Measurement error, validation data, and program evaluation

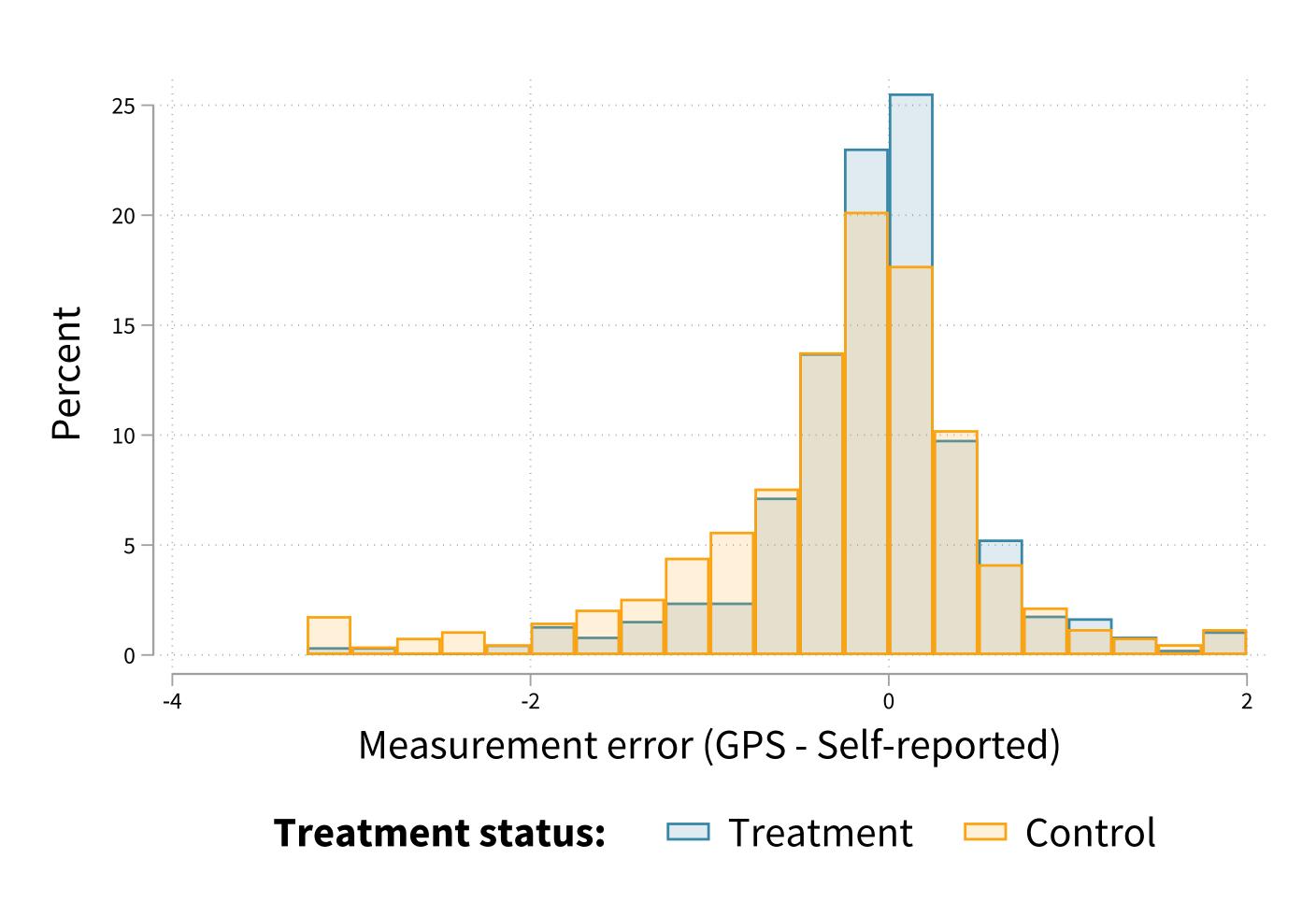
Introduction

- Many outcomes of interest in empirical work are costly to measure objectively
- Self-reported measures from surveys are often used in place of these costly objective measures
- What if self-reported measures exhibit measurement error that is correlated with treatment status in an experiment?

Differential Misreporting

Context: field experiment in Kenya: (Deutschamnn et al. 2019).

Farmers misreport their cultivated acreage compared to GPS measurements, but misreporting is smaller on average among treated farmers.



Joshua W. Deutschmann¹ and Emilia Tjernström²

¹University of Wisconsin-Madison, ²University of Sydney

Econometric setup

Two possible measures of an outcome: (1) Self reported (Y); (2) Objectively measured (Y^*) Goal: Estimate treatment effect $Y^* = \beta_0 + \beta_1 T + \epsilon$ (1)Measurement error could be differential

by treatment status:

 $Y - Y^* = \gamma_0 + \gamma_1 T + \mu$ (2)Estimating (1) with Y would yield a biased estimate of the treatment effect if $\gamma_1 \neq 0$: $Y = (\beta_0 + \gamma_0) + (\beta_1 + \gamma_1)T + (\epsilon + \mu)$ (3)

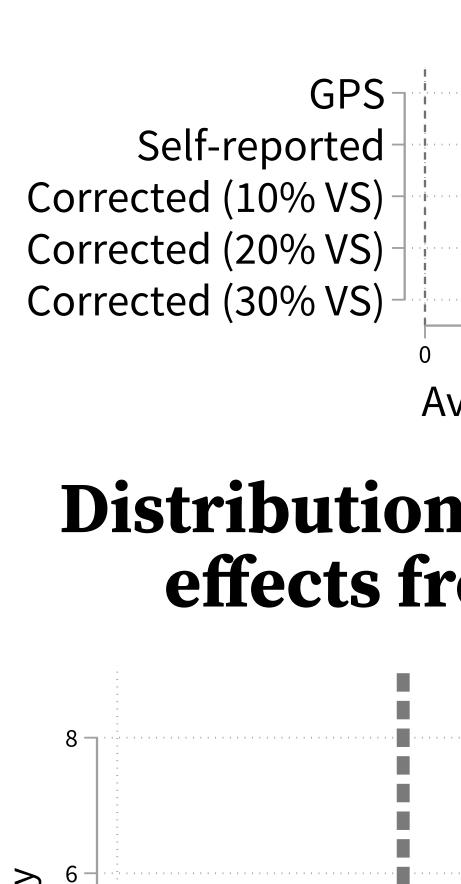
"De-biasing" with validation data

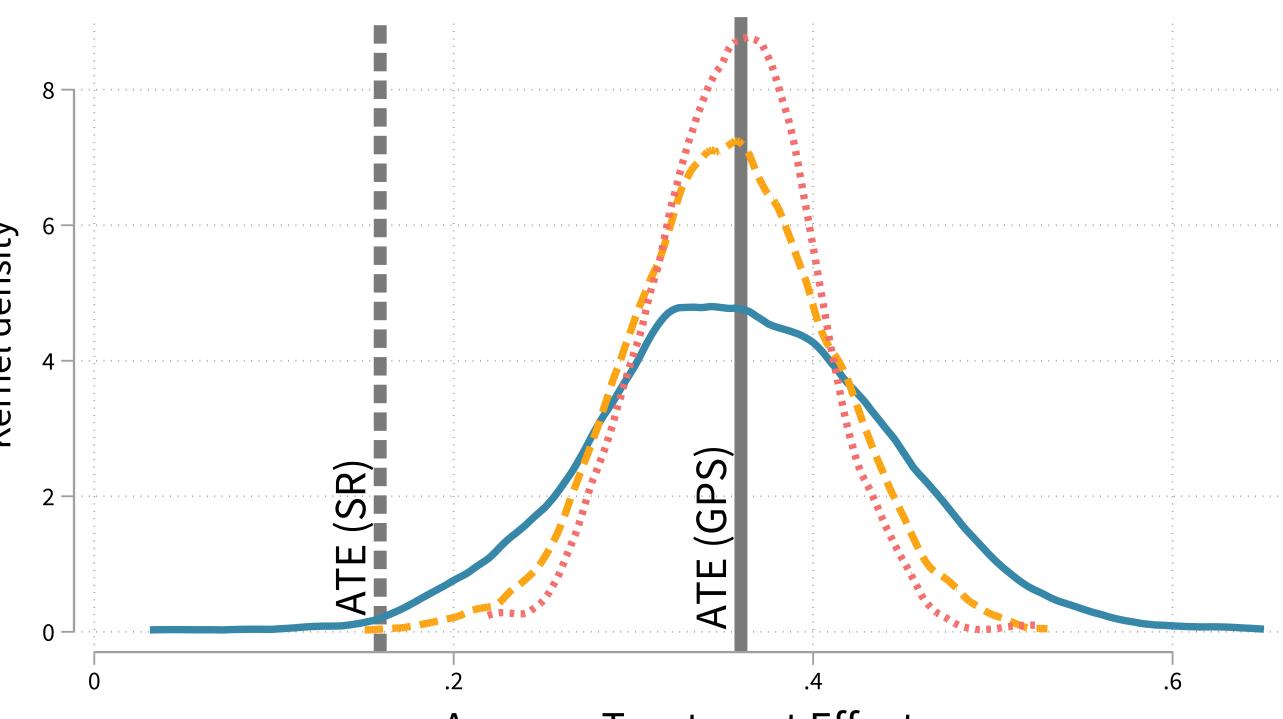
Following Buonaccorsi and Tosteson (1993), Carroll et al (2006):

- In a subset (the validation dataset), collect both self-reported and unbiased estimates of the outcome of interest
- Estimate treatment effect ($\hat{\beta}^v$) and measurement error ($\hat{\gamma}^v$) using validation dataset
- Generate "de-biased" outcome (\hat{Y}^f) in full sample using $\hat{\gamma}^v$
- Re-estimate treatment effect ($\hat{\beta}^{f}$) using "de-biased" outcome
- Form best weighted combination of two estimates using joint covariance matrix and bootstrap

Method demonstration

Treatment effect estimates and mean results from simulated corrections Outcome: log maize output





Validation sample size:

• Demonstrate with fully simulated data • Augment with machine learning tools

Comments Welcome: jdeutschmann@wisc.edu

•.36 • • .16 •.36 •.35 •.36

Average Treatment Effect on Log Maize Output

Distribution of estimated treatment effects from 2000 simulations

Average Treatment Effect

— 10% 30% 20%

Next Steps

Agricultural and Applied Economics

UNIVERSITY OF WISCONSIN-MADISON