benchmark. Since the distributional based classifier accuracy is easily ac-

cessible through our empirical observations and does not involve any modeling or predictors, it is a

natural choice to examine whether a model and the associated predictors are working, i.e., whether

the model and the predictors provide more information than the distributional information. We follow

the convention, considering that the distributional information is minimum amount of information. In

fact, the accuracy delivered by a naive classifier is often referred as no information accuracy indicating

that the minimum amount of information is reflected by the accuracy. Therefore, the benchmarks in-

cluding the distributional information do not deviate us from our testing purpose about whether useful

information is provided by our models and the historical information that our models use.

Second, we would like to demonstrate how we select the most restrictive benchmark among the

candidate classifiers for our binomial tests. The selection is conducted through a multiple comparison

test with the Monte Carlo samples of accuracies by the random classifiers and the naive classifiers.

The test looks into which classifier provides the highest accuracy on average. The OOS prediction

accuracies by each of the random classifiers and the naive classifiers provide the simplest setup to test

predictability within our novel testing framework. The selection process contributes unique insights

to the market efficiency literature. In fact, through Monte Carlo simulation and the multiple compar-

ison test, we show that the naive classifier using the IS distributional information about return states

delivers an accuracy that is statistically higher that what is delivered by the random classifier that uses

absolutely no information. This means that the future returns can be better predicted by the random

classifier using the basic information about IS probability mass function of the return states. However,

it is worth to note that predictability does not necessarily equal to the rejection of market efficiency.

A meaningful empirical question about market efficiency from predictability has to come with mean-

ingful profitability. We do not see such profitability with the naive classifiers. We will discuss more

about this point in the subsection below.

Specifically, for each iteration of the Monte Carlo simulation, the random classifiers and the naive

classifiers predict the testing data set return states according to the mechanism mentioned above.

In total, each iteration, the Monte Carlo process samples 4886 return states from the real data set

mimicking the average number of stocks in each month of our entire sample. We iterate the simulation

for 10,000 times. The accuracies for each classifier then allow us to conduct multiple comparison tests.

We introduce Tukey’s HSD and Table 3 demonstrates the Tukey’s HSD test conducted with time period

covering 199201:201912 as the testing sample. Tukey’s HSD confirms that the naive classifier with

OOS distribution knowledge provides the highest accuracy on average. We select the naive classifier

as the benchmark to further test whether our models indeed provide information about the relation

between future returns and historical information in the binomial tests.
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Third and most importantly, a classifier which considers only the distribution of the return states

mimics the investor behavior under the assumption of the market efficiency and the associated ac-

curacy is the benchmark as implied by theory. An efficient market means that the future returns are

unpredictable based on historical information and that investors are rational with enough information

about the distribution of returns. To reflect the investor behavior, the inclusion of the benchmark based

on a naive classifier that considers the distribution is necessary and meaningful. In fact, according to

the rational investor assumption which leads to efficient market hypothesis, investors have consistent

beliefs (Sargent 1993, Barberis and Thaler 2003). Consistent beliefs means that investors have cor-

rect information about the distribution they use to forecast unknown state variables. In other words,

investors in efficient market must have enough information to infer the distributions of state variables,

including the distribution of returns. Therefore, more precisely, we will want to include the accuracy

based on the true OOS return state distribution as it is the best distributional information the rational

investors can infer. We generally refer the accuracy provided by naive classifiers wtih distributional

information as no information accuracy hereafter.

2.2.6 Binomial Test: A Joint Test

The binomial test is a joint test and provides unique economic insights to finance machine learning

literature and market efficiency literature. Specifically, given any one of our models built based on

historical public information to predict future return states, if the prediction accuracy is tested as

significantly greater than the no information accuracy, the statistical significance is indicative in at

least 3 aspects. First, we can conclude that the prediction accuracy of the model is statistically better

than the no information accuracy by the naive classifier. In other words, the combination of the model

and the predictors delivers good predictive performance.

Second, since the naive classifier using only basic distributional information provides minimum

or no information, the statistical significance of better accuracy indicates that the associated model

delivers statistically meaningful information and this information is beyond the basic distributional

information. Furthermore, because of using historical information and the specific modeling struc-

ture, the meaningful accuracy signals that there is a relation that exists between future return states

and lagged predictors and that the relation is at least partially decoded by the related model. Third,

if a binomial test presents significance and the associated portfolio strategy can generate profits, then

the prices may not be correct. The significant predictability suggests that there exists a relation be-

tween the predictability and the information uncovered by the model using historical information. The

predictability proves that the future prices will move towards predicted level and the profitability sug-

gests that the piece of information uncovered by the model is useful. In other words, the historical

information can generate future profits. As mentioned by Fama (1991), the return predictability does

not necessarily mean that the market is inefficient. If the predictability does not allow the generation

of profit, the market is efficient in terms of allocating resources and the prices correctly reflects in-
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formation. Therefore, costs to question market efficiency, the predictability has to be combined with

the meaningful profitability that cannot be offset by friction. We show that our models generate large

economic gains for investors and the predictability is significant based on our modeling architectures

and historical information.

An important implication of the profitability based on historical information is that the market

by large does not share the information. If most of the market participants share this information

generated by our models with historical information, the arbitrage process will erase the opportunity

to benefit from the model predictions. Therefore, the information generated by our models provide

new information about future returns and historical information. At the same time, at least to our

models, the market price may not be correct historically for the CRSP-COMPUSTAT sample covering

196301:201912, since correct prices should not allow any investor to generate new information using

historical information and apply the generated information to make OOS profit. In summary, the

binomial test is a joint test of statistical significance of predictability and market efficiency. We discuss

more about the use of the binomial test in Section 3.

2.3 Data Construction and Sample Split

2.3.1 Data Components

Our data universe contains 3,342,486 monthly stock information of 26,302 distinct common stocks

with current returns listed on 3 major exchanges covering the time period of 196301:201912. We

present the basic summary statistics of our data in Table 4. We construct a modeling sample of 332

lagged predictors. The lagged predictors include the return state, 101 firm characteristics, 2-digit SIC

industry indicator, 2-digit SIC industry lagged returns, 125 macro indicators. We augment the macro

indicators with 9 market specific predictors based on Goyal and Welch’s data set. We also sort the past

94 numeric firm characteristics and further augment the macro indicators with differences between the

top decile median returns and the bottom decile median returns.

Specifically, we fully reconstruct the firm characteristics based on Green et al. (2014) with CRSP

and COMPUSTAT. We made the data set to be a completely CRSP centric data with no data elimina-

tion if possible. In the end, we only eliminate rows with missing current returns and the securities that

are not common stocks with SHRCD of 10, 11 or 12 listed on the major 3 exchanges with EXCHCD

of 1, 2 or 3. Figure 1 presents our sample coverage of the CRSP universe with the counterpart refer-

ence level based on the entire CRSP database. Note that the reference level includes securities with

missing returns and securities that are not common stocks.

Following Green et al. (2014) and Gu et al. (2020), we lag the annual firm characteristics by at

least 6 months, we lag the quarterly firm characteristics by at least 4 months and we lag the monthly

firm characteristics by at least 1 month. Note that the firm characteristics include variables depending

only on historical returns, such as return momentum, and the variables depending on financial infor-

mation and corporate announcement such as earnings and IPO. This data set of firm characteristics
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provides a sound experimental environment for the test of market efficiency using machine learning

methods. The lagged characteristics ensure that all the information in our models is historically pub-

licly available information and there is no forward looking information leak in terms of the return

based information nor the corporate announcements.

We also include macro time series indicators to allow the models learn about the relative intertem-

poral position of the market. We obtain the macro indicators of McCracken’s fairly new FRED-MD

database from the website of Federal Reserve Bank of St. Louis. The database provides most of the

mainstream macroeconomic indicators and is updated on a monthly basis (McCracken and Ng 2016).

We retain 125 of the macro indicators in the end and exclude the variables ACOGNO, ANDENOx and

TWEXMMTH due to limited availability. We obtain Goyal and Welch’s (2008) data set from Amit

Goyal’s website. We include d/p, d/e, svar, b/m, nits, corpr, dfy, dfr and ltr in our final data. We lag

the time series macro indicators by at least 1 month.

For factor model testss, we obtain Fama and French’s (1992) MKT-RF, SMB and HML factors

augmented with MOM factor of Carhart (1997). We collect these factors from Kenneth French’s data

library. We also include the Hou, Xue and Zhang’s (2015) q 4 factors — R_ME, R_IA, R_ROE as well

as the R_EG factor from the update of Hou, Mo, Xue and Zhang (2018). These factors are collected

from Lu Zhang’s investment CAPM website. We include these pricing factors in the factor model tests

mainly because of their good performance in the empirical asset pricing literature and their popularity.

2.3.2 Data Manipulation and Sample Split for Training and Testing

We manipulate the data to obtain the most appropriate modeling inputs according to conventional

machine learning model requirements. First, scaling variables is an important step to minimize the

impact on weight adjustment and tree split because of the scale difference. In the machine learning

literature, scaling variables is almost always recommended. We follow this standard practice. We scale

the numeric firm characteristics cross-sectionally through normalization at in each trading month, if

the field is not missing. We scale firm characteristics cross-sectionally for each time point to capture

the relative characteristics difference at a time point across stocks.

Second, we also follow the conventional practice in machine learning literature and fill the missing

values in categorical firm characteristics by specifying a new category. This practice does not bias the

data set. Instead, it keeps the observations and helps the model to split more indicator specific effects

from the general effects by retaining more observations. Third, after scaling, we fill the numeric

firm characteristics with 0, which is the cross-sectional mean and median in each trading month. We

also fill the time series variables, including the macro indicator variable consumer sentiment index

(UMCSENTx), with the latest available values. Despite that there is the possibility of introducing

noise, we fill the missing values because the possibility of including more useful information due to

retaining more observations is also high. In the modeling phase, we scale the time series predictors

through normalization with all available IS history such that the time series predictors can capture the
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intertemporal relative position of the market trend and the macroeconomic trend.

To enlarge the testing power, our data covers the time window of 196301:201912, almost every-

thing in the CRSP-COMPUSTAT universe. We split the entire data set in two ways corresponding

to our time series tests and the purpose of our cross-sectional tests. For our time series tests, specifi-

cally, we want to test on intertemporal applicability of the models fitted with our time series in-sample

training process in the OOS time periods. Therefore, we split the data in the middle based on the time

length. As we have 57 years of data, we choose the end of the year 1991 as the splitting point as the

earlier data has less number of stocks on average. Then, we have 2 time series subsamples, the first

subsample covers 196301:199112 and the second subsample covers 199201:201912. Later, we refer

the subsamples in terms of the coverage of time periods.

To take the advantage of the long time window, we train our models with the subsample covering

196301:199112 and make predictions with the subsample covering 199201:201912. We also train

our models with the subsample covering 199201:201912 and make predictions with the subsample

covering 196301:199112. We present the results of the OOS predictions with economic metrics both

in subsamples and combined. We can use the latter 28 years to make prediction on the first 29 years,

because we focus on extracting the relation between the historical public information and the future

return states and our models do not depend on time structure. Therefore, we will not violate the setup

of OOS tests.

It is obvious that the current working rules apply to the next period while it is not obvious whether

the current working rules can apply to the past. Training models in latter dates and testing model in

former dates makes a strong case of testing the time invariant applicability of the models. For example,

after the appearance of Black Scholes and Merton (BSM) model, we know that BSM will certainly

work for the pricing of stock options in the future after its appearance. On the other hand, it is hard to

tell whether BSM would work to the dates prior to its existence. If a model captures the real process

of return state transition in general, the model should be applicable to any time periods.

Our time series sample splits focus on the evaluation of time series OOS tests, while we position

our cross-sectional sample to focus on overall explanatory ability across the entire time series. Unlike

traditional econometrics, it is not ideal to test a machine learning model with the sample that the

model is trained with. To overcome this issue, we split the data by odd number months and even

number months in the spirit of Fama and French (2018). Our cross-sectional data split permits us to

model the entire length of the data set across different macroeconomic conditions and test the fitted

models in an OOS testing setup with completely new observations that are not seen by the models.

We summarize the sample splits for training and testing in Table 4.

3 Time Series OOS Performance

In this section, we present the OOS performance of our classification-based portfolios. We show that

our portfolios perform systematically better than what the market portfolio based on buy-and-hold
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strategy can deliver, regardless of the weighting schemes and the market capitalization cutoff points.

We compare the performance in the aspects of average return, return volatility, risk-return tradeoff and

shortfall. Our demonstration of the superior OOS performance of the classification-based portfolios

answers Thaler’s first question about whether we can beat the market. We further demonstrate the

factor model explanation of the returns generated by the classification portfolios and show that the

traditional factor models cannot explain the returns generated by our portfolios.

To carry out the OOS economic metrics, we first train our time series models using the first half

of our sample covering 196301:199112 and make predictive classifications on return states in the

second half of the sample covering 199201:201912. We then train on the second half of the sample

covering 199201:201912 and make predictive classifications on return states in the first half of the

sample covering 196301:199112.

As discussed in the sample construction section, we are able to use the latter half of the sample

to predict the former half of the sample without any violation of the OOS test setup. By always

using lagged information to score models, the models trained with the time series subsample covering

199201:201912 do not see any OOS observations, if we test the models with the time series subsample

covering 196301:199112. We combine the OOS predictions in the two windows to form portfolios

covering the entire sample period of CRSP-COMPUSTAT universe and provide by far the longest

time series OOS test coverage.

As a robustness check, we provide performance tables of separated periods in the appendix along

with the results from the portfolios enforcing strict market capitalization cutoffs. Neither splitting

the full length of the CRSP-COMPUSTAT universe into two halves nor enforcing the market capi-

talization cutoffs changes our conclusion about the superior OOS performance of our classification

portfolios comparing to holding the market.

After the demonstration of the good time series OOS performance that is time invariant, we dig

into the statistical metrics of the accuracy that drives the good economic performance of our portfolios.

We show that our portfolios can deliver balanced accuracy that is good comparing to the referencing

levels of the class prevalence in our data. We further test the overall accuracy of our models against

the no information accuracy of the naive classifier through the binomial test. The test against the no

information accuracy as the null hypothesis is a conventional test in the machine learning literature.

Following the important interpretation of the binomial test discussed in Section 2, we show that the

OOS overall accuracy levels provided by the predictions from our models are statistically significantly

larger than the no information accuracy, which indicates the generation of new information about OOS

return states based on predictions from the models fitted in training process. We discuss the importance

of this test to the understanding of market efficiency. We further look into the prediction accuracy by

return state transitions and illustrate the opportunities captured by our models from learning with IS

historical observations. In the end, we discuss the by-class statistical metrics, the training performance

and the model selection during training.
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3.1 Performance Evaluation with Economic Metrics

Because of the large number of models under consideration, we rely on visualization to summarize the

major results and provide the performance metrics in table format in the appendix. Figure 2 and Figure

3 present the summarized economic metrics of the classification portfolios covering 196301:201912.

The dashed blue line is the performance provided by the market portfolio, i.e. buy-hold strategy

applied to the entire market. The long portfolio indicates a long position in all stocks predicted to be

in the return state 10, or the best return state. The short portfolio indicates a short position in all stocks

predicted to be in the return state 1, or the worst return state. The long-short portfolio includes a long

position in the return of all stocks predicted in the return state 10 and a short position in all stocks

predicted in the return state 1.

Figure 2 presents the OOS performance of the equal-weight portfolios and Figure 3 presents the

OOS performance of the value-weight portfolios. Note that we change the weights in the long leg and

the short leg separately when implementing a long-short portfolio. The allocation to the long leg and

the short leg in a long-short portfolio is always equal, i.e., having a 50%:50% allocation ratio, across

weighting schemes. All the returns are fully risk-adjusted against risk free rate and the cumulative

returns are calculated as the gross returns net of the initial investment.

The first row of Figure 2 (Figure 3) demonstrates the distributional information of the equal-

weight (value-weight) portfolio returns. The long portfolios deliver obviously better monthly average

returns comparing to the market monthly average return. The short portfolios deliver obviously worse

performance by taking the long position in the predicted worst performing stocks. When combined,

the long-short portfolios deliver systematically better average monthly returns comparing to market

return.

Over the full length OOS performance evaluation period covering 196301:201912, our neuron

networks and tree models successfully distinguish the best performing stocks and the worst performing

stocks. The similar conclusion holds in the comparison of the standard deviation. Our long-short

portfolios deliver surprisingly small monthly return standard deviations. In the comparison in the

return skewness against the market, our portfolios seem pushing the skewness towards positive values.

This implies that our portfolios are more likely to realize large gains than large losses. However, if one

is interested in short only strategies, this means more significant loss. The kurtosis plot demonstrate

that our portfolios deliver returns that are more concentrated on a center, which indicates a reduction of

the distributional fat tails. We augment the first row in Figure 2 and Figure 3 with Figure 4 and Figure

5 for equal-weight portfolios and value-weight portfolios respectively. Since the return distributions

of the long portfolios are to the right of the return distributions of the short portfolios, Figure 4 and

Figure 5 further confirm that our models can distinguish the future best return state stocks from the

future worst return state stocks. It is also worth to note that the return distributions are closer to normal

for our classification based long and short portfolios.

In Figure 2 and Figure 3, the second row demonstrates SR and CEQ of the full length OOS evalu-
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ation covering 196301:201912. Because of holding the predicted worst performing stocks, short port-

folios deliver negative SRs. The long portfolios based on complex models deliver SRs that are higher

than what the market provides. Our long-short portfolios deliver surprisingly high SRs achieving sys-

tematically superior performance in term of the risk-return tradeoff. The best performing long-short

portfolio based on our gradient boosting machine with the depth of 8 delivers a SR of 0.76, when we

implement equal weight portfolio formation. The SR drops to 0.45, when we implement value weight

portfolio formation, still more than doubled the SR delivered by the market. This drop is also less than

50 % mentioned by Chen et al (2020) in their findings when shifting from equal-weight portfolios

to value-weight portfolios. The drop of performance is understandable as we cannot gain the returns

from the small cap stocks with a 1:1 ratio. However, this does not mean that the portfolio performance

is completely driven by the microcap stocks. In the appendix, we check the performance with strict

capitalization cutoffs across all metrics, the performance of the sample eliminating the bottom 5 %

capitalization stocks and the performance of the sample eliminating the bottom 10 % capitalization

stocks are both comparable to the results covering the entire sample. Note that our SRs are calculated

with monthly returns instead of annual returns and is not adjusted with modeling R squares, while

Chen et al. (2020) use annualized returns in the calculation of SRs and Gu et al. (2020) use modeling

R squares to adjust their SRs. Annualizing the returns can smooth the time series and shrink the size

of the variance, while adjusting the SR with R squares can magnify the size of numerator and shrink

the size of denominator. Both of these modifications can inflate the SR.

We also present the CEQ and overall cumulative returns in natural logs during the full length OOS

evaluation period. In terms of economic investor gains, both the CEQs and the cumulative returns show

the superior overall performance of our long portfolios and long-short portfolios comparing to what

the market can generate during the 57-year investment window. The reason of the similar look of the

CEQ subgraph and the cumulative return subgraph is that the construction of the log scale cumulative

return is similar to the construction of CEQ. In the evaluation of equal weight portfolios, our best

performing long-short portfolio based on our ANN model of 1 hidden layer and 128 neurons deliver

a full length period cumulative return of 1,074,286,700 % net of the initial cost. In the evaluation of

value weight portfolios, the cumulative return of the long-short strategy drops to 5,210,500 %, which

is still 76 times of what the market achieves with value weights. We augment the cumulative return

evaluation in our Figure 2 and Figure 3 with Figure 6 and Figure 7. As demonstrated, the cumulative

returns of our long-short portfolios surge to a level that both the market cumulative returns and the

cumulative returns from holding the predicted worst performing stocks become flat lines.

After the surprisingly good performance demonstrated in the return distributions, the risk-return

trade-offs and the economic gains, we look at the largest shortfalls associated with our classification

portfolios. We evaluate the shortfalls with the maximum drawdown. The short portfolios are associ-

ated with the smallest maximum drawdown. Our long portfolios and the market are associated with

a similar level of maximum drawdown. Our long-short portfolios deliver a surprisingly low level of

maximum drawdown. In the equal-weight implementation, our best performing long-short portfolio in
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term of maximum drawdown is again the long-short portfolio based on the gradient boosting machine

GBM8 100. It achieves a maximum drawdown of 7.9 %, only 1/4 of the market maximum drawdown,

which documents the historic selloff around the Black Monday in 1987. When switching to value

weights, the maximum drawdown is still meaningfully lower for the long-short portfolio based on

GBM8 100.

3.2 Explanatory Analysis with Factor Models

We further provide alpha as an additional metric of the OOS performance evaluation and look into

whether the performance can be driven by common market factors. We regress the return time series

of our classification portfolios on the popular factors. We include Fama French 3 Factor model (FF3F),

Fama Frech 3 Factor + MOM model, the original q-factor model (q4) of Hou, Xue and Zhang (2015)

and the q5 factor model of Hou, Mo, Xue and Zhang (2018) with the R_EG factor.

Figures 8 and 9 summarize the factor model tests with our equal weight and value weight portfolios

respectively. The orange dashed line indicates the position of zero. The first row shows the alphas,

the second row shows the t values associated with the alphas and the last row shows the R square

values associated with the factor models. In the case of equal-weight portfolios, clearly, FF3F models

and FF3F + MOM models cannot explain any of the long-short portfolios based on our classification

models, not even the long-short portfolios generated by our underfitted tree models with a maximum

depth of 2. Despite that the q factor models perform slightly better, the q factor models can bearly

explain only the returns generated by the long-short portfolio based on the clearly underfitted DART2

100. The conclusion with the long only portfolios are similar. In fact, the alphas on our portfolio

returns are associated with the t values as large as 20 in the equal-weight implementation of the

portfolios. The R squares in many cases are around 1 % indicating the associated factor models do not

explain the variation. The factor models’ ability to explain the long-short portfolio returns does not

get any better systematically when we shift from equal weight to value weight. We provide the full

testing results in the appendix.

3.3 Model Complexity and The Economic Performance

Gu et al. (2020) mention that the in their implementation targeting the numeric values, they found

the shallow learning outperform deeper learning. They document that the performance of the neuron

networks peaks at three hidden layers and their tree models tend to select trees with few leaves. Our

performance evaluation with the economic metrics shows different conclusion.

First, the performance of the neuron network is largely influenced by the total capacity of neurons

instead of just the number of layers. Controlling the number of layers, higher number of neurons

improve the performance. In the factor tests, we do not see significant deterioration of performance

when we increase the number of layers, either. Second, for our tree models, there is an obvious

improvement trend in all of our subgraphs in Figure 2, Figure 3, Figure 8 and Figure 9. As we
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increase the maximum depth of our tree models, the performance of our tree model based portfolios

improves substantially. Specifically, with maximum depth of 2, our tree models seem significantly

under-fitted and the associated long-short portfolios can deliver performance metrics that are worse

than the counterparts of the market, while our tree models with depth of 8 can help form the best

performing portfolios. Third, for each of our models, as we increase the model complexity, we can

see a widened gap between the long portfolios and the short portfolios across figures. This shows that

the models can better distinguish the future best return state stocks from the future worst return state

stocks as we increase the model complexity.

3.4 Performance Evaluation with Statistical Metrics

We have demonstrated that the classification portfolios can beat the market and the superior perfor-

mance of the classification portfolios in a range of economic metrics. In this subsection, we analyze

the classification models behind the good economic performance through statistical metrics. We first

show the OOS classification accuracy achieved with our models and test the OOS classification ac-

curacy against the true OOS no information accuracy delivered by the naive classifier. The no infor-

mation accuracy by the naive classifier is under the assumption that the response variable, the future

return state, is independent of the lagged predictors. We also dig into the by-class level accuracy,

analyze the overall return transitions and provide new insights about market efficiency. We show that

our machine learning models take the advantage of the difference in the information uncertainty to

deliver superior statistical performance. We base our discussion in this subsection on the combined

OOS predictions covering the entire time series. We provide the tables for separate periods in the

appendix for robustness check.

3.4.1 Accuracies and Binomial Tests Against the No Information Accuracy

The accuracy metric is a unique and natural statistical metric that is available to the classification

problems. In numeric predictions, one can only construct metrics based the predictions errors as it is

impossible to measure accuracy directly. However, in the classification problems, all of the predictions

are similar to combinatorial problems as the predictions are by nature similar to choices and selections.

This creates a hardline on whether a predicted choice or selection is correct or incorrect. Column 2

in Table 6 presents the OOS accuracies of our models that predictively decide which stock is more

likely to be among the best performing stocks and which stock is more likely to be among the worst

performing stocks. We also provide Kappa statistics associated for each of the models in Column 2.

It is clear that the models delivering good economic performance are systematically better performing

in term of the OOS prediction accuracies as well. For example, the underfitted DRF2 200 model

delivers an accuracy level of 15.09%, while the GBM8 100 model, whose associated portfolios are

among the best performing portfolios, delivers an accuracy level of 15.72%. The performance rank is

similar when we compare the models with Kappa. For example, ANN1 16 delivers a Kappa of 4.88%

29



while a better ANN model, ANN1 128, whose equal-weight long-short portfolio delivers more than

one billion percent net cumulative return, has a Kappa of 5.26%.

Beyond the direct interpretation of the statistical performance, we adopt the classification frame-

work to take the advantage of the accuracy metric as a possible direct proxy that can be used to conduct

a statistical test on whether we can foresee the future with historical information. We further intro-

duce the binomial test to the efficient market hypothesis literature and the financial machine learning

literature. As mentioned in Section 2, since the accuracy metric is in a natural form of proportion, we

can compare the statistical difference between 2 accuracies through a binomial test. Specifically, we

test the predictive classification accuracies against the accuracy delivered by the naÃ¯ve classifier as

the null hypothesis.

The binomial test on accuracy has profound meaning in our setup. First, it tests the statistical

meaningfulness of the accuracy delivered by a classification model. If a model delivers an OOS ac-

curacy that is statistically significantly higher than the no information accuracy, the model captures

statistically meaningful essence of the relation between the future return states and the historical in-

formation. We show in Table 6 that all of our models deliver statistically significant OOS accuracies

in tests against the no information accuracy.

Second, to the finance literature, the accuracy is a natural statistical metric to evaluate the market

efficiency and has special meaning to us as discussed in Section 2. Economically, if the market is

efficient in the strong form, then the prices fully reflect all available information, regardless of whether

the information is private or public. In this situation, we should not be able to benefit from trading

stocks using any historical information. If the market is efficient in the semi-strong form, then the

prices fully reflect all historical public information. An investor can only benefit from trading stocks

using the private information. In other words, even if we can generate profits in the semi-strong form

efficient market, the historical public information should not contribute to the prediction of the returns

and only the private information can contribute to the prediction of the returns. If the market is in

the weak form of efficiency, we can benefit from trading on the information inclusion as the public

information, including the corporate announcements and the historical macroeconomic information,

will be incorporated to the prices gradually. However, if the market is efficient in the weak form, past

returns should not contribute to the prediction of the future returns. If the market is not efficient at

all, the returns are predictable and all types of information can make contribution to the prediction of

returns.

In summary, the binomial tests on the prediction accuracies, coupled with the analysis of the

predictor contribution, can provide direct indications about whether there exists violation of the 3

forms of market efficiency. Statistically, we should not observe any meaningful OOS accuracy in our

predictions, if the market is efficient in the strong form. However, if the prediction accuracy of a

model is statistically significantly higher than the no information accuracy, we can conclude that there

exists some relation between the historical information and the future return states and the relation is

captured by the machine learning model. In other words, the statistical significance of the accuracy
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can bring up at least the questions about the market efficiency in the strong form. Therefore, what we

present with the binomial test is a direct test of the strong form market efficiency. The contribution

of historical predictor variables in the predictability can further help us understand whether we should

further question the semi-strong form and the weak form of market efficiency.

We present the binomial test results against the OOS no information rate with the last 4 columns

in Table 6. As mentioned in Section 2, the no information accuracy measures the best prediction one

can make if the predictors do not have any relation with the response variable in the classification

problem. We make it stricter by using the real ground truth OOS no information accuracy based on

the OOS return state distribution.

The binomial test through accuracy against no information accuracy is a test about whether the

response variable and the predictors are independently distributed. Therefore, the no information

accuracy provides a natural tool for us to check if our models are providing OOS information predic-

tively based on the historical information including return information, corporate announcements and

macroeconomic indicators. In an ideal case, we want to split our returns cross-sectionally by trading

month into evenly distributed classes. However, because we have the thresholds of the quantiles when

splitting our returns, each return state includes a slightly different number of stocks cross-sectionally

within each date and the difference remains there when we look at the entire time coverage. 10.16%

is the portion that the return state 7 takes in our entire sample across 196301:201912 and the return

state 7 makes the largest portion of our sample among all return states. Therefore, after observing the

entire distribution of the return states, an investor should always bet on return state 7, if the return state

transition is truly independent of any of the historical information associated to EMH.

It is obvious that the prediction accuracies delivered with the models trained IS based on histor-

ical information successfully surpass the ground truth no information accuracy. With the provided

95% confidence intervals and the p values, it is clear that the accuracies delivered by our models are

statistically significantly higher than what the ground truth return distribution can deliver. Without

looking into the contribution of predictors, which will be discussed in Section 4, our findings in Table

6 have two important implications. First, statistically, we confirm that there is some relation between

the OOS return states and the IS lagged predictors, including the historical return information, the

historical corporate announcements and the historical macroeconomic indicators. In other words, as

the response of the model, the future return states are not independent of the historical information.

Second, economically, we confirm that the market efficiency can be improved as the return states are

predictable at a significant enough level through the existence of the relation between the OOS future

return states and the historical information. The predictability shows that the historical information is

not fully reflected by the prices.

Based on the fact that our models deliver significant OOS accuracies, assuming that between

two investors, one investor uses our models and the other investor believes that the return states are

independent of historical information and thus relies on the OOS true distribution information of return

states to make predictions. Our finding means that the investor using our model can then make OOS
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return state predictions that is better than the best guess that the other investor can make after she sees

the entire ground truth OOS distribution of the return states.

Because of the relation between historical information and the OOS future return states, our mod-

els essentially generate new information that the prices do not reflect. In other words, the investors

using our models have information advantage and manually introduces de facto information asym-

metry to the market. In practice, this implies that the sophisticated investors, such as Renaissance

Technologies, can take the information advantage by generating new information predictively about

the future return states based on historical information. In general, the generated information, depend-

ing on the choice of analytical tools and the sophistication levels of the investor, may not be publicly

available even if the other investors can observe the ground truth distribution of the future return states.

We discuss more about the semi-strong from market efficiency and the weak form market efficiency

in Section 4 based on the predictor contributions.

3.5 Return State Transition Uncertainty and the Prediction Strategy

We next assess the by-class statistical performance of the OOS predictions. We first present the

ground truth about return state transitions and discuss the relative uncertainty across the return state

transitions. We then evaluate the prediction accuracy level for each individual return state transition

achieved by our classification models in general. We demonstrate the strategy that our models take to

achieve the supierior OOS performance and discuss the easiness for predictions. We further present

the by-class OOS performance for each model with popular classification related statistical metrics in

the end of the section.

3.5.1 Return State Transition Uncertainty, By-Transition Performance and Implication on
Market Efficiency

Table 7 presents the information of the real return state transitions. From Panel A, we can see that the

return state transition probability based on the entire sample covering 196301:201912 is not evenly

distributed. In other words, the uncertainty about the return state transition based on different cur-

rent state is not the same. In general, the corner transitions in the matrix, such as the transition from

the current worst performing state to the future highest performing state, are associated with substan-

tially higher probabilities. While the center transitions of the matrix are associated with more evenly

distributed probability around 10%. It is also clear that the transitions from the current middle level

performing return states to the future extreme performing states are with relatively lower probabilities.

Panel B presents the monthly mean returns of the associated return state transitions of all stocks

in our sample covering 196301:201912. We can see that the better future performing states are with

better cross-sectional average returns. However, the panel shows that the transitions from the current

middle level return states, i.e. return state 2 to return state 9, do not really deliver very different average

returns when they transit from current return state to the new return state. For example, the average
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return for a stock transiting from return state 3 to return state 9 is not very different from the average

return of a stock transiting from return state 4 to return state 9. However, the corners of the mean

return table shows different situation. A stock transiting from return state 1 to return state 10 delivers

significantly higher average return comparing to a stock transiting from return state 2 to return state

10. Both Panel A and Panel B show that the extreme return transitions are where the opportunity lays

for the investors who want to generate excess trading profit. We show that this is exactly the strategy

of our models.

Table 8 presents the average accuracy of time series OOS prediction across our models. It is

obvious that our models put high stake in the extreme return state transitions. The transitions to

the lowest return state obtain the highest overall accuracy levels in OOS prediction. The models

also pay more attention to the transitions to the middle return states and the best performing return

states. The OOS predictions from our models seem successfully capturing the better certainty of the

transitions to the extreme states and the transitions to the middle performing states. This implies that

our classification models believe that the extreme return states and the transitions to the middle return

states are more predictable. This is consistent with our observation on the true transition probability

matrix.

As our models capture this difference in the levels of uncertainty during IS training process and are

able to tell what return state is more predictable, the OOS prediction accuracy by return state transition

shows the models’ inclination about what stocks are priced more efficiently under the current market

condition. Our models gain from the inefficiently priced stocks, because those stocks deliver more

certainty about return state transition through unevenly distributed transition probabilities. Based on

Tables 7 and 8, our models clearly have systematic preference of betting on the extreme transitions

and the transitions to the middle return states. Therefore, specifically, the accuracy by return state

transition, combined with the ground truth difference in the probability of transition, indicates that the

extremely priced stocks and the middle performing stocks are creating a market segment that is less

efficient in terms of current pricing.

3.5.2 By-Class Statistical Metrics in OOS Predictions

We discuss the training and the testing by-class statistical metrics in this subsection. In addition to the

exploitation of the uneven distribution of the return state transitions, our models attempt to balance the

accuracy for each individual classes between the true positive predictions and the true negative pre-

dictions. Due to the specific purpose of our classification models, balancing between the true positive

predictions and the true negative predictions is challenging. During the training process, our models

create one-versus-all multi-class classification structure, similar to one-hot encoding, and compare

each individual return state against the other 9 return states. This introduces the unbalancedness. To

the classification models, when looking at the data set with any one of the 10 return states, the data set

will have 90 % negative rate. By simply labelling all the data points as negative, the model can achieve
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more than 90 % accuracy level for each single return state. However, if we denote negativity with 0,

we will be predicting all 0’s across the 10 classes. In the end, we will have low overall accuracy and

this adds no information at all. Therefore, balancing the true positive rate and the true negative rate

becomes crucial for the success of our models.

Table 8 summarizes the key statistical metrics that measure the performance of our classification

models in the OOS predictions covering 196301:201912 by class. With the detailed by-class metrics,

we confirm that the models sacrifice the accuracy and the detection of the true positives for the return

state 2, return state 3 and return state 4, regardless of the modeling architecture, potentially due to

the unbalancedness of the data and the different level of uncertainties as discussed above. The preva-

lence column shows the distribution of the ten classes across the entire OOS testing period covering

196301:201912. As shown, the return state 2, 3 and 4 are among the return states with the lowest

number of observation in our entire sample. However, it is important to note that the return state 1

is also among the lowest populated states while the models collectively choose not to sacrifice the

accuracy in return state 1. As reflected by the better accuracy across the models for return state 1, the

models seem spending more resources to improve the accuracy of prediction in return state 1. This

again emphasizes that the uncertainty level of the return states are not equal. The extreme return states

are more certain than the middle return states and the models are taking the advantage of this higher

certainty. If we look at the summarizing measures that balance the accuracy between the true positives

and the true negatives, the balanced accuracies for each of the return states are above 50 % indicating

that there are gains beyond simply predictively labeling the individual return state as negative.

3.5.3 Training and Model Selection

With the good performance in OOS economic metrics and statistical metrics, we can learn about the

applicability of the models in real practice by looking into the training process and see if we can select

the correct models to generate the guideline for portfolio allocation. We briefly discuss performance

metrics of the training process in this subsection.

Figures 10 and 11 show the economic performance of equal-weight portfolios for the 2 time series

training sets covering 196301:199112 and 199201:201912 respectively. We provide the counterparts

of the value-weight portfolios in the appendix. The IS economic performance of our classification

portfolios are similar to their positions in the OOS economic performance evaluation. Our best per-

forming portfolios are still the models with more complex structures, such as GBM8 100. Table 10

summarizes the statistical metrics of the IS performance of our models for the 2 time series training

sets. The accuracies of our models are substantially higher than what we have for the OOS evaluation,

which is expected. The best performing models are also the models with more complex structures. The

GBM8 100 can deliver accuracy levels of 23.16 % and 22.55 % in the two training sets respectively.

The good performance and the consistency between our IS and OOS models ensure the applicabil-

ity of our models in real practice. In other words, through the training evaluation, we can rank the
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performance of our models correctly and choose the selected model to make OOS predictions.

4 Cross-Sectional Explanatory Power and Predictor Contribution

Next, we discuss the overall explanatory power of our models. We construct a separate sample to test

the model structures cross-sectionally. We demonstrate the average rank of variable importance across

the two types of modeling architectures, i.e., the neuron networks and the tree models. We connect the

predictor contribution to the good performance of our models in the cross-sectional OOS evaluation

and further discuss the new insights about EMH based on the variable contributions.

4.1 Cross-Sectional Explanatory Power of the Models

We conduct cross-sectional (CS) tests to examine whether our models can capture the overall return

state changes. To do this, we split the CRSP-COMPUSTAT universe into two subsamples including

odd number months and even number months in the spirit of Fama and French (2018). We use odd

number months as our training sample and make CS OOS tests with even number months where the

observations are new to the models. This setup for the IS training and the OOS testing enables us

to directly look at the overall explanatory performance of our models across the entire coverage of

CRSP-COMPUSTAT universe from 1963 to 2019.

Figures 12 and 13 show the CS OOS performance with economic metrics calculated based on

the testing set of our CS sample split, i.e., the even number months that the models have never seen

during the IS training process with the odd number months. The performance in CS OSS tests are

similar to what we observed in the TS OOS tests. First, our classification based long-short portfolios

systematically outperform the market portfolio. Second, we observe the similar increasing trend of

performance as we adjust the complexity of the models. Third, the best performing models in terms

of the CS OOS economic metrics match the best performing models in TS OOS tests. We see that

the single layer neuron network with 128 neurons, ANN1 128, perform the best among the neuron

networks and GBM8 100 and DART8 100 perform the best among the tree models.

We also include a table of overall accuracy of the classification. We can see in Table 11 that our

model prediction accuracy levels are still higher than the no information accuracy in CS OOS predic-

tions. This means that our models overall obtained information about the OOS return transitions based

on looking at the IS observations. In other words, our models can explain the relative performance of

stock in a traditional cross-sectional setup to the degree of accuracy that are statistically meaningful.

4.2 Variable Importance across Models

With the good IS and OOS performance demonstrated through both the TS setup and the CS setup,

we further look into the predictor contributions measured as variable importance across models and

discuss what are the driving predictors that leads to superior performance of our models across the
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different setups. We summarize the variable importance with the average values, including the rank

of the contribution to each individual models. We separately demonstrate the variable importance for

the neuron networks and the tree models, since the models have structural differences in dealing with

categorical inputs. We discuss the variable importance of the CS training models presented in Table

12 and include the variable importance of the TS training models in the appendix.

Unlike what is documented by Gu et al. (2020) or Chen et al. (2020), the top contributor in

both the neuron networks and the tree models is the idiosyncratic volatility. The monthly average of

the daily bid-ask spread divided by average of daily spread makes the second important contribution

across the modeling architectures. It is worth to mention that the tree models seem highly dependent

on idiosyncratic volatility, bid-ask spread and return volatility, while the contribution made by various

top contributing predictors in neuron networks are more balanced. Beyond the top contributors, across

the modeling architectures, all types of historical information make important contribution. Specif-

ically, we see that other trading related variables and the industry indicators make huge portion of

contribution. At the same time, the historical corporate announcements, such as earning price ratio,

IPO status, convertible debt obligation, firm R&D expenses, change of number of analysts, etc., all

make substantial contribution to our models. Macroeconomic indicators are also among the top 50

contributing predictors.

The fact that the historical information, including return related information, corporate announce-

ments, can contribute to the model predictability is interesting to the understanding of the market

efficiency. The semi-strong form of market efficiency permits the generation of excess profit through

information asymmetry and lowers the bar to focus on the speed of which the public information is

incorporated to the prices. However, the contribution from corporate announcements coupled with the

strong predictability across the setups show that there exists systematic relation between the future

returns and the lagged corporate announcement variables. Considering that some of the variables,

such as R&D are lagged by at least 6 months, the semi-strong form of market efficiency seems ques-

tionable. If the market is efficient in the semi-strong form, it is hard to explain why the corporate

announcements from 6 months ago can still help predict the future return states.

In addition, the weak form of market efficiency states that the historical prices and trends cannot

predict the future returns. Yet, the top ranked contributors to our models are populated with the past

return and trading information. In fact, while the contribution from corporate announcements and the

contribution from the past return information have a ratio of 50% : 50% in the tree models, the past

return information makes more contribution to our neuron network models comparing to the corporate

announcements. This shows that the historical return information are able to help predict the future

return states for the individual stocks and thus questions the weak form of market efficiency.
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5 Conclusion

In this paper, we introduce the machine learning classification methods to the asset pricing literature

and examine market efficiency. Taking the advantage of the relation between classification and the

information theory, we force the models to extract the information about the relation between the

historical information corresponding to the different forms of market efficiency.

We analyze the economic performance of our classification portfolios in terms of OOS return

distribution, SR, CEQ and maximum drawdown. Our classification based portfolios beat the market

systematically in multiple setups. The best models demonstrate surprisingly good performance across

the metrics. We also measure the OOS performance with statistical metrics. We see that the OOS

prediction accuracies match the OOS economic performance of the associated classification portfolios.

We take advantage and utilize the accuracy metric, which is only applicable to classification problems,

as a proxy to study whether the future returns of individual stocks are independent of multiple types

of historical information. We introduce the binomial test to the asset pricing literature and document

the statistical significance of the classification model accuracy against the no information accuracy.

Our findings about the statistical significance has important implications. First, the accuracy in-

dicates that there are meaningful relation between the future return states and the lagged predictors

representing historical information. In other words, the prediction accuracy is statistically meaningful

and the future return states are predictable. This is the first time in the literature that the market ef-

ficiency is examined through the prediction accuracy as the proxy. Second, our classification models

successfully capture the relation between the historical information and the future return states in a

predictive format, indicating that the new information beyond the distribution of the return states has

been generated with our classification models. This demonstrates the possibility that sophisticated

investors can apply complex tools, such as the machine learning classification methods, to generate

new information that is not reflected by the market prices. Specifically, the generation of new infor-

mation about future return states by the sophisticated investors is equivalent to manually introduce the

information asymmetry to the market. The sophisticated investors can take the information advantage

against the other investors and benefit from it in their trading activities.

We also document important findings on the transitions of the return states. The ground truth

return state transitions during the time period of 196301:201912 show uneven levels of uncertainty.

The extreme state related transitions are with substantially higher certainty comparing to the other

transitions. We show that our models learn about this difference of uncertainty and take the advantage

of it. The accuracy by return state transitions and the uneven uncertainty we demonstrate collectively

imply the different levels of market efficiency related to different return state transitions.

In term of the contribution of the predictors, we show that historical information including return

related information, corporate announcements, macroeconomic indicators, etc. all make important

contribution to our models. The fact that the historical information including return information and

corporate announcements being able to make contribution to the predictability challenges the weak
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form of market efficiency and the semi-strong form of market efficiency. Combined with the impli-

cation that the sophasiticated investors may be able to generate new information based on historical

information, we conclude that there is still room for the market efficiency to improve.
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Figure 1 Number of Stocks in CRSP vs Number of Stocks in Our Sample 196301:201912 

Figure 1 presents a comparison of the sample coverage between our data set and the CRSP database. The dashed line represents 

the number of securities included in the CRSP database and the solid line represents the number of stocks included in our sample. 

Note that CRSP is a general security database. It includes securities other than stocks of the public firms. In our sample, we 

include only the stocks listed on NYSE, Amex, and NASDAQ. This figure presents the comparison from January 1963 to 

December 2019. In total, our sample covers distinct 26302 stocks. On average, our sample covers around 4887 stocks for every 

trading month. The detailed summary statistics of the sample coverage can be found in Table 4. 
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Figure 2 Equal Weight Time Series OOS Portfolio Economic Performance 196301:201912 
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Figure 2 (Continues) 

Figure 2 summarizes OOS economic metrics of the classification-based portfolios covering 196301:201912 with the equal-weight 

scheme across different classification models. More specifically, a long portfolio represented by “+” indicates a long position in 

all stocks predicted to be in the return state 10, or the best return state. A short portfolio represented by “X” indicates a long position 

in all stocks predicted to be in the return state 1, or the worst return state. A long-short portfolio represented by “◊” indicates a 

mixed portfolio including a long position in the return of all stocks predicted in the return state 10 and a short position in all stocks 

predicted in the return state 1. In each of the subgraphs, the dashed line indicates the reference performance delivered by the market 

portfolio, i.e. buy-hold strategy applied to the entire market. The OOS performance of the stocks is equal weighted. The allocation 

to the long leg and the short leg in a long-short portfolio is always equal, i.e., having a 50%:50% allocation ratio. All the returns 

are fully risk-adjusted against risk free rate. We measure the plain Sharpe Ratio (SR) as return scaled by standard deviation. We 

follow the literature and adopt 𝛾 = 1 in the calculation for CEQ. The cumulative returns are calculated as the gross returns net of 

the initial investment. Details about the economic metrics are discussed in Section 2.2.1 and the model specifications are presented 

in Table 2.  

The equal weight long-short portfolios based on our classification models systematically outperform the market. As the modeling 

complexity increases, the performance of our models increases. Our equal weight long-short portfolios deliver surprisingly good 

performance in term of controlling left-tail risk while delivering the amazing level of economic performance. Specifically, from 

196301:201912, the best long-short portfolio across the sample period based on our tree model, GBM8 100, deliver a SR of 0.76 

which is comparable to the plain SR of 0.707 achieved by the best portfolio in Gu, Kelly and Xiu (2020) as in their appendix table 

A.9 (their OOS data, or testing sample, covers from 1987:2016 and they have year-by-year rolling model updating). More 

surprisingly, the maximum drawdown associated with the long-short portfolio of GBM8 100 is only at 7.88 %. During the same 

time period, the market portfolio achieves a SR of 0.196 and a maximum drawdown of 27.78 %. 
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Figure 3 Value Weight Time Series OOS Portfolio Economic Performance 196301:201912 
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Figure 3 (Continues) 

Similar to Figure 2, Figure 3.summarizes OOS economic metrics of the classification-based portfolios covering 196301:201912 

with the value-weight scheme across different classification models. In general, the change of weight scheme does not affect the 

OOS performance of our classification portfolios.  

Specifically, a long portfolio represented by “+” indicates a long position in all stocks predicted to be in the return state 10, or the 

best return state. A short portfolio represented by “X” indicates a long position in all stocks predicted to be in the return state 1, or 

the worst return state. A long-short portfolio represented by “◊” indicates a mixed portfolio including a long position in the return 

of all stocks predicted in the return state 10 and a short position in all stocks predicted in the return state 1. In each of the subgraphs, 

the dashed line indicates the reference performance delivered by the market portfolio, i.e. buy-hold strategy applied to the entire 

market. The OOS performance of the stocks is value weighted. The allocation to the long leg and the short leg in a long-short 

portfolio is always equal, i.e., having a 50%:50% allocation ratio. All the returns are fully risk-adjusted against risk free rate. We 

measure the plain SR as return scaled by standard deviation. We follow the literature and adopt 𝛾 = 1 in the calculation for CEQ. 

The cumulative returns are calculated as the gross returns net of the initial investment. Details about the economic metrics are 

discussed in Section 2.2.1 and the model specifications are presented in Table 2.  

Similar to the equal weight version of the OOS tests in economic metrics, the value weight long-short portfolios based on our 

classification models systematically outperform the market. As the modeling complexity increases, the performance of our models 

increases. Our value weight long-short portfolios also deliver good performance in term of controlling left-tail risk while delivering 

the amazing level of economic performance. Specifically, for the OOS period from 196301:201912, our value weight long-short 

portfolios based on our tree models, DART8 100, GBM8 100, GBM6 100, deliver OOS SRs of 0.456, 0.453 and 0.425, comparable 

to the best plain SR of 0.39 achieved by Gu, Kelly and Xiu (2020) as demonstrated in their Table 7. The maximum drawdown of 

the long-short portfolio based on DART8 100 is 12.7 %. During the same time period, the value weight market portfolio achieves 

a SR of 0.21 and a maximum drawdown of 22.6 %. 
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Figure 4 Equal Weight OOS Portfolio Return Distributions 196301:201912 
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Figure 4 (Continues) 

Figure 4 presents the overlaid comparison of the OOS portfolio return distributions across the different allocation strategies based 

on different classification models. The lines in blue, green, red and black represent respectively the OOS return distributions of the 

market portfolio, the equal weight long position in the predicted lowest return state (labeled as “short” in the figure), the equal 

weight long position in the predicted highest return state (labeled as “long” in the figure), and the equal weight long-short position. 

Overall, the gaps between the green lines and the red lines indicate that our models are able to distinguish the worst OOS performing 

stocks and the best OOS performing stocks from each other. Our equal weight long-short portfolios provide overall return 

distributions with a concentration shifted towards the right tails and the variances are significantly reduced. The return distributions 

included in Figure 4 are all from the equal weight portfolios with the similar construction procedure mentioned in Figure 2. 

The best OOS long-short portfolio monthly average return in our test is delivered by our neural network model ANN1 128. The 

long-short portfolio delivers an average of 2.6 % monthly return from 196301:201912. The long-short portfolio based on our tree 

model, GBM8 100, delivers an average monthly return of 2.2 %. During the same period, the market portfolio delivers an average 

monthly return of 1.1 %. 
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Figure 5 Value Weight OOS Portfolio Return Distributions 196301:201912 



49 
 

Figure 5 (Continues) 

Figure 5 presents the return distribution comparison similar to Figure 4 but of value weight portfolios. The lines in blue, green, red 

and black represent respectively the OOS return distributions of the market portfolio, the value weight long position in the predicted 

lowest return state (labeled as “short” in the figure), the value weight long position in the predicted highest return state (labeled as 

“long” in the figure), and the value weight long-short position. Similar to what is presented in Figure 4, the gaps between the green 

lines and the red lines indicate that our models are able to distinguish the worst OOS performing stocks and the best OOS 

performing stocks from each other. Our value weight long-short portfolios also provide overall return distributions with a 

concentration shifted towards the right tails and the variances are significantly reduced. The return distributions included in Figure 

5 are all from the value weight portfolios with the similar construction procedure mentioned in Figure 3. 

For the value weight scheme, the long-short portfolio based on our neural network model ANN3 128 delivers an OOS average 

monthly return of 2 % from 196301:201912, while the market portfolio delivers an average monthly return of 0.9 %. 
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Figure 6 Equal Weight OOS Portfolio Cumulative Returns 196301:201912 
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Figure 6 (Continues) 

Figure 6 shows the cumulative returns of our equal weight portfolios based on different classification models. The lines in blue, 

green, red and black represent respectively the OOS cumulative returns of the market portfolio, the equal weight long position in 

the predicted lowest return state (labeled as “short” in the figure), the equal weight long position in the predicted highest return 

state (labeled as “long” in the figure), and the equal weight long-short position. 

Our equal weight long-short portfolios deliver phenomenal cumulative returns in the OOS test. Comparing to our long-short 

portfolios, the market portfolios is a horizontal line in the subgraphs as the cumulative return delivered by the market over the same 

period is too small. Our Neural Network models, ANN1 128 and ANN1 64, deliver OOS cumulative returns of 1,074,286,800 % 

and 226,665,100% respectively from 196301:201912. Our tree models, GBM8 100 and GBM6 100 deliver OOS cumulative returns 

of 217,691,000 % and 76,811,200 % respectively during the same investment period. During the same period, the market portfolio 

achieves a cumulative return of 72,874%, substantially lower than what is delivered by our tree model DRF4 200 by more than 

20,000 %, while it is clear that DRF4 200 is underfitted. 
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Figure 7 Value Weight OOS Portfolio Cumulative Returns 196301:201912 
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Figure 7 (Continues) 

Figure 7 is the counterpart of Figure 6 for value weight portfolios. The lines in blue, green, red and black represent respectively the 

OOS cumulative returns of the market portfolio, the value weight long position in the predicted lowest return state (labeled as 

“short” in the figure), the value weight long position in the predicted highest return state (labeled as “long” in the figure), and the 

value weight long-short position. 

Our portfolios in value weight also deliver shocking OOS cumulative returns comparing to what the market is capable to achieve. 

Our long-short portfolios based on neural network models, ANN3 128, ANN1 32, ANN2 128 and ANN1 128, achieve OOS 

cumulative returns of 18,368,048 %, 10,980,339 %, 10,182,107 % and 5,210,560 % respectively from 196301:201912. The long-

short portfolios based on our tree models, GBM8 100, DART8 100 and GBM6 100, deliver cumulative returns of 3,940,967 %, 

2,809,332 % and 2,716,935% respectively. During the same period, the value weight market portfolio deliver a cumulative return 

of 27,396 %. 
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Figure 8 Factor Model Tests on Equal Weight OOS Portfolio Returns 196301:201912 
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Figure 8 (Continues) 

Figure 8 demonstrates the factor model tests for the equal weight portfolios. The legends are the same as in Figure 2 and 3 except 

that the orange dashed line stands for 0. We obtain factor data sets from Kenneth French’s data library and Lu Zhang’s website. 

FF3F stands for the Fama French 5 Factor model. MOM stands for the momentum factor. q4 model is the investment CAPM from 

Hou, Xue, Zhang (2015) and q5 model is the update of the q4 model including the expected growth factor (R_EG). Note that we 

do not include Fama French 5 Factor model as we include q4 and we do not include MOM to any of the q-factor models because 

the q-factor models explains MOM. We present the model alphas, the t statistics of the model alphas and the R square of the models 

in the 3 lines of subgraphs. It is obvious that the factor models cannot explain the returns achieved by our long-short portfolios. For 

example, our long-short portfolio based on our neural network model, ANN1 128, has alphas of 2.51 %, 2.62 %, 2.61 % 2.56 % 

respectively against FF3F, FF3F + MOM, q4 and q5. All R squares of the associated models are below 3 %. The explanatory power 

of the factor models on the portfolios seems decreasing as the complexity of our classification models increases. 



56 
 

 

Figure 9 Factor Model Tests on Value Weight OOS Portfolio Returns 196301:201912 
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Figure 9 (Continues) 

Similar to Figure 8, Figure 9 demonstrates the factor model tests for the value weight portfolios. We also present the model alphas, 

the t statistics of the model alphas and the R square of the models in the 3 lines of subgraphs. Again, tt is obvious that the factor 

models cannot explain the returns achieved by our long-short portfolios. Taking our long-short portfolio based on our neural 

network model, ANN1 128, the example again, the portfolio has alphas of 1.82 %, 1.99 % 2.05 %, 1.93 % respectively against 

FF3F, FF3F + MOM, q4 and q5. All R squares of the associated models are below 2 %. The explanatory power of the factor models 

on the portfolios also seems decreasing as the complexity of our classification models increases. 
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Figure 10 Time Series IS Equal Weight Portfolio Performance 196301:199112 
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Figure 10 (Continues) 

Figure 10 presents the economic metrics of the in-sample (IS) performance of the equal weight portfolios based on the fitted 

classification models from 196301:199112. The setup of the figure is the same as in Figure 2. Comparing the OOS performance 

figures (Figure 2-5) to Figure 10, we show the consistency between the IS performance and the OOS performance. The sample 

period from 196301:199112 is used to train the model for OOS evaluation covering 199201:201912. The IS performance of the 

portfolios is similar to the OOS performance but at a magnified level. For example, during the IS period of 196301:199112, the 

long-short portfolio based on GBM8 100 achieves a SR of 1.7869 while the market delivers a SR of 0.2078. The best IS model in 

term of risk-return tradeoff in the period from 196301:199112 is the tree model DART8 100, which delivers a SR of 1.8. 

Combining Figure 11 and earlier figures on OOS performance, the importance of OOS evaluation is clear. 
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Figure 11 Time Series IS Equal Weight Portfolio Performance 199201:201912 
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Figure 11 (Continues) 

Figure 11 demonstrates the IS performance of our portfolios in the complemental time period from 199201:201912. The setup of 

the figure is the same as in Figure 2. The period 199201:201912 is used to train model for OOS evaluation covering 

196301:199112. Similar to what is demonstrated in Figure 10, the IS performance during the period from 199201:201912 is at a 

magnified level. 
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Figure 12 Cross Sectional OOS Equal Weight Portfolio Performance 196302:201912 
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Figure 12 (Continues) 

Figure 12 presents the economic metrics of the equal weight portfolios performance evaluated based on our cross-sectional OOS 

setup. Specifically, we split even number months and odd number months during the sample period of 196301:201912. We train 

our modes based on odd number months and test our models based on even number months. This cross-sectional setup is in the 

spirit of Fama and French (2018). The cross-sectional OOS evaluation further confirms the superior performance our long-short 

portfolios based on classification models. The detailed OOS performance of the cross-sectional equal weight portfolios based on 

the different models mirrors the OOS performance of our equal weight portfolios in the time series test setup as shown in Figure 

2.  
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Figure 13 Cross-sectional OOS Value Weight Portfolio Performance 196302:201912 
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Figure 13 (Continues) 

Figure 13 presents the cross-sectional performance of the portfolios based on our classification models in value weight scheme. 

Similar to Figure 12, the cross-sectional OOS evaluation confirms the superior performance of our long-short portfolios based on 

classification models. The detailed OOS performance of the cross-sectional value weight portfolios based on the different models 

also seems mirroring the OOS performance of our portfolios based on the time series test setup as in Figure 3.  



66 
 

Table 1 Specification of Return State Classes 

Table 1 describes how we classify return into10 return states. We cross-sectionally rank individual stock returns by trading month, 

put them into their corresponding deciles and use the deciles as the classes of return states. For example, if a stock falls into the 

lowest decile in a trading month, we define the true label of the stock as the class of return state 1. A stock in return state 1 means 

that the stock delivers a return that is among the worst performing returns of the trading month. A stock in return state 10 indicates 

that the stock are among the stocks delivering the best performing returns of the trading month. 

 

  

Specification of Modeling Target 

10 Return States  Criteria 

1 Numeric return less than 10 percentile in a month 

2 Numeric return less than 20 percentile but greater than or equal to 10 percentile in a month 

3 Numeric return less than 30 percentile but greater than or equal to 20 percentile in a month 

4 Numeric return less than 40 percentile but greater than or equal to 30 percentile in a month 

5 Numeric return less than 50 percentile but greater than or equal to 40 percentile in a month 

6 Numeric return less than 60 percentile but greater than or equal to 50 percentile in a month 

7 Numeric return less than 70 percentile but greater than or equal to 60 percentile in a month 

8 Numeric return less than 80 percentile but greater than or equal to 70 percentile in a month 

9 Numeric return less than 90 percentile but greater than or equal to 80 percentile in a month 

10 Numeric return greater than or equal to 90 percentile in a month 
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Table 2 Model Specification 

Table 2 presents the description of models we apply in this study. Overall, we include 2 modeling architectures and 22 models. 

Panel A demonstrates the architectural specification for each model. Panel B demonstrates the additional specifications for our 

neural network models. Panel C demonstrates the hyperparameters that we choose based on cross-validation. Section 2.1.3 

discusses the details for each model. Note that we use enum encoding for the categorical variables in our tree models. One-hot-

encoding splits the categorical variables into smaller binary choice questions and marks the associated values as positive 

indicated by 1 and negative indicated by 0. The enum encoding considers the categorical values as nonordinal values. In the tree 

models, different categories will have different leaves. We do not use one-hot-encoding as it is not the native choice of the tree 

models and will introduce sparsity which lowers the information ratio for the tree models. 

Panel A: Architectural Specifications 

Model Architecture Specification 
Structural  

Complexity 

Structural  

Capacity  

 ANN1 128 Neuron Network Multilayer Perceptron 1 Hidden Layer # Neurons = 128 

 ANN1 16 Neuron Network Multilayer Perceptron 1 Hidden Layer # Neurons = 16 

 ANN1 32 Neuron Network Multilayer Perceptron 1 Hidden Layer # Neurons = 32 

 ANN1 64 Neuron Network Multilayer Perceptron 1 Hidden Layer # Neurons = 64 

 ANN2 128 Neuron Network Multilayer Perceptron 2 Hidden Layers # Neurons = {128,64} 

 ANN2 32 Neuron Network Multilayer Perceptron 2 Hidden Layers # Neurons = {32,16} 

 ANN2 64 Neuron Network Multilayer Perceptron 2 Hidden Layers # Neurons = {64,32} 

 ANN3 128 Neuron Network Multilayer Perceptron 3 Hidden Layers # Neurons = {128,64,32} 

 ANN3 64 Neuron Network Multilayer Perceptron 3 Hidden Layers # Neurons = {64,32,16} 

 ANN4 128 Neuron Network Multilayer Perceptron 4 Hidden Layers # Neurons = {128,64,32,16} 

 DART2 100 Tree Boosting Tree Maximum Depth = 2 # Trees = 100 

 DART4 100 Tree Boosting Tree Maximum Depth = 4 # Trees = 100 

 DART6 100 Tree Boosting Tree Maximum Depth = 6 # Trees = 100 

 DART8 100 Tree Boosting Tree Maximum Depth = 8 # Trees = 100 

 DRF2 200 Tree Forest Maximum Depth = 2 # Trees = 200 

 DRF4 200 Tree Forest Maximum Depth = 4 # Trees = 200 

 DRF6 200 Tree Forest Maximum Depth = 6 # Trees = 200 

 DRF8 200 Tree Forest Maximum Depth = 8 # Trees = 200 

 GBM2 100 Tree Boosting Tree Maximum Depth = 2 # Trees = 100 

 GBM4 100 Tree Boosting Tree Maximum Depth = 4 # Trees = 100 

 GBM6 100 Tree Boosting Tree Maximum Depth = 6 # Trees = 100 

 GBM8 100 Tree Boosting Tree Maximum Depth = 8 # Trees = 100 
     

Panel B: ANN Other Specifications 

Hidden  

Layer  

Activation 

Output  

Layer  

Activation 

Categorical  

Variable  

Encoding 

# epochs Loss 

Tanh Softmax One hot encoding 50 Cross Entropy 

 

Panel C: Hyperparameters 

Architecture Model Parameter Candidate 

Neuron Network All L1 Regulation 0.01, 0.001, 0.0001, 0.00001 

Tree All Sample Rate 0.8. 1 

Tree All Predictor Sample Rate 0.8, 1 
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Table 3 Selection of No Information Benchmark Classifier 

Table 3 presents the Tukey’s HSD multiple comparison test with Monte Carlo simulation. The testing samples are generated with 

the sample covering 199201:201912. Classifier 1 is the random classifier that assigns return states with equal probability. 

Classifier 2 is the random classifier that assigns return states with IS sample probability mass function observed in the sample 

196301:199112. Classifier 3 is the naïve classifier that assigns the most populated IS return state to all OOS observations. 

Classifier 4 is the random classifier that assigns return states with OOS sample probability mass function with equal probability. 

Classifier 5 is the naïve classifier that assigns the most populated OOS returns state to all OOS observations. Note that even with 

minimum information, the naïve classifier which assigns the most populated IS return state to all OOS observations demonstrates 

higher accuracy than random classifier that uses no information. 

  

  Difference Lower 95% CI Upper 95% CI P Value 

2-1 0.00005 -0.00011 0.00022 0.91338 

3-1 0.00038 0.00021 0.00054 0.00000 

4-1 0.00007 -0.00010 0.00024 0.78601 

5-1 0.00060 0.00043 0.00076 0.00000 

3-2 0.00033 0.00016 0.00049 0.00000 

4-3 0.00002 -0.00015 0.00018 0.99857 

5-2 0.00055 0.00038 0.00071 0.00000 

4-3 -0.00031 -0.00047 -0.00014 0.00000 

5-3 0.00022 0.00005 0.00039 0.00286 

5-4 0.00053 0.00036 0.00069 0.00000 
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Table 4 Data Construction Summary Statistics 

Table 4 presents the summary statistics of our data with CRSP database as the reference. Panel A presents number of securities in 

our sample. Panels B and C presents summary statistics and market capitalization in month t-1, respectively. 

Panel A: Number of Securities Summary 

Sample Distinct Total Mean Min Max Filter 

CRSP 33004 6146.905 2069 9366 None 

Our Sample 26302 4886.6754 1997 7929 
No missing return;  

EXCHCD and SHRCD 

      

Panel B: Summary Statistics of Returns 

Sample Mean SD Skewness Kurtosis Filter 

CRSP 0.0102 0.176 20.8963 5165.1519 No missing return 

Our Sample 0.0109 0.1883 20.6107 4785.8618 
No missing return;  

EXCHCD and SHRCD 

      

Panel C: Summary Statistics of Market Capitalization at t-1 

Sample Mean SD Skewness Kurtosis Filter 

CRSP 1601233.289 11003218.89 27.6035 1369.1445 No missing t-1 ME 

Our Sample 1723086.927 11923239.69 26.0793 1202.901 
No missing t-1 ME;  

EXCHCD and SHRCD 
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Table 5 Sample Splits 

Table 5 describes the period we apply for training and testing setup for in-sample (IS) and out-of-sample (OOS). Specifically, we 

form an overall time series OOS test sample covering 196301:201912 based on splitting the time period into two time series 

training periods. We use the time period from 196301:199112 to train models for OOS predictions in the period from 

199201:201912 and we use the time period from 199201:201912 to train models for OOS predictions in the period from 

196301:199112. We combine the OOS predictions for OOS evaluation. In the spirit of Fama and French (2018), we also split the 

data by even number and odd number months for the cross-sectional OOS evaluation. We train our models cross-sectionally with 

odd number months from 196301:201911 and test the OOS predictions with the even number months from 196302:201912.  

Training and Testing Setup IS Training OOS Testing 

Time Series Training 1 196301:199112 199201:201912 

Time Series Training 2 199201:201912 196301:199112 

Time Series Evaluation 
We make OOS predictions on 199201:201912 and 196301:199112 with models trained IS 

covering 196301:199112 and 199201:201912 respectively. 

Cross-sectional Evaluation Odd Number Months 196301:201911 Even Number Months 196302:201912 
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Table 6 Overall Accuracy of Time Series OOS Prediction and Binomial Test 196301:201912 

Table 6 presents the accuracy of each model. The accuracy of a model is the direct evaluation of the correctness of the model 

predictions.  The Kappa statistic measures the level of agreement between the predictions and the actual data and higher Kappa 

statistic indicates better performance. According to Landis and Koch (1977), a Kappa value greater than 0 but less than 0.2 

indicates that the agreement is slight. The confidence interval is associated with the binomial test against the no information 

accuracy chosen based on Table 3. The P values are associated with the hypothesis test on whether the accuracy is different from 

the no information accuracy statistically. We discussed our model specifications and the statistical metrics in Section 2. Table 6 

shows that all of our models are better than the no information accuracy which is calculated under the assumption that the 

historical information is useless in terms of prediction future return states. 

Model Accuracy Kappa 95% Lower Bound 95% Upper Bound No Information Accuracy P Value 

 ANN1 128 0.1476 0.0526 0.1472 0.1480 0.1016 0.0000 

 ANN1 16 0.1443 0.0488 0.1440 0.1447 0.1016 0.0000 

 ANN1 32 0.1486 0.0539 0.1482 0.1490 0.1016 0.0000 

 ANN1 64 0.1458 0.0507 0.1454 0.1461 0.1016 0.0000 

 ANN2 128 0.1464 0.0512 0.1460 0.1468 0.1016 0.0000 

 ANN2 32 0.1480 0.0531 0.1476 0.1484 0.1016 0.0000 

 ANN2 64 0.1476 0.0530 0.1472 0.1480 0.1016 0.0000 

 ANN3 128 0.1461 0.0513 0.1457 0.1465 0.1016 0.0000 

 ANN3 64 0.1489 0.0543 0.1485 0.1493 0.1016 0.0000 

 ANN4 128 0.1509 0.0563 0.1505 0.1513 0.1016 0.0000 

 DART2 100 0.1516 0.0570 0.1512 0.1520 0.1016 0.0000 

 DART4 100 0.1552 0.0610 0.1548 0.1556 0.1016 0.0000 

 DART6 100 0.1563 0.0623 0.1559 0.1567 0.1016 0.0000 

 DART8 100 0.1559 0.0618 0.1555 0.1563 0.1016 0.0000 

 DRF2 200 0.1509 0.0562 0.1505 0.1512 0.1016 0.0000 

 DRF4 200 0.1546 0.0604 0.1542 0.1550 0.1016 0.0000 

 DRF6 200 0.1561 0.0620 0.1557 0.1565 0.1016 0.0000 

 DRF8 200 0.1567 0.0627 0.1563 0.1571 0.1016 0.0000 

 GBM2 100 0.1551 0.0609 0.1548 0.1555 0.1016 0.0000 

 GBM4 100 0.1572 0.0632 0.1568 0.1576 0.1016 0.0000 

 GBM6 100 0.1577 0.0638 0.1573 0.1581 0.1016 0.0000 

 GBM8 100 0.1572 0.0633 0.1568 0.1576 0.1016 0.0000 
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Table 7 Return State Transition Probability and Mean Return 196301:201912 

This table presents the return state transition probability and mean return of the transition from the old to new state. A stock in 

return state 1 means that the stock delivers a return that is among the worst performing returns of the trading month. A stock in 

return state 10 indicates that the stock are among the stocks delivering the best performing returns of the trading month. Note that 

the true return state transition probabilities are not evenly distributed. The extreme return states and the middle return states are 

associated with transition probabilities either substantially greater than 10 % or substantially lower than 10%. These states are 

thus with higher certainty in the process of state transition. More specifically, return state 3, return state 4 and return state 9 seem 

the most uncertain states. The return state 1 and return state 10 seem the most certain states. The return states are defined in Table 

1. 

Panel A: True Return State Transition Probability Matrix 196301:201912 

 New 1 New 2 New 3 New 4 New 5 New 6 New 7 New 8 New 9 New 10 

Old 1 0.1741 0.1063 0.0816 0.0686 0.0665 0.0660 0.0719 0.0817 0.1052 0.1782 

Old 2 0.1137 0.1073 0.0963 0.0891 0.0879 0.0875 0.0918 0.0993 0.1090 0.1180 

Old 3  0.0859 0.0987 0.0997 0.1011 0.1007 0.1033 0.1050 0.1054 0.1059 0.0944 

Old 4 0.0713 0.0899 0.1007 0.1073 0.1127 0.1134 0.1122 0.1092 0.1014 0.0817 

Old 5 0.0696 0.0860 0.0992 0.1094 0.1128 0.1203 0.1167 0.1098 0.0981 0.0779 

Old 6 0.0690 0.0868 0.1002 0.1084 0.1138 0.1177 0.1186 0.1116 0.0970 0.0768 

Old 7 0.0675 0.0897 0.1025 0.1083 0.1134 0.1163 0.1164 0.1121 0.0980 0.0758 

Old 8 0.0753 0.0973 0.1054 0.1067 0.1102 0.1123 0.1092 0.1058 0.0984 0.0794 

Old 9 0.0958 0.1103 0.1061 0.1023 0.0976 0.0974 0.0971 0.1009 0.0999 0.0927 

Old 10 0.1742 0.1236 0.0966 0.0825 0.0752 0.0736 0.0743 0.0802 0.0912 0.1284 

           

Panel B: Return State Transition Mean Return 196301:201912 

 New 1 New 2 New 3 New 4 New 5 New 6 New 7 New 8 New 9 New 10 

Old 1 -0.2744 -0.1217 -0.0750 -0.0413 -0.0130 0.0114 0.0394 0.0759 0.1350 0.4003 

Old 2 -0.2424 -0.1177 -0.0716 -0.0394 -0.0127 0.0127 0.0404 0.0751 0.1292 0.3169 

Old 3 -0.2316 -0.1139 -0.0691 -0.0370 -0.0121 0.0126 0.0388 0.0719 0.1243 0.2961 

Old 4 -0.2254 -0.1105 -0.0661 -0.0357 -0.0108 0.0119 0.0375 0.0683 0.1193 0.2871 

Old 5 -0.2229 -0.1078 -0.0624 -0.0332 -0.0099 0.0120 0.0357 0.0663 0.1174 0.2940 

Old 6 -0.2185 -0.1055 -0.0614 -0.0328 -0.0094 0.0127 0.0358 0.0660 0.1165 0.2959 

Old 7 -0.2123 -0.1041 -0.0623 -0.0340 -0.0103 0.0114 0.0348 0.0646 0.1128 0.2830 

Old 8 -0.2097 -0.1048 -0.0627 -0.0350 -0.0110 0.0113 0.0370 0.0668 0.1168 0.2884 

Old 9 -0.2120 -0.1076 -0.0664 -0.0374 -0.0125 0.0113 0.0375 0.0690 0.1207 0.2983 

Old 10 -0.2321 -0.1137 -0.0707 -0.0406 -0.0135 0.0115 0.0378 0.0714 0.1276 0.3506 
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Table 8 Time Series OOS Prediction Mean Accuracy across Models by Return State Transition 196301:201912 

Table 8 presents our OOS modeling prediction average accuracies of return state transitions from the old states to the new states 

across models. Specifically, we calculate the OOS prediction accuracies of each classification model and form a percentage 

accuracy table similar to the table below. We then average the numbers across all the models. A stock in return state 1 means that 

the stock delivers a return that is among the worst performing returns of the trading month. A stock in return state 10 indicates 

that the stock are among the stocks delivering the best performing returns of the trading month. Details of the return state 

definition can be found in Table 1. 

Combining what is demonstrated in Table 7, Table 8 shows that our models benefit significantly from the most certain return 

states, i.e., return states 1 and 10. Our models almost give up the most uncertain states, i.e. return states 3, 4, and 9.  

 New 1 New 2 New 3 New 4 New 5 New 6 New 7 New 8 New 9 New 10 

Old 1 0.5002 0.0334 0.0109 0.0065 0.0246 0.0478 0.0552 0.0521 0.0845 0.4183 

Old 2 0.4666 0.0844 0.0246 0.0165 0.0603 0.1290 0.1272 0.1163 0.1318 0.2401 

Old 3 0.4102 0.1014 0.0301 0.0225 0.0885 0.2083 0.1754 0.1266 0.1182 0.1697 

Old 4 0.3834 0.0962 0.0328 0.0262 0.1085 0.2523 0.1997 0.1334 0.0934 0.1474 

Old 5 0.3964 0.0914 0.0311 0.0296 0.1107 0.2675 0.2048 0.1264 0.0804 0.1416 

Old 6 0.3961 0.0918 0.0344 0.0296 0.1178 0.2718 0.1997 0.1253 0.0773 0.1413 

Old 7 0.3850 0.1001 0.0393 0.0298 0.1179 0.2651 0.1988 0.1306 0.0745 0.1324 

Old 8 0.4026 0.1133 0.0450 0.0324 0.1105 0.2419 0.1816 0.1303 0.0794 0.1347 

Old 9 0.4634 0.1443 0.0486 0.0335 0.0945 0.1895 0.1322 0.1261 0.0830 0.1398 

Old 10 0.7122 0.1223 0.0388 0.0215 0.0532 0.0836 0.0628 0.0716 0.0620 0.1141 
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Table 9 OOS Prediction By-Class Accuracy 196301:201912 

This table summarizes the key statistical metrics that measures the performance of our classification models in the OOS 

predictions covering 196301:201912 by class for the two modeling architectures separately. Our models splits the big question of 

what is the return state of a stock in the next time period as smaller binary choice questions as describe in Section 2. Specifically, 

our models ask whether an observation will be in return state 1 or not, whether the observation will be in return state 2 or not, 

whether the observation will be in return state 3 or not and so on. In short, our models break down the multiclass classification 

problem into smaller binary classification problems. The evaluation of the accuracy with the statistical metrics by each return 

state can thus help us understand the modeling performance for each return state. For more details, section 2.2.2 discusses the 

details of the statistical metrics. Table 1 defines the return states. Table 2 describes model specification. 

In the table below, prevalence is the percentage of the associated return state in the population. Sensitivity measures the 

proportion of correctly predicted positives, while specificity measures the proportion correctly predicted negatives. Sensitivity is 

also called recall. As an example, for the first line of return state 1, a positive means a prediction of 1 and a negative means a 

prediction of 0, where the prediction of 1 indicates that the return of the stock in the next period will be in return state 1 and the 

prediction of 0 indicates that the return of the stock in the next period will not be in return state 1. Precision measures the 

proportion of correct positives over the sum of correct positives and incorrect negatives. F1 is the balanced F score which is 

calculated as the harmonic mean of precision and recall. Balanced accuracy is the average of the accuracy between the prediction 

of positives and the prediction of negatives. In general, greater values in the metrics of sensitivity, specificity, precision, F1 and 

balanced accuracy indicate better performance. 

Panel A presents the by-class metrics in term of average across the neural network models and Panel B presents the by-class 

metrics in term of average across the tree models. The two panels confirm our findings that our models perform well in return 

states with high certainty and almost give up the return states with high uncertainty. The balanced accuracy column also shows 

that our predictions balance the prediction between the positives and negatives. 

 

Panel A: OOS Prediction Average of By-Class Metrics across ANN Models 196301:201912 

Return State Prevalence Sensitivity Specificity Precision F1 Balanced Accuracy 

1 0.0996 0.4103 0.8382 0.2199 0.2847 0.6243 

2 0.0996 0.0849 0.9344 0.1260 0.0940 0.5097 

3 0.0988 0.0619 0.9447 0.1109 0.0695 0.5033 

4 0.0984 0.0435 0.9636 0.1143 0.0586 0.5035 

5 0.0991 0.1252 0.9048 0.1250 0.1196 0.5150 

6 0.1008 0.1411 0.8964 0.1316 0.1306 0.5188 

7 0.1013 0.1845 0.8637 0.1315 0.1444 0.5241 

8 0.1016 0.1080 0.9121 0.1222 0.1075 0.5101 

9 0.1004 0.1089 0.9108 0.1203 0.1052 0.5098 

10 0.1003 0.2040 0.8838 0.1649 0.1793 0.5439 

       

Panel B: OOS Prediction Average of By-Class Metrics across Tree Models 196301:201912 

Return State Prevalence Sensitivity Specificity Precision F1 Balanced Accuracy 

1 0.0996 0.5459 0.7697 0.2088 0.3012 0.6578 

2 0.0996 0.1101 0.9147 0.1248 0.1159 0.5124 

3 0.0988 0.0111 0.9910 0.1198 0.0191 0.5011 

4 0.0984 0.0110 0.9908 0.1136 0.0193 0.5009 

5 0.0991 0.0674 0.9506 0.1300 0.0880 0.5090 

6 0.1008 0.2670 0.8297 0.1496 0.1904 0.5483 

7 0.1013 0.1439 0.8958 0.1348 0.1375 0.5199 

8 0.1016 0.1238 0.8988 0.1217 0.1218 0.5113 

9 0.1004 0.0728 0.9443 0.1273 0.0886 0.5086 

10 0.1003 0.1970 0.8758 0.1503 0.1701 0.5364 
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Table 10 Time Series IS Training Accuracy and Binomial Test 

Table 10 presents the overall accuracy of the predictions on IS training set across model specifications for the time period from 

196301:201912. The table setup is the same as Table 6. Panel A shows overall accuracy of training set across models for 

199201:201912. Panel B shows the same information for 199201:201912. 

Panel A: Overall Accuracy of Training Set Across Models 196301:199112 

Model Accuracy Kappa 95% Lower Bound 95% Upper Bound No Information Accuracy P Value 

 ANN1 128 0.1641 0.0708 0.1635 0.1647 0.1031 0.0000 

 ANN1 16 0.1617 0.0675 0.1611 0.1622 0.1031 0.0000 

 ANN1 32 0.1709 0.0788 0.1703 0.1715 0.1031 0.0000 

 ANN1 64 0.1702 0.0777 0.1696 0.1708 0.1031 0.0000 

 ANN2 128 0.1737 0.0811 0.1731 0.1743 0.1031 0.0000 

 ANN2 32 0.1722 0.0794 0.1716 0.1728 0.1031 0.0000 

 ANN2 64 0.1742 0.0824 0.1736 0.1748 0.1031 0.0000 

 ANN3 128 0.1722 0.0800 0.1716 0.1728 0.1031 0.0000 

 ANN3 64 0.1763 0.0848 0.1757 0.1769 0.1031 0.0000 

 ANN4 128 0.1735 0.0817 0.1729 0.1741 0.1031 0.0000 

 DART2 100 0.1527 0.0578 0.1522 0.1533 0.1031 0.0000 

 DART4 100 0.1669 0.0738 0.1663 0.1675 0.1031 0.0000 

 DART6 100 0.1841 0.0929 0.1834 0.1847 0.1031 0.0000 

 DART8 100 0.2109 0.1228 0.2102 0.2116 0.1031 0.0000 

 DRF2 200 0.1540 0.0591 0.1534 0.1546 0.1031 0.0000 

 DRF4 200 0.1631 0.0693 0.1625 0.1637 0.1031 0.0000 

 DRF6 200 0.1741 0.0817 0.1735 0.1747 0.1031 0.0000 

 DRF8 200 0.1920 0.1017 0.1914 0.1927 0.1031 0.0000 

 GBM2 100 0.1598 0.0658 0.1592 0.1604 0.1031 0.0000 

 GBM4 100 0.1740 0.0816 0.1734 0.1746 0.1031 0.0000 

 GBM6 100 0.1945 0.1046 0.1939 0.1951 0.1031 0.0000 

 GBM8 100 0.2316 0.1459 0.2309 0.2323 0.1031 0.0000 
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Table 10 (Continues) 

Panel B: Overall Accuracy of Training Set Across Models 199201:201912 

Model Accuracy Kappa 95% Lower Bound 95% Upper Bound No Information Accuracy P Value 

 ANN1 128 0.1613 0.0681 0.1608 0.1619 0.1006 0.0000 

 ANN1 16 0.1662 0.0734 0.1657 0.1668 0.1006 0.0000 

 ANN1 32 0.1685 0.0760 0.1679 0.1690 0.1006 0.0000 

 ANN1 64 0.1674 0.0748 0.1668 0.1679 0.1006 0.0000 

 ANN2 128 0.1652 0.0722 0.1646 0.1657 0.1006 0.0000 

 ANN2 32 0.1685 0.0760 0.1680 0.1691 0.1006 0.0000 

 ANN2 64 0.1698 0.0775 0.1693 0.1704 0.1006 0.0000 

 ANN3 128 0.1660 0.0732 0.1654 0.1665 0.1006 0.0000 

 ANN3 64 0.1701 0.0778 0.1696 0.1707 0.1006 0.0000 

 ANN4 128 0.1577 0.0640 0.1572 0.1583 0.1006 0.0000 

 DART2 100 0.1582 0.0645 0.1577 0.1587 0.1006 0.0000 

 DART4 100 0.1659 0.0731 0.1654 0.1664 0.1006 0.0000 

 DART6 100 0.1795 0.0882 0.1790 0.1801 0.1006 0.0000 

 DART8 100 0.2051 0.1167 0.2045 0.2057 0.1006 0.0000 

 DRF2 200 0.1589 0.0652 0.1584 0.1594 0.1006 0.0000 

 DRF4 200 0.1625 0.0692 0.1619 0.1630 0.1006 0.0000 

 DRF6 200 0.1692 0.0767 0.1687 0.1698 0.1006 0.0000 

 DRF8 200 0.1836 0.0927 0.1830 0.1842 0.1006 0.0000 

 GBM2 100 0.1619 0.0686 0.1614 0.1625 0.1006 0.0000 

 GBM4 100 0.1714 0.0792 0.1708 0.1719 0.1006 0.0000 

 GBM6 100 0.1895 0.0994 0.1890 0.1901 0.1006 0.0000 

 GBM8 100 0.2255 0.1393 0.2249 0.2261 0.1006 0.0000 
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Table 11 Cross-Sectional OOS Test Accuracy with Even Number Months 196302:201912 

This table presents the overall accuracy of the OOS predictions with even number months across model specifications for our 

cross-sectional evaluation. The sample split is demonstrated in Table 5 and the table setup is the same as Table 6. We confirm 

that our models are superior in cross-sectional OOS evaluation than the no information accuracy implied by the efficient market 

hypothesis. 

Model Accuracy Kappa 95% Lower Bound 95% Upper Bound No Information Accuracy P Value 

ANN1 128 0.1476 0.0529 0.1470 0.1481 0.1019 0.0000 

ANN1 16 0.1503 0.0559 0.1497 0.1508 0.1019 0.0000 

ANN1 32 0.1499 0.0556 0.1494 0.1505 0.1019 0.0000 

ANN1 64 0.1543 0.0600 0.1538 0.1548 0.1019 0.0000 

ANN2 128 0.1507 0.0566 0.1501 0.1512 0.1019 0.0000 

ANN2 32 0.1491 0.0544 0.1485 0.1496 0.1019 0.0000 

ANN2 64 0.1539 0.0600 0.1534 0.1545 0.1019 0.0000 

ANN3 128 0.1544 0.0602 0.1539 0.1549 0.1019 0.0000 

ANN3 64 0.1535 0.0593 0.1530 0.1540 0.1019 0.0000 

ANN4 128 0.1516 0.0577 0.1511 0.1522 0.1019 0.0000 

DART2 100 0.1545 0.0605 0.1540 0.1551 0.1019 0.0000 

DART4 100 0.1579 0.0642 0.1574 0.1585 0.1019 0.0000 

DART6 100 0.1601 0.0666 0.1595 0.1606 0.1019 0.0000 

DART8 100 0.1608 0.0674 0.1602 0.1614 0.1019 0.0000 

DRF2 200 0.1558 0.0616 0.1552 0.1563 0.1019 0.0000 

DRF4 200 0.1577 0.0637 0.1571 0.1582 0.1019 0.0000 

DRF6 200 0.1594 0.0656 0.1588 0.1599 0.1019 0.0000 

DRF8 200 0.1598 0.0661 0.1592 0.1603 0.1019 0.0000 

GBM2 100 0.1582 0.0644 0.1577 0.1588 0.1019 0.0000 

GBM4 100 0.1600 0.0664 0.1595 0.1606 0.1019 0.0000 

GBM6 100 0.1609 0.0674 0.1603 0.1614 0.1019 0.0000 

GBM8 100 0.1614 0.0680 0.1608 0.1619 0.1019 0.0000 
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Table 12 CS Training Model Average Variable Importance 

Table 12 presents the variable importance of the cross-sectional models based on the training process covering 196301:201911. 

The variable importance is calculated as the total sum of squared error that the associated variable is able to reduce during the 

model training process. The sample splits is defined in Table 5. To demonstrate the information in a concise way, we average 

across the models for the 2 main modeling architectures, ANN and trees, separately as demonstrated respectively in Panel A and 

B. Specifically, the trading related variables such as lagged idiosyncratic volatility play a part in our models. However, corporate 

announcement variables such as IPO history in the past 12 months, earning-price ratio, dividend-price ratio and other public 

information such as number of analysts and SIC classification all play important roles in our models. In addition, historical macro 

variables make marginal contribution to our models. Note that the suffix number indicates a specific category of the associated 

indicator variable. For example, ipo.0 stands for the no ipo indicator and sich.-1 stands for the indicator of no SIC information. 

Because of the difference in encoding the categorical variables (indicators) in our neural network models vs our tree models, our 

two architectures handle indicator variables differently. 

Panel A: Top 50 Average Variable Importance Across Cross Sectional ANN Training Models 

Importance Variable Relative Importance Scaled Importance Percentage Rank 

1 idiovol 0.9968 0.9968 0.0184 1.1 

2 baspread 0.7669 0.7669 0.0137 3.3 

3 sich2.60 0.7549 0.7549 0.0136 3.5 

4 retvol 0.6986 0.6986 0.0125 3.8 

5 ipo.0 0.6538 0.6538 0.0115 4.5 

6 ipo.1 0.4564 0.4564 0.0078 8.9 

7 label10.0 0.4035 0.4035 0.0071 10.3 

8 label10.9 0.3975 0.3975 0.0069 11.6 

9 zerotrade 0.3773 0.3773 0.0068 13.5 

10 sin.0 0.4056 0.4056 0.007 14.5 

11 mom12m 0.3634 0.3634 0.0064 15.2 

12 sich2.49 0.372 0.372 0.0067 16.1 

13 mom1m 0.3564 0.3564 0.0063 16.5 

14 dolvol 0.363 0.363 0.0063 17.6 

15 sich2.10 0.3539 0.3539 0.0063 18.1 

16 mom6m 0.3252 0.3252 0.0057 20.2 

17 beta 0.3298 0.3298 0.0059 21.1 

18 sich2.-1 0.3138 0.3138 0.0055 21.3 

19 securedind.1 0.3244 0.3244 0.0055 23.6 

20 securedind.0 0.3103 0.3103 0.0053 27.9 

21 convind.0 0.3086 0.3086 0.0053 28.6 

22 dp 0.3107 0.3107 0.0055 28.8 

23 rd.1 0.2967 0.2967 0.0051 29.6 

24 label10.8 0.3003 0.3003 0.005 31.6 

25 label10.1 0.2789 0.2789 0.0048 34.1 

26 label10.2 0.2847 0.2847 0.0048 34.1 

27 rd.-1 0.2788 0.2788 0.0048 35.3 

28 label10.7 0.273 0.273 0.0047 35.7 

29 divi.-1 0.2818 0.2818 0.0048 36.1 

30 divi.0 0.2839 0.2839 0.0049 36.4 

31 age 0.2551 0.2551 0.0045 37.1 

32 sich2.56 0.2515 0.2515 0.0045 37.1 

33 sich2.28 0.2713 0.2713 0.0046 37.2 

34 turn 0.261 0.261 0.0045 37.4 

35 divo.0 0.2844 0.2844 0.0049 37.6 

36 convind.1 0.2764 0.2764 0.0047 37.7 

37 label10.4 0.2692 0.2692 0.0046 38.4 

38 label10.6 0.2679 0.2679 0.0046 38.5 

39 label10.3 0.2682 0.2682 0.0046 38.9 
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Panel A: Top 50 Average Variable Importance Across Cross Sectional ANN Training Models (Continues) 

Importance Variable Relative Importance Scaled Importance Percentage Rank 

40 divo.-1 0.2683 0.2683 0.0046 40.2 

41 rd.0 0.2688 0.2688 0.0046 41 

42 invest.y 0.2508 0.2508 0.0043 42.7 

43 sich2.63 0.2359 0.2359 0.0041 42.9 

44 sich2.13 0.2292 0.2292 0.004 51 

45 dy 0.2186 0.2186 0.0039 51.2 

46 sich2.20 0.2172 0.2172 0.0038 51.6 

47 securedind.-1 0.2367 0.2367 0.0041 52.7 

48 ppicmm 0.215 0.215 0.0037 53.5 

49 std_turn 0.2073 0.2073 0.0037 55 

50 label10.5 0.2397 0.2397 0.0041 55.6 
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Table 12 (Continues) 

Panel B: Top 50 Average Variable Importance Across Cross Sectional Tree Training Models 

Importance Variable Relative Importance Scaled Importance Percentage Rank 

1 idiovol 252020.6634 0.9522 0.3287 1.3333 

2 baspread 111399.6761 0.5508 0.1489 1.9167 

3 retvol 98918.6611 0.4642 0.1321 2.9167 

4 maxret 19223.0792 0.1236 0.0234 6.4167 

5 mom6m 14410.1369 0.0873 0.0183 6.5833 

6 label10 16302.6913 0.1241 0.0221 6.75 

7 mom12m 15108.8604 0.0783 0.0193 7 

8 sich2 25173.3684 0.1675 0.039 7.25 

9 mom1m 15667.66 0.0752 0.0196 7.5 

10 ep 9464.183 0.0616 0.0119 11 

11 roaq 6032.3019 0.0377 0.0078 14.9091 

12 dy 8893.5185 0.055 0.0105 16.0833 

13 betasq 9981.4297 0.0667 0.0118 19.4545 

14 beta 6456.432 0.0424 0.0078 21.6364 

15 turn 3273.5324 0.0167 0.0037 21.6667 

16 zerotrade 2721.8782 0.0105 0.003 23.0833 

17 dolvol 5352.8563 0.0335 0.0065 25.9091 

18 ill 4037.6283 0.0224 0.0046 27.6364 

19 nanalyst 2547.2677 0.0147 0.0031 28.0909 

20 label10.0 2044.8495 0.004 0.0017 32.25 

21 ill_hi_minus_low 2156.603 0.0074 0.0025 32.4167 

22 nonborres 1580.9666 0.0059 0.0019 32.75 

23 roeq 5354.326 0.0376 0.0067 35.6364 

24 std_turn 1618.6375 0.0077 0.0018 37.5 

25 dp 1464.5543 0.006 0.0017 38.1667 

26 sich2_ret 1707.6039 0.0057 0.0018 40.25 

27 bm.x 1923.647 0.0103 0.0022 41.0909 

28 fgr5yr_hi_minus_low 1434.709 0.0053 0.0016 41.8333 

29 fgr5yr 1980.004 0.012 0.0025 42.6667 

30 ddurrg3m086sbea 1412.1605 0.0048 0.0016 45.6667 

31 roavol 8958.6767 0.0642 0.0111 47 

32 agr 1188.3276 0.0048 0.0013 49.0909 

33 ndmanemp 1114.8946 0.0044 0.0014 49.2727 

34 chcsho 1119.6585 0.0046 0.0014 50.4545 

35 chmom 1746.2888 0.009 0.002 51.4545 

36 turn_hi_minus_low 1065.2049 0.0037 0.0012 55.5 

37 roic 4237.5983 0.0303 0.0053 59.4545 

38 bm.y 1311.4077 0.0055 0.0015 60.7273 

39 cusr0000sas 997.8378 0.0047 0.0011 61.8333 

40 bm_hi_minus_low 980.8402 0.0036 0.0011 64.8182 

41 chcsho_hi_minus_low 844.7581 0.0031 9.00E-04 65.75 

42 age 7391.9657 0.0557 0.0094 68.0909 

43 invest.x 978.3864 0.004 0.001 68.2727 

44 ms_hi_minus_low 903.585 0.0034 0.001 68.3636 

45 pchgm_pchsale_hi_minus_low 841.0044 0.0032 9.00E-04 70.1667 

46 realestate_hi_minus_low 672.6382 0.0029 8.00E-04 70.5833 

47 nanalyst_hi_minus_low 901.2761 0.0037 0.0011 70.8182 

48 dolvol_hi_minus_low 950.7877 0.0034 0.001 76.4545 

49 sfe_hi_minus_low 969.5795 0.0034 0.0011 76.6364 

50 exszusx 1110.7301 0.0042 0.0013 76.9091 
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Appendix   

Table A.1 Firm Characteristics 

This table presents characteristics we reconstructed based on Green, Hand and Zhang (2017). 

Name Description Min Max Mean Median Skewness Kurtosis 

acc Working capital accruals -1.02 0.58 -0.02 -0.02 -0.88 4.81 

aeavol 
Abnormal earnings  

announcement volume 
-1.00 21.69 0.87 0.30 3.64 18.51 

age 
# years since first  

Compustat coverage 
1.00 56.00 12.72 9.00 1.36 1.55 

agr Asset growth -0.68 5.85 0.15 0.08 4.26 30.02 

baspread Bid-ask spread 0.00 0.91 0.05 0.03 5.15 38.11 

beta Beta -0.74 3.94 1.08 1.01 0.69 0.69 

bm Book-to-market -2.35 7.81 0.77 0.60 2.48 11.46 

cash Cash holdings 0.00 0.98 0.16 0.07 1.89 3.15 

cashdebt Cash flow to debt -7.71 2.23 0.07 0.13 -4.14 25.99 

cashpr Cash productivity -520.62 600.28 -1.90 -0.73 0.89 29.15 

cfp Cash flow to price ratio -513.56 156.76 0.05 0.05 -172.20 57390.53 

cfp_ia 
Industry-adjusted cash flow to 

price ratio 
-449.37 7031.61 13.09 0.00 21.92 479.82 

chadv Change in dividend -1.59 2.02 0.05 0.03 0.50 8.14 

chatoia 
Industry-adjusted change in asset 

turnover 
-1.43 1.19 0.00 0.00 -0.15 4.74 

chcsho Chane in shares outstanding -0.89 2.57 0.11 0.01 3.28 13.85 

chfeps Change in forecasted EPS -6.48 8.25 0.00 0.00 1.29 121.37 

chinv Change in inventory -0.29 0.37 0.01 0.00 1.10 6.77 

chnanalyst Change in number of analysts -12.00 9.00 -0.01 0.00 -0.60 9.46 

chtx Change in tax expense -0.12 0.16 0.00 0.00 0.35 13.06 

cinvest Corporate investment -26.83 27.87 -0.02 0.00 -2.17 244.24 

currat Current ratio 0.16 60.34 3.16 2.00 5.58 40.35 

depr Depreciation/PP&E 0.01 5.51 0.26 0.15 5.92 49.70 

disp Dispersion in forecasted EPS 0.00 10.00 0.15 0.04 6.48 58.18 

dy Dividend to price 0.00 0.35 0.02 0.00 2.67 10.86 

ear Earnings announcement return -0.46 0.51 0.00 0.00 0.26 3.17 

egr 
Growth in common shareholder 

equity 
-3.54 8.19 0.14 0.08 3.32 28.51 

ep Earnings to price -7.66 0.68 -0.01 0.05 -8.11 107.23 

fgr5yr Forecasted growth in 5-year EPS -43.50 99.41 16.35 14.50 1.50 5.47 

gma Gross profitability -0.84 1.78 0.37 0.33 0.81 1.52 

grcapx Growth in capital expenditures -13.89 55.54 0.89 0.14 5.60 45.95 

grltnoa 
Growth in long term net operating 

assets 
-0.61 1.18 0.09 0.06 1.64 7.48 

herf Industry sales concentration 0.01 1.00 0.08 0.05 3.10 11.91 

hire Employee growth rate -0.74 4.00 0.09 0.02 3.81 24.97 

idiovol Idiosyncratic return volatility 0.01 0.26 0.06 0.06 1.47 2.70 

ill Illiquidity 0.00 0.00 0.00 0.00 14.63 355.90 
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Table A.1 (Continues) 

Name Description Min Max Mean Median Skewness Kurtosis 

indmom Industry momentum -1.00 3.56 0.14 0.12 1.26 5.39 

invest Capital expenditures and inventory -0.52 2.21 0.08 0.04 2.51 12.80 

lev Leverage 0.00 77.75 2.28 0.69 5.47 43.92 

Meanrec Mean number of analysts 1.00 4.50 2.22 2.20 -0.01 -0.32 

mom12m 12-month momentum -1.00 11.60 0.13 0.06 2.89 21.73 

mom1m 1-month momentum -0.70 2.11 0.01 0.00 1.16 7.77 

mom36m 36-month momentum -0.98 16.20 0.33 0.16 3.08 20.08 

ms Financial statement score 0.00 8.00 3.73 4.00 -0.03 -0.72 

mve Size 6.02 18.90 11.77 11.63 0.29 -0.31 

mve_ia Industry-adjusted size 
-

16608.51 
133635.00 

-

158.25 

-

359.12 
9.17 120.31 

nanalyst Number of analysts covering stock 0.00 34.00 5.17 3.00 1.75 2.80 

nincr Number of earnings increases 0.00 8.00 1.00 1.00 2.15 6.35 

orgcap Organizational capital 0.00 0.18 0.01 0.01 2.73 11.60 

pchcapx_ia 
Industry adjusted % change in 

capital expenditures 
-237.42 1640.09 6.50 -0.35 15.17 273.34 

pchcurrat % change in current ration -0.89 6.72 0.06 -0.01 3.82 23.69 

pchdepr % change in depreciation -0.85 7.37 0.10 0.03 4.56 36.69 

pchgm_pchsale 
% change in gross margin - % 

change in sales 
-12.26 4.77 -0.06 0.00 -5.49 54.90 

pchsale_pchinvt 
% change in sales - % change in 

inventory 
-11.61 3.02 -0.06 0.01 -5.85 57.26 

pchsale_pchrect 
% changes in sales - % change in 

A/R 
-7.93 3.11 -0.04 0.00 -2.90 24.02 

pchsale_pchxsga 
% change in sales - % change in 

SG&A 
-3.50 4.34 0.02 0.00 3.42 31.72 

pctacc Percent accruals -64.75 71.43 -0.65 -0.27 -1.90 34.80 

pricedelay Price delay -15.85 15.52 0.14 0.06 0.09 39.90 

ps Financial statement score 0.00 8.00 4.18 4.00 0.03 -0.55 

rd_mve R&D to market capitalization 0.00 2.23 0.06 0.03 5.12 48.03 

rd_sale R&D to sales 0.00 283.48 0.61 0.03 23.58 733.49 

retvol Return volatility 0.00 0.27 0.03 0.02 2.42 8.82 

roaq Return on assets -0.48 0.16 0.00 0.01 -3.40 16.22 

roavol Earnings volatility 0.00 0.85 0.03 0.01 5.31 41.10 

roe Return on equity -7.05 8.80 0.03 0.10 -2.56 35.80 

roeq Quarterly return on equity  -2.22 1.66 0.00 0.02 -2.80 29.85 

roic Return on invested capital -21.24 1.01 -0.08 0.07 -10.40 149.98 

rsup Revenue surprise -4.51 2.33 0.02 0.01 -3.83 64.41 

salecash Sales to cash 0.00 2503.48 52.60 10.60 7.68 73.99 

saleinv Sales to inventory 0.29 1031.22 25.91 7.59 6.96 62.95 

salerec Sales to receivables 0.00 594.00 11.68 5.94 5.25 31.16 

sfe Scaled earnings forecast -36.23 1.09 -0.06 0.04 -14.77 296.41 

sgr Sales growth -0.91 8.50 0.18 0.09 5.68 49.16 

sp Sales to price 0.00 54.59 2.32 1.10 4.51 29.91 
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Table A.1 (Continues) 

Name Description Min Max Mean Median Skewness Kurtosis 

spi Industry-adjusted sales to price -0.66 0.19 -0.01 0.00 -5.20 40.89 

std_dolvol 
Volatility of liquidity (dollar 

trading volume) 
0.18 2.74 0.86 0.79 0.75 0.18 

std_turn 
Volatility of liquidity (share 

turnover) 
0.02 184.01 3.90 1.90 6.07 64.87 

stdcf Cash flow volatility 0.00 1882.88 9.88 0.14 11.94 178.00 

sue Unexpected quarterly earnings -5.20 1.70 0.00 0.00 -13.43 550.18 

tang Debt capacity/firm tangibility 0.04 0.98 0.54 0.55 -0.14 0.99 

tb Tax income to book income -27.70 15.36 -0.10 -0.03 -4.47 66.74 

turn Share turnover 0.00 195.94 1.02 0.52 20.43 1384.13 

zerotrade Zero trading days 0.00 19.95 1.31 0.00 3.03 9.22 
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Table A.2 Macroeconomic Variables 

Table A.2 demonstrates the macroeconomic variables we collect from McCracken’s page on the website of Federal Reserve Bank 

of St. Louis. The variables are transformed following the recommended transformation methods. We excluded New Orders for 

Consumer Goods (ACOGNO), New Orders for Nondefense Capital Goods (ANDENOx) and Trade Weighted USD Index 

(TWEXMMTH) for data availability issues. In the end, we have 125 macroeconomic variables for our sample period from 

196301:201912. 

Name Description Min Max Mean Median Skewness Kurtosis 

AAA 

Moody’s 

Seasoned Aaa  

Corporate Bond 

Yield 

-1.18 1.29 0.00 0.00 -0.26 5.52 

AAAFFM 

Moody’s Aaa 

Corporate Bond  

Minus 

FEDFUNDS 

-6.27 5.73 2.07 2.21 -0.85 1.17 

AMDMNOx 
New Orders for 

Durable Goods 
-0.20 0.21 0.00 0.00 -0.14 3.19 

AMDMUOx 
Unfilled Orders 

for Durable Goods 
-0.03 0.05 0.00 0.00 0.53 1.07 

AWHMAN 

Avg Weekly 

Hours : 

Manufacturing 

37.30 42.40 40.81 40.80 -0.41 0.31 

AWOTMAN 

Avg Weekly 

Overtime Hours :  

Manufacturing 

-0.90 0.80 0.00 0.00 -0.07 6.76 

BAA 

Moody’s 

Seasoned Baa  

Corporate Bond 

Yield 

-1.02 1.57 0.00 0.00 0.55 6.78 

BAAFFM 

Moody’s Baa 

Corporate Bond  

Minus 

FEDFUNDS 

-4.05 8.82 3.10 3.18 -0.49 0.31 

BOGMBASE Monetary Base 0.00 0.06 0.00 0.00 15.95 271.36 

BUSINVx 
Total Business 

Inventories 
-0.02 0.07 0.00 0.00 1.65 22.45 

BUSLOANS 
Commercial and 

Industrial Loans 
0.00 0.00 0.00 0.00 4.21 26.46 

CE16OV 
Civilian 

Employment 
-0.01 0.02 0.00 0.00 -0.08 1.85 

CES0600000007 

Avg Weekly 

Hours : Goods-

Producing 

37.20 41.80 40.32 40.30 -0.28 0.28 

CES0600000008 

Avg Hourly 

Earnings : Goods-

Producing 

0.00 0.00 0.00 0.00 5.03 44.16 

CES1021000001 

All Employees: 

Mining and 

Logging:  

Mining 

-0.19 0.20 0.00 0.00 0.42 54.13 

CES2000000008 

Avg Hourly 

Earnings : 

Construction 

0.00 0.00 0.00 0.00 5.99 56.58 
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Table A.2 (Continues) 

Name Description Min Max Mean Median Skewness Kurtosis 

CES3000000008 

Avg Hourly 

Earnings : 

Manufacturing 

0.00 0.00 0.00 0.00 5.08 36.95 

CLAIMSx Initial Claims -0.22 0.20 0.00 0.00 0.30 2.18 

CLF16OV 
Civilian Labor 

Force 
-0.01 0.01 0.00 0.00 0.11 2.62 

CMRMTSPLx 

Real Manu. and 

Trade Industries 

Sales 

-0.03 0.05 0.00 0.00 0.01 1.22 

COMPAPFFx 

3-Month 

Commercial Paper  

Minus 

FEDFUNDS 

-2.78 2.22 0.07 0.08 -1.18 8.33 

CONSPI 

Nonrevolving 

Consumer Credit  

to Personal 

Income 

-0.01 0.01 0.00 0.00 -0.34 23.21 

CP3Mx 

3-Month AA 

Financial  

Commercial Paper 

Rate 

-6.29 3.03 0.00 0.00 -2.31 42.14 

CPIAPPSL CPI : Apparel 0.00 0.00 0.00 0.00 4.33 24.18 

CPIAUCSL CPI : All Items 0.00 0.00 0.00 0.00 4.01 23.42 

CPIMEDSL 
CPI : Medical 

Care 
0.00 0.00 0.00 0.00 3.01 15.77 

CPITRNSL 
CPI : 

Transportation 
0.00 0.01 0.00 0.00 17.02 358.14 

CPIULFSL 
CPI : All Items 

Less Food 
0.00 0.00 0.00 0.00 4.66 34.63 

CUMFNS 

Capacity 

Utilization: 

Manufacturing 

-3.77 2.22 -0.01 0.03 -0.82 3.76 

CUSR0000SA0L2 
CPI : All items 

less shelter 
0.00 0.00 0.00 0.00 7.95 98.51 

CUSR0000SA0L5 
CPI : All items 

less medical care 
0.00 0.00 0.00 0.00 4.24 26.39 

CUSR0000SAC 
CPI : 

Commodities 
0.00 0.00 0.00 0.00 13.01 233.77 

CUSR0000SAD CPI : Durables 0.00 0.00 0.00 0.00 3.78 16.15 

CUSR0000SAS CPI : Services 0.00 0.00 0.00 0.00 3.74 17.25 

DDURRG3M086SBEA 

Personal Cons. 

Exp: Durable 

goods 

0.00 0.00 0.00 0.00 4.73 31.52 

DMANEMP 
All Employees: 

Durable goods 
-0.05 0.03 0.00 0.00 -1.43 9.48 

DNDGRG3M086SBEA 

Personal Cons. 

Exp: Nondurable 

goods 

0.00 0.00 0.00 0.00 12.96 235.86 

DPCERA3M086SBEA 

Real personal 

consumption 

expenditures 

-0.03 0.02 0.00 0.00 -0.12 2.94 

DSERRG3M086SBEA 
Personal Cons. 

Exp: Services 
0.00 0.00 0.00 0.00 2.37 6.50 
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Table A.2 (Continues) 

Name Description Min Max Mean Median Skewness Kurtosis 

DTCOLNVHFNM 

Consumer Motor 

Vehicle Loans 

Outstanding 

0.00 0.03 0.00 0.00 9.94 121.28 

DTCTHFNM 

Total Consumer 

Loans and  

Leases 

Outstanding 

0.00 0.06 0.00 0.00 19.57 405.68 

EXCAUSx 

Canada / U.S. 

Foreign Exchange 

Rate 

-0.06 0.11 0.00 0.00 0.52 8.22 

EXJPUSx 

Japan / U.S. 

Foreign Exchange 

Rate 

-0.11 0.08 0.00 0.00 -0.51 1.80 

EXSZUSx 

Switzerland / U.S. 

Foreign Exchange 

Rate 

-0.09 0.12 0.00 0.00 -0.13 1.60 

EXUSUKx 

U.S. / U.K. 

Foreign Exchange 

Rate 

-0.11 0.10 0.00 0.00 -0.46 2.81 

FEDFUNDS 
Effective Federal 

Funds Rate 
-6.63 3.06 0.00 0.01 -2.39 47.47 

GS1 
1-Year Treasury 

Rate 
-3.91 1.90 0.00 0.00 -1.51 18.10 

GS10 
10-Year Treasury 

Rate 
-1.76 1.61 0.00 0.00 -0.43 5.94 

GS5 
5-Year Treasury 

Rate 
-2.03 1.86 0.00 0.00 -0.41 6.68 

HOUST 

Housing Starts:  

Total New 

Privately Owned 

6.17 7.82 7.22 7.29 -0.98 1.00 

HOUSTMW 
Housing Starts, 

Midwest 
4.08 6.38 5.55 5.66 -0.89 0.29 

HOUSTNE 
Housing Starts, 

Northeast 
3.58 5.98 5.04 5.04 -0.34 -0.11 

HOUSTS 
Housing Starts, 

South 
5.44 7.08 6.42 6.44 -0.57 0.36 

HOUSTW 
Housing Starts, 

West 
4.37 6.47 5.78 5.84 -0.93 0.62 

HWI 

Help-Wanted 

Index for United 

States 

-633.00 880.00 6.94 6.00 0.07 1.93 

HWIURATIO 

Ratio of Help 

Wanted/No. 

Unemployed 

-0.17 0.11 0.00 0.00 -0.42 1.70 

INDPRO IP Index -0.04 0.03 0.00 0.00 -0.99 5.11 

INVEST 

Securities in Bank 

Credit at  

All Commercial 

Banks 

0.00 0.00 0.00 0.00 5.73 57.39 

IPB51222S 
IP: Residential 

Utilities 
-0.13 0.14 0.00 0.00 -0.22 1.54 
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Table A.2 (Continues) 

Name Description Min Max Mean Median Skewness Kurtosis 

IPBUSEQ 
IP: Business 

Equipment 
-0.08 0.05 0.00 0.00 -1.01 5.36 

IPCONGD 
IP: Consumer 

Goods 
-0.03 0.04 0.00 0.00 -0.02 1.85 

IPDCONGD 
IP: Durable 

Consumer Goods 
-0.11 0.13 0.00 0.00 0.02 6.60 

IPDMAT 
IP: Durable 

Materials 
-0.06 0.05 0.00 0.00 -0.82 3.84 

IPFINAL 
IP: Final Products 

(Market Group) 
-0.03 0.03 0.00 0.00 -0.32 1.90 

IPFPNSS 

IP: Final Products 

and Nonindustrial 

Supplies 

-0.03 0.03 0.00 0.00 -0.48 2.31 

IPFUELS IP: Fuels -0.10 0.15 0.00 0.00 0.65 7.12 

IPMANSICS 
IP: Manufacturing 

(SIC) 
-0.05 0.03 0.00 0.00 -0.91 4.25 

IPMAT IP: Materials -0.07 0.03 0.00 0.00 -1.29 7.60 

IPNCONGD 
IP: Nondurable 

Consumer Goods 
-0.02 0.02 0.00 0.00 -0.08 0.38 

IPNMAT 
IP: Nondurable 

Materials 
-0.08 0.05 0.00 0.00 -1.40 11.05 

ISRATIOx 

Total Business: 

Inventories to 

Sales Ratio 

-0.06 0.11 0.00 0.00 0.46 3.86 

M1SL M1 Money Stock 0.00 0.00 0.00 0.00 10.33 128.42 

M2REAL 
Real M2 Money 

Stock 
-0.02 0.03 0.00 0.00 0.73 3.58 

M2SL M2 Money Stock 0.00 0.00 0.00 0.00 5.65 50.69 

MANEMP 
All Employees: 

Manufacturing 
-0.03 0.02 0.00 0.00 -1.47 6.60 

MZMSL 
MZM Money 

Stock 
0.00 0.01 0.00 0.00 19.28 420.20 

NDMANEMP 
All Employees: 

Nondurable goods 
-0.02 0.01 0.00 0.00 -1.12 4.60 

NONBORRES 

Reserves Of 

Depository 

Institutions 

-195.01 170.56 -0.66 -0.35 -3.28 152.65 

NONREVSL 

Total 

Nonrevolving 

Credit 

0.00 0.01 0.00 0.00 16.19 281.62 

OILPRICEx 
Crude Oil, spliced 

WTI and Cushing 
0.00 0.73 0.01 0.00 19.83 456.21 

PAYEMS 
All Employees: 

Total nonfarm 
-0.01 0.01 0.00 0.00 -0.48 2.68 

PCEPI 

Personal Cons. 

Expend.: Chain 

Index 

0.00 0.00 0.00 0.00 3.09 11.28 
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Table A.2 (Continues) 

Name Description Min Max Mean Median Skewness Kurtosis 

PERMIT 

New Private 

Housing Permits 

(SAAR) 

6.24 7.79 7.18 7.21 -0.75 0.43 

PERMITMW 

New Private 

Housing Permits,  

Midwest (SAAR) 

4.34 6.23 5.50 5.60 -0.78 -0.02 

PERMITNE 

New Private 

Housing Permits,  

Northeast (SAAR) 

4.06 6.05 5.07 5.08 -0.23 -0.26 

PERMITS 

New Private 

Housing Permits,  

South (SAAR) 

5.37 7.01 6.32 6.36 -0.30 -0.43 

PERMITW 

New Private 

Housing Permits,  

West (SAAR) 

4.57 6.63 5.79 5.85 -0.89 0.57 

PPICMM 
PPI: Metals and 

metal products: 
0.00 0.02 0.00 0.00 5.68 41.97 

REALLN 

Real Estate Loans 

at All Commercial 

Banks 

0.00 0.00 0.00 0.00 8.25 106.81 

RETAILx 
Retail and Food 

Services Sales 
-0.07 0.06 0.00 0.00 -0.30 4.93 

RPI 
Real Personal 

Income 
-0.05 0.04 0.00 0.00 -0.64 22.59 

S_P__indust 

S&P’s Common 

Stock Price Index:  

Industrials 

-0.22 0.11 0.01 0.01 -1.00 4.03 

S_P_500 

S&P’s Common 

Stock Price Index:  

Composite 

-0.23 0.11 0.01 0.01 -1.02 4.23 

S_P_div_yield 

S&P’s Composite 

Common Stock:  

Dividend Yield 

-0.64 0.59 0.00 -0.01 0.60 6.06 

S_P_PE_ratio 

S&P’s Composite 

Common Stock: 

 Price-Earnings 

Ratio 

-0.22 0.24 0.00 0.00 0.07 5.83 

SRVPRD 

All Employees:  

Service-Providing 

Industries 

-0.01 0.01 0.00 0.00 0.06 4.34 

T10YFFM 

10-Year Treasury 

C Minus 

FEDFUNDS 

-6.51 3.85 1.04 1.21 -1.11 2.12 

T1YFFM 

1-Year Treasury C 

Minus 

FEDFUNDS 

-5.00 1.69 0.02 0.13 -2.23 8.91 
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Table A.2 (Continues) 

Name Description Min Max Mean Median Skewness Kurtosis 

T5YFFM 

5-Year Treasury C 

Minus 

FEDFUNDS 

-6.31 3.16 0.70 0.87 -1.35 3.27 

TB3MS 
3-Month Treasury 

Bill 
-4.62 2.61 0.00 0.01 -1.85 28.22 

TB3SMFFM 

3-Month Treasury 

C Minus 

FEDFUNDS 

-5.37 0.68 -0.49 -0.25 -2.56 9.28 

TB6MS 
6-Month Treasury 

Bill 
-4.23 2.17 0.00 0.01 -1.83 23.64 

        

TB6SMFFM 

6-Month Treasury 

C Minus 

FEDFUNDS 

-5.01 1.19 -0.35 -0.13 -2.57 10.00 

TOTRESNS 

Total Reserves of 

Depository 

Institutions 

0.00 1.25 0.00 0.00 18.26 364.58 

UEMP15OV 

Civilians 

Unemployed - 15 

Weeks & Over 

-0.18 0.24 0.00 0.00 0.37 1.27 

UEMP15T26 

Civilians 

Unemployed for 

15-26 Weeks 

-0.36 0.29 0.00 0.00 -0.05 0.92 

UEMP27OV 

Civilians 

Unemployed for  

27 Weeks and 

Over 

-0.21 0.28 0.00 0.00 0.29 1.21 

UEMP5TO14 

Civilians 

Unemployed for 

5-14 Weeks 

-0.22 0.23 0.00 0.00 0.28 1.18 

UEMPLT5 

Civilians 

Unemployed - 

Less Than 5 

Weeks 

-0.22 0.27 0.00 0.00 -0.01 1.34 

UEMPMEAN 

Average Duration 

of  

Unemployment 

(Weeks) 

-2.70 2.50 0.01 0.00 -0.08 2.25 

UMCSENTx 
Consumer 

Sentiment Index 
-14.70 17.30 0.01 0.00 0.01 2.06 

UNRATE 

Civilian 

Unemployment 

Rate 

-0.70 0.90 0.00 0.00 0.52 1.98 

USCONS 
All Employees: 

Construction 
-0.04 0.06 0.00 0.00 0.20 5.92 

USFIRE 

All Employees: 

Financial 

Activities 

-0.01 0.01 0.00 0.00 -0.51 1.20 
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Table A.2 (Continues) 

Name Description Min Max Mean Median Skewness Kurtosis 

USGOOD 

All Employees:  

Goods-Producing 

Industries 

-0.02 0.02 0.00 0.00 -1.26 4.61 

USGOVT 
All Employees: 

Government 
-0.01 0.02 0.00 0.00 0.67 8.38 

USTPU 

All Employees:  

Trade, 

Transportation & 

Utilities 

-0.01 0.01 0.00 0.00 -0.43 1.33 

USTRADE 
All Employees: 

Retail Trade 
-0.01 0.01 0.00 0.00 -0.24 2.71 

USWTRADE 
All Employees: 

Wholesale Trade 
-0.01 0.01 0.00 0.00 -0.57 0.94 

VXOCLSx VXO 8.02 67.15 19.05 17.48 1.96 6.97 

        

W875RX1 

Real personal 

income ex transfer 

receipts 

-0.06 0.04 0.00 0.00 -1.77 32.51 

WPSFD49207 

Producer Price 

Index by 

Commodity:  

Final Demand: 

Finished Goods 

0.00 0.00 0.00 0.00 6.62 61.76 

WPSFD49502 

PPI:  

Final Demand:  

Personal 

Consumption 

Goods  

(Finished 

Consumer Goods) 

0.00 0.00 0.00 0.00 7.10 70.09 

WPSID61 

PPI: 

Intermediate 

Demand by 

Commodity Type:  

Processed Goods 

for Intermediate 

Demand 

0.00 0.00 0.00 0.00 7.84 77.81 

WPSID62 

PPI: 

Intermediate 

Demand by 

Commodity Type:  

Unprocessed 

Goods for 

Intermediate 

Demand 

0.00 0.04 0.00 0.00 7.48 69.10 

 


