
Robots and Firms∗

Michael Koch§

Aarhus University

Ilya Manuylov¶

Aarhus University

Marcel Smolka‖

University of Flensburg

and CESifo

December 21, 2020

Abstract

We study the microeconomic implications of robot adoption using a rich panel data-set of Spanish

manufacturing firms over a 27-year period (1990-2016). We provide causal evidence on two

central questions: (1) Which firm characteristics prompt firms to adopt robots? (2) What

is the impact of robots on adopting firms relative to non-adopting firms? To address these

questions, we look at our data through the lens of recent attempts in the literature to formalize

the implications of robot technology. As for the first question, we establish robust evidence

for positive selection, i.e., ex-ante better performing firms (measured through output and labor

productivity) are more likely to adopt robots. On the other hand, conditional on size, ex-ante

more skill-intensive firms are less likely to do so. As for the second question, we find that robot

adoption generates substantial output gains in the vicinity of 20-25% within four years, reduces

the labor cost share by 5-7%-points, and leads to net job creation at a rate of 10%. These results

are robust to controlling for non-random selection into robot adoption through a difference-in-

differences approach combined with a propensity score reweighting estimator. To further validate

these results, we also offer structural estimates of total factor productivity (TFP) where robot

technology enters the (endogenous) productivity process of firms. The results demonstrate a

positive causal effect of robots on productivity, as well as a complementarity between robots and

exporting in boosting productivity.
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Aarhus V, Denmark; phone: +45 8716 5196; email: imanuylov@econ.au.dk
‖University of Flensburg, Department of International and Institutional Economics, Munketoft 3b, 24937 Flens-

burg, Germany; phone: +49 461 805 2586; email: marcel.smolka@uni-flensburg.de

1



1 Introduction

The rise of robot technology has sparked an intense debate about the economic effects of robot

adoption.1 A key concern in this debate is that robots “steal” jobs from humans. A recent study

by Acemoglu and Restrepo (2020) fuels this concern, finding large negative effects of robots on

employment and wages across U.S. commuting zones. Other important economic variables like

productivity growth, output prices, or even educational attainment are also affected by the rise of

robot technology, as evidenced by Graetz and Michaels (2018) and Dauth et al. (2018). However, a

considerable challenge in the entire literature so far is the lack of micro-level information on actual

robot use. The few existing studies all resort to macro-level information by industry to construct

measures of local or regional robot exposure. While this approach is useful in estimating the aggre-

gate economic effects of robots, it makes the crucial assumption that all firms in a given industry

have the same ability and willingness to adopt robots. It does not take seriously the possibility that

some firms are considerably more likely to adopt robots (and thus positively or negatively selected);

nor does it speak to the potentially important adjustments taking place within those firms, for

example in terms of employment, wages and productivity. A micro-economic (firm-level) analysis

is thus needed, in order to develop a more fine-grained and more far-reaching understanding of the

economic implications of robot adoption (Raj and Seamans, 2018).

In this paper, we offer such an analysis. Our paper is the first attempt in the literature to

investigate ex ante differences in robot adoption across firms, and estimate the microeconomic

effects of robot adoption within firms.2 To do so, we draw upon a unique panel data-set of Spanish

manufacturing firms from the Encuesta Sobre Estrategias Empresariales (ESEE) over a 27-year

period (1990-2016). A key novelty of our paper relative to existing studies is that our data-set

includes explicit information on robot use in the production process of individual firms. Using this

information in our analysis, we are able to sort out selection and treatment effects of robot adoption,

by exploiting the longitudinal nature of our data-set and using state-of-the-art reduced-form as well

as structural econometrics. This allows us to provide the first causal evidence on the following

central questions: (i) Which firm characteristics raise the probability of firms to adopt robots? (ii)

What is the (partial equilibrium) impact of robots on adopting firms relative to non-adopting firms?

Figure 1 constructed from the ESEE data-set provides a first indication that the adoption of

robots is heterogeneous across firms. The left panel demonstrates that those firms that adopted

robots between 1990 and 1998 (“robot adopters”) increased the number of jobs by more than 50%

between 1998 and 2016, while those firms that did not adopt robots (“non-adopters”) reduced the

number of jobs by more than 20% over the same period.3 At the same time, the right panel indicates

1Industrial robots differ from other technologies or capital equipment in that robots are automatically controlled
and capable of doing different tasks (see UNCTAD, 2017, Ch.III p.38). In a broad sense, industrial robots are
defined as “automatically controlled, reprogrammable, multipurpose manipulators, programmable in three or more
axes, which can be either fixed in place or mobile for use in industrial automation applications” (ISO 8373, for details
see https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en accessed on Nov 20, 2020.)

2There is now an emerging literature using firm-level data to study the implications of modern technologies (au-
tomation or robots). We refer to this literature in greater detail below.

3To construct the figure, we balance the sample across the entire sample period from 1990 to 2016 and thus abstract
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that robot adopters were able to reduce their labor cost shares relative to non-adopters between

1998 and 2016. From macro-level information on robot use, as employed in the existing literature,

it is impossible to identify and investigate these striking patterns in the data.

Figure 1: Evolution of firm-level employment and labor cost share (1990-2016)
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Notes: The left and right panel depict, respectively, the evolution of average firm employment (measured by the
number of workers) and the average firm labor cost share (defined as labor costs divided by the total production
value), separately for robot adopters and non-adopters. The sample is balanced on firms from 1990-2016. Robot
adopters are defined as firms that entered the sample in 1990 and had adopted robots by 1998. Non-adopters are
firms that never use robots over the whole sample period.
Source: Authors’ computations based on ESEE data.

To provide a suitable lens through which to interpret our data, we begin our analysis by develop-

ing a theoretical framework of firm-level robot adoption. Following Acemoglu and Restrepo (2018a),

we combine a monopolistic competition framework with a task-based approach in which robots and

labor are perfect substitutes for one another in a specific set of low complexity tasks (“automatable

tasks”).4 To study across-firm differences in the incentives to adopt robots, we augment the model

to allow for firm heterogeneity in terms of productivity, as in Melitz (2003). In its basic form, our

model generates two connected and fundamental insights. First, robot adoption is characterized by

positive selection. This means that firms with higher productivities are more likely to adopt robots.

Secondly, since robots are productivity-enhancing, they raise firm-level output and market shares

of robot adopting firms, and magnify productivity differences between adopters and non-adopters.

While this opens up the possibility for net job creation in high-productivity robot adopting firms, it

also implies that the least productive non-adopters are forced to exit the market, and that surviving

from entry into, and exit from, the sample. Moreover, we only keep those firms in the sample that did not use robots
in 1990, and had either started to use robots by 1998, or never used robots throughout the sample period. The
thus constructed sample consists of almost 100 firms with 675 and 1701 firm-year observations for the group of robot
adopters and the group of non-adopters, respectively.

4There is a striking similarity between modeling automation and offshoring. In the offshoring literature, foreign
labor is assumed to be a perfect substitute for domestic labor in offshorable tasks (e.g. Grossman and Rossi-Hansberg,
2008; Egger et al., 2015). This is also true for Groizard et al. (2014), who consider, as we do, the case of a CES
production technology. Offshoring thus “parallels [the] analysis of machines replacing tasks” (see Acemoglu and Autor,
2011, p.69).
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non-adopters lose market shares and reduce employment. These insights suggest the existence of

two sources of aggregate productivity gains due to robot technology: (1) direct efficiency gains in

those firms that adopt robots; and (2) indirect gains through labor reallocation that benefits those

workers employed in robot adopting firms, while hurting those in non-adopting firms.

In our empirical analysis, we provide evidence broadly in line with this mechanism. We first

focus on the adoption decision and identify which firm characteristics have a causal impact on the

likelihood of robot adoption. We reveal strong evidence for positive selection, i.e., firms that adopt

robots in their production process perform better (in terms of total output and labor productivity)

than non-adopters already before adopting robots. We also establish evidence that, conditional

on size, more skill-intensive firms are less likely to adopt robots. This finding is consistent with a

version of our model featuring two skill types of labor as well as firm heterogeneity in the complexity

of the production process. Intuitively, a more complex production process requires a larger share of

high-skilled workers; since these workers are more difficult to replace, there is a negative relationship

between the skill intensity of the firm and the gains from automation (see also Autor et al., 2003).5

Finally, our data show that exporters are more likely to adopt robots than non-exporters, and

we provide some evidence that this might reflect internal scale economies that can be harvested

by serving foreign markets in addition to the domestic market, motivated from our theoretical

framework.

We then proceed by investigating the output and labor market effects within robot adopting

firms. Since the adoption decision is not random, but instead governed by, among other things, the

firm’s size and skill intensity, this analysis faces a fundamental endogeneity problem. To tackle this

problem and credibly control for non-random selection into robot adoption, we closely follow the

methodology proposed by Guadalupe et al. (2012) and combine a difference-in-differences approach

with a suitable propensity score reweighting estimator. This allows us to establish the following

results. First, we find positive and significant output effects of robot adoption. Our estimates imply

that the adoption of robots in the production process raises output by almost 25% within four years.

Secondly, we find that robots raise firm-level employment by around 10 percent. Importantly, we

find strictly non-negative employment effects across the board for all types of workers, including

low-skilled workers as well as workers employed in the firm’s manufacturing establishments. Finally,

we estimate a significant decline in the labor cost share by almost 7 percentage points following

robot adoption. These results are consistent with our theoretical framework, where robot adopters

reduce their labor cost shares, while the impact on employment is ambiguous and depends on the

relative strength of the displacement effect and the productivity effect of robot adoption.

We also investigate how non-adopting firms, i.e., firms that do not start using robots, are affected

by the rise of robot technology. We reveal significant job losses there. When robot firms generate

half of total industry sales, 10% of jobs in non-adopting firms are lost (relative to a counterfactual

without robots). The same logic applies to changes in output, but the implied magnitude is even

more pronounced. Looking at survival probabilities, we document significantly higher exit rates

5In a similar vein, we find evidence that firms with lower shares of manufacturing and production workers are less
likely to adopt robots, too.
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among non-adopters due to an increase in the industry’s robot density, which is consistent with the

predicted increase in the survival cut-off productivity in our theoretical framework. Importantly,

our results are robust to using different measures of robot density, including the industry-specific

stock of robots from the International Federation of Robotics (IFR).

In a final step of our empirical analysis, we draw upon a structural estimation framework, in

order to estimate the causal effect of robot adoption on the firm’s total factor productivity (TFP).

To do so, we exploit estimation techniques similar to those proposed in De Loecker (2013) and Do-

raszelski and Jaumandreu (2013), who allow for endogenous productivity processes and investigate

the relationship between firm-level productivity and exporting or R&D activities, respectively, and

account for the self-selection of larger firms into these firm-level activities. The main identification

assumption in our set-up is that firms cannot immediately adjust their production process and

adopt robots in case they are hit by a positive demand or productivity shock. Our results indicate

small but positive effects of robots on TFP. Remarkably, our estimates reveal that the productivity

gains from robot adoption only accrue within those firms that are also exporters. As exporters serve

larger markets than non-exporting firms, this is evidence that the scale of operations is a critical

channel through which exporting supports productivity-enhancing innovations within firms.6 We

then use our TFP estimates to compute the productivity evolution in the Spanish manufacturing

sector at large. Garćıa-Santana et al. (2020) have shown that TFP in Spain fell between 1995 and

2007, despite the fact that this was also the longest period in Spain with uninterrupted economic

growth. While our estimates confirm this pattern for our sample, we also document that most of the

decline in productivity in Spanish manufacturing in our sample can be attributed to non-adopters.7

Our paper contributes to a recent literature that investigates the labor market implications of

robot technology. The influential paper by Frey and Osborne (2017) was one of the first to examine

how susceptible jobs are to computerization. They argue that almost 47% of total U.S. employment

can be automated in the nearest future. In their paper, computerization is defined as job automation

by means of computer-controlled equipment. Three recent contributions focus specifically on robot

adoption by using variation across countries and industries employing data from the IFR. Focusing

on the period from 1993 to 2007 and covering 17 different countries, Graetz and Michaels (2018) find

that the growing intensity of robot use accounted for 15% of aggregate economy-wide productivity

growth, contributed to significant growth in wages, and had virtually no aggregate employment

effects. Acemoglu and Restrepo (2020) and Dauth et al. (2018) use a local labor market approach

to estimate the effects of robots on employment, wages, and the composition of jobs. Focusing

on the U.S. between 1990 and 2007, Acemoglu and Restrepo (2020) find that one more robot per

thousand workers reduces the employment to population ratio by about 0.2 percentage points and

wages by 0.37 percent within commuting zones. Looking at Germany between 1994 and 2014, Dauth

6These findings are consistent with Lileeva and Trefler (2010), Aw et al. (2011), and De Loecker (2013). For
example, in Aw et al. (2011), firms can endogenously decide to invest in R&D and start exporting. In their sample,
plants in the Taiwanese electronics industry prove to have stronger incentives to select into both activities rather than
just one of them.

7These findings speak to the misallocation of resources across high- and low-productivity firms to explain the TFP
evolution in Southern Europe (see Gopinath et al., 2017, among others).
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et al. (2018) find no effects on total employment, but identify a substantial shift in the composition

of jobs, away from manufacturing jobs and towards business service jobs. Moreover, they show how

the use of robots increases local labor productivity, but depresses the labor share in total income.

While these studies provide important and novel evidence on robot adoption, using statistics

at the industry level precludes an in-depth analysis within and between firms. In our study, we

document selection based on observable firm characteristics (size, labor productivity, worker char-

acteristics, and exporting) and reveal positive employment and output effects in those firms that

start to use robots, while negative employment (and output) effects arise from lower market shares

for non-adopting firms. Furthermore, we demonstrate that the productivity gains documented in

Graetz and Michaels (2018) or Dauth et al. (2018) might be partly explained by a reallocation of

workers from low-productivity non-adopting firms to high-productivity robot adopters. In other

words, with selection of more productive firms into robot adoption, increased exposure to robots

reduces market shares of non-adopters and forces the least productive firms to exit. This across-firm

reallocation affects aggregate industry productivity and speaks to “enormous and persistent mea-

sured productivity differences across producers, even within narrowly defined industries” (Syverson,

2011, p.326). Taking stock, by using detailed firm-level panel data from Spain for an extensive period

of time, our paper allows to fill an important gap in recent attempts to investigate how automation

affects productivity and labor markets.

Our study is part of a newly emerging literature studying the economic implications of modern

technologies (automation or robots) based on firm-level data. The findings in Acemoglu et al. (2020)

confirm to a large extent results presented in this paper. They find that robot-adopting firms in

France reduce the labor share and the share of production workers while experiencing increases

in value added and productivity. Moreover, the increase in overall employment in robot-adopting

firms comes at the expense of their competitors. Humlum (2019) uses administrative data from

Denmark, linking workers, firms, and robots, to investigate the distributional impact of robots

across occupations. He finds that robot adopters expand output and substitute production workers

with tech workers – such as engineers, researchers, and skilled technicians – and that robots are

responsible for a quarter of the fall in the employment share of production workers since 1990.

While we also detect positive output effects for robot adopters, we do not find such differential

effects of robot adoption across occupations. Bessen et al. (2020) and Kromann and Sørensen

(2020) investigate the implications of automation beyond robotics, by linking firm-level survey

data on automation with other worker and firm characteristics in the Netherlands and Denmark,

respectively.

The remainder of our paper is organized as follows. In Section 2, we describe the ESEE data-set

and provide first descriptive evidence on the use of robots across firms, industries, and time. In

Section 3, we provide a theoretical perspective on firm-level robot adoption that guides us in our

subsequent empirical analysis. In Section 4, we analyze the robot adoption decision of firms, and in

Section 5 we investigate the firm-level effects of robot adoption, especially output and labor market

effects. In Section 6 we offer results from a structural framework to estimate firm-level TFP allowing
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robots to impact the (endogenous) productivity process of firms. Section 7 concludes.

2 Data

Our empirical analysis is based on data collected by the Encuesta Sobre Estrategias Empresariales

(ESEE) and supplied by the SEPI foundation in Madrid. The ESEE is an annual survey covering

around 1,900 Spanish manufacturing firms each year with rich and very detailed information about

firms’ manufacturing processes, costs and prices, technological activities, employment, and so forth.

For the purposes of our research, the key aspect that sets the ESEE data-set apart from other

data-sets is that it contains firm-level information on the use of robots in production. Hence, it

provides a unique opportunity for studying the incentives for, as well as the consequences of, robot

adoption at the firm level. In the following, we provide details on the specific data we exploit in

our analysis and we document novel facts, drawn from out data, about robot diffusion and robot

adoption in Spanish manufacturing.

Our study exploits data across 27 years spanning the years from 1990 to 2016. This is the

complete sample period currently available from the ESEE. It provides a unique opportunity to

investigate the drivers and consequences of profound changes in robot diffusion over roughly the

last three decades. The initial sampling of the data in 1990 had a two-tier structure, combining

exhaustive sampling of firms with more than 200 employees and stratified sampling of firms with

10-200 employees. In the years after 1990, special efforts have been devoted to minimizing the

incidences of panel exit as well as to including new firms through refreshment samples aimed at

preserving a high degree of representativeness for the manufacturing sector at large.8 In total,

our data-set represents an unbalanced sample of some 5,500 different firms. In the data, we can

distinguish between 20 different industries at the 2-digit level of the NACE Rev. 2 classification

and six different size groups defined by the average number of workers employed during the year

(10-20; 21-50; 51-100; 101-200; 201-500; >500); combinations of industries and size groups serve as

stratas in the stratification. We express all value variables in constant 2006 prices using firm-level

price indices derived from the survey data or, where necessary, industry-level price indices derived

from the Spanish Instituto Nacional de Estadistica (INE).

Most importantly for our analysis, we exploit information on whether a firm uses robots in the

production process. The survey asks firms: “State whether the production process uses any of the

following systems: 1. Computer-digital machine tools; 2. Robotics; 3. Computer-assisted design; 4.

Combination of some of the above systems through a central computer (CAM, flexible manufacturing

systems, etc.); 5. Local Area Network (LAN) in manufacturing activity”.9 Based on this question,

8For details see https://www.fundacionsepi.es/investigacion/esee/en/spresentacion.asp (accessed on Nov
20, 2020).

9The original questionnaire is distributed in Spanish. The question in Spanish is: “Indique si el proceso productivo
utiliza cada uno de los siguientes sistemas: 1. Máquinas herramientas de control numérico por ordenador; 2. Robótica;
3. Diseño asistido por ordenador (CAD); 4. Combinación de algunos de los sistemas anteriores mediante ordenador
central (CAM; sistemas flexibles de fabricación, etc.); 5. Red de Área Local (LAN) en actividaded de fabricación”. In
1990, the possible answers were slightly different: “1. CAD/CAM; 2. Robótica; 3. Sistemas flexibles de fabricación;
4. Máquinas herramientas de control numérico”.
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we construct a 0/1 robot indicator variable equal to one if the firm uses robots and zero otherwise.

We also use information on the other systems and generate indicators for CAM, CAD, and FLEX,

respectively (more on this below).10 The robot information is available every four years, starting in

1990. In addition, firms report the use of robots in the year 1991, as well as in the first year they

enter the sample.11 Before describing other variables we use in our empirical analysis, we document

some patterns of robot use across time and industries by using the full sample of firms available in

the data.

2.1 A first look across industries

Figure 2: Evolution of robot diffusion in Spain (1990-2014)
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(b) Employment shares corresponding to robot firms

Notes: The left panel depicts the share of firms using robots in their production process. The right panel depicts
the share of total employment in firms using robots. The solid black lines consider all firms in the sample, while the
dashed gray lines consider, respectively, large firms (those with more than 200 employees) and small firms (those
with up to 200 employees). Both figures are based on the full sample of firms.

Figure 2 depicts the evolution of robot diffusion in the Spanish manufacturing sector over the

period 1990-2014. The left panel shows that, among all firms, just about 6% were using robots in

1990. This share has grown considerably over time, to more than 20% in 2014. The figure also

reveals very significant differences in robot use between small firms (those with up to 200 employees)

and large firms (those with more than 200 employees). For example, in 1990 already around one

third of large firms had adopted robots, while the same number for small firms was less then 5%.

The difference between these shares has grown over time, such that in 2014 about 60% among

large firms use robots vs. almost 20% among small firms. The right panel of the figure shows

the evolution of employment shares corresponding to robot firms. In 2014, more than 40% of all

10CAM, CAD, and FLEX are 0/1 indicator variables equal to one if the firm uses, respectively, computer-digital
machine tools (CAM), computer-assisted design (CAD), and a combination of systems through a central computer
(FLEX). We do not use information on Local Area Network adoption since it is only available from 2002 onwards.

11This means that we have robot information available in 1990, 1991, 1994, 1998, 2002, 2006, 2010, and 2014 for all
firms included in the sample in the respective years. Moreover, we have robot information available in the remaining
years (i.e., 1992, 1993, 1995,...) for those firms that appear in the sample for the first time in the respective years.
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workers were employed in firms using robots, while the same number was more than 70% (35%)

when only considering employment in large (small) firms. Taking stock, robot firms represent a

highly significant part of modern Spanish manufacturing, especially among large businesses.12

Our data also reveal a high degree of heterogeneity in robot diffusion and robot adoption rates

across industries. The left panel of Figure 3 depicts the share of firms in our ESEE data-set using

robots for 20 different industries, separately for the years 1990 and 2014. In 1990, the top-3 robot-

using industries were Ferrous & Non-Ferrous Metals (18%), Machinery & Electrical Equipment

(18%), and Motorized Vehicles (16%). By 2014, this ranking had changed and the top-3 industries

were then Motorized Vehicles (55%), Furniture (32%), and Mineral Products (Non-Metal) (31%).

Thus, we see huge cross-industry differences in the share of firms using robots at a given point in

time, as well as in the adoption rates between 1990 and 2014. Robot adoption at the industry level

occurs with varying pace and magnitude.

Figure 3: Robot diffusion across industries: Comparison of Data Sources
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(b) IFR data

Notes: The left panel shows the share of robot firms by industry using the full sample of firms available in the ESEE
data. The right panel shows the stock of robots using the IFR data set. Black bars show data for 1990 (1993) in the
left (right) panel and gray bars for 2014.

The patterns presented in our ESEE data-set are consistent with alternative data on robots

in Spanish manufacturing industries. Existing papers investigating the impact of robot diffusion

rely mainly on industry statistics offered by the International Federation of Robotics (IFR) (e.g.

Acemoglu and Restrepo, 2020; Dauth et al., 2018; Graetz and Michaels, 2018). In the right panel

of Figure 3 we use data from the IFR and plot the industry-specific stock of robots separately for

the years 1993 (the first year where data on the stock of robots is available in the IFR data) and

2014.13 Comparing the left and right panel of Figure 3 indicates qualitatively similar results for

12Spanish manufacturing is a particularly interesting case to look into due to high robot density relative to other
countries. For instance, Spain had 160 robots per 10,000 employees in 2016, while the world average was 74 robots
according to the International Federation of Robotics. In the same year, Spain was the country with the fourth-largest
operational stock of robots in Europe (behind Germany, Italy and France). Spain was also among the fastest robot
adopters in the 1990s and 2000s, with annual growth rates for the operational stock of robots around 20-30%.

13Table A.1 in online Appendix A.1 describes the concordance between the different industry classifications in the
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the ranking of industries. For example, motorized vehicles, metal products and plastic & rubber

products are listed among the leading industries in 2014 in both data-sets, while graphics design,

textile & wearing apparel and leather & footwear turn out to be industries with the lowest robot

diffusion. Furthermore, Figure A.1 in the online Appendix compares how robot diffusion has evolved

according to both data-sets. Comparing how the share of robot firms in the ESEE data has evolved

relative to the market value or the stock of robots (both available in the IFR data), again reveals

a high degree of similarity.

2.2 Turning towards a firm-level perspective

We now continue by describing in more detail our data-set and the variables we employ in our

empirical analysis. Throughout the next sections we focus on firm characteristics explaining the

adoption of robots and the respective treatment effects. Hence, our focus is on firms switching from

non-robot use to first-time robot use and we therefore restrict our sample to firms that do not use

robots in the first year they appear in our data in sections 4 and 5. Moreover, we drop sample

observations after a firm undergoes a major restructuring due to changes in corporate structure

(e.g. following a merger with another firm). This allows us to eliminate from the analysis situations

connected with huge employment or output changes that are unrelated to robot adoption. In total,

we have 4,446 different firms in the thus restricted sample. 644 (15%) of these firms adopt robots

at some point in time within our sample period (“robot adopters”) and 3,802 (85%) never adopt

robots (“non-adopters”). Furthermore, 397 firms (62%) among robot adopters keep on using robots

throughout, while 177 (27%) report the use of robots for a certain period of time and abandon them

afterwards.14 70 firms (around 10% of robot adopters) switch back and forth several times.15 For

our purposes, it is unclear how to interpret these multiple switches and we therefore drop this last

group of 70 firms from our analysis on the selection and treatment effects in sections 4 and 5.16 In

Table A.2 in the online Appendix we report how the 644 cases of robot adoption are distributed

across time and industries. Not surprisingly, the total number of robot adopters is the highest in

those industries that also turn out to be the industries with the highest density of robot adopters

(see Figure 3). However, robot adoption turns out to be evenly distributed across time for all

industries and is not concentrated in the most recent years of our sample.

In the next step we provide insights whether the switch into robot adoption is associated with

ESEE and the IFR data-sets.
14We have also investigated whether firms that stop using robots are different from firms that use robots continuously,

and which factors could explain the decision to stop using robots. First, we do not find any significant differences
among the two groups of firms. Secondly, it turns out that only the firm’s output predicts the likelihood to stop using
robots to some extent, in the sense that smaller firms are more likely to stop using robots. Details on this can be
found in online Appendix A.8 to this paper.

15Specifically, 54 firms report the use of robots for two distinct periods of time (meaning that they do not use robots
in between), while 16 firms start using robots (and abandon them) several times.

16We have verified that our results are robust to using different samples. In the online Appendix we present
estimation results akin to those presented throughout sections 4 and 5, but derived from two different samples. The
first sample includes all 644 firms that start using robots, even though some of them switch back and forth several
times. The second sample restricts the focus to those 397 firms that start to use robots and continuously report to
use robots in the production process afterwards.
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other variables, specifically investment and innovation activities carried out by those firms. To do

so, we conduct an event study analysis which attempts an exploration of the timing of investment

and innovation associated with the adoption of robots.17 For each robot adopter we define an integer

variable I measuring the difference between the current year t and the year of robot adoption. For

example, for a firm adopting robots in the year 2002, the variable is equal to −2 in 2000, −1 in

2001, 0 in 2002, +1 in 2003, +2 in 2004, and so on. To conduct a simple before-after analysis we

restrict the sample to the 644 robot adopting firms and estimate the following equation:

yit =
4∑

k=−4
γk1(I = k)it + µi + µst + εit, (1)

where yit denotes the dependent variable, the indicator variable 1(I = k)it is equal to one if

I = k for firm i in year t (and zero otherwise), µi and µst denote firm and industry-year fixed

effects, respectively, and εit is the error term.18 For the dependent variable we distinguish between

four different outcomes: (i) the value of the firm’s capital stock (in logs), (ii) investments in

machinery (in percentages of purchases of tangible fixed assets), (iii) the stock of process innovations

in computer programs attached to manufacturing processes, and (iv) the stock of innovations in

terms of organizational methods (external relationships or workforce organization).19 The choice

of the dependent variables is motivated by the fact that one might expect hikes in capital, or even

more specifically, in investments in machinery, in the years just before the adoption of robots.

Furthermore, the decision to adopt robots might also be associated with other types of innovation

activities before and after the adoption, and we therefore choose two indicators that have been used

in previous studies on innovation using the ESEE data-set.20

We then plot the γk coefficients against the values of I to obtain a fine-grained picture of the

changes in investment and innovations before and after the adoption of robots.21 From inspection

of the upper panels in Figure 4 we see that firms indeed have a hike in investment activities, as

the reported γk coefficients turn out to be positive and significant differently from zero before,

but not after, the adoption or robots. Looking at the lower panels, we see that the adoption of

robots is also associated with other types of process innovations, and intuitively, innovations in

labor reorganization after the adoption of robots.

17Our event study analysis largely follows Balasubramanian and Sivadasan (2011).
18Given the time period available in our analysis (1990-2016), we have a small number of observations for relatively

large positive and relatively large negative values of I. We restrict the focus to four years before and four years after
the adoption of robots, as the robot information is available every four years in our data-set. We have verified that
the results are robust to winsorizing I at e.g. −5 on the lower end and at +5 at the upper end.

19The two innovation variables are based on dummy variables indicating whether the firm carried out the respective
activity in a given year.

20For instance, Guadalupe et al. (2012) use the ESEE data-set and investigate how changes in ownership from
domestic to foreign affect the innovation activities of acquired firms. To do so, they employ different measures of
innovation, including the two innovation measures we employ here. Specifically, they focus on the stock of innovations
since the firm entered the sample, since “at any point in time, the firm’s technology can be characterized as the sum
of innovations made up to that point” (cf. Guadalupe et al., 2012, p.3610).

21Note that the inclusion of firm and industry-year fixed effects “controls for age-to-survivor bias by controlling for
industry-specific age trends” (cf. Balasubramanian and Sivadasan, 2011, p.136).
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Our analysis is based on a robot adaption variable that relies on a very generic yes or no question

in the survey. This might raise concerns regarding the usefulness of our measure for adoption. To

address such concerns and to verify that the variable carries significant informational content, we

conduct a placebo event study analysis. We first classify specific firms among the group of non-

adopters as placebo adopters. To do so, we exploit the propensity scores estimated for the treatment

analysis in Section 5, with the aim of replicating the frequency and other firm characteristics of

actual adopters.22 Using the estimated propensity scores, we generate a sample with placebo-

treated firms; for each placebo-treated firm, we define the year in which the estimated propensity

score is largest as the adoption year. We assign the top 5% of non-adopters that are most likely to

adopt robots into the group of robot adopters.23 We then repeat the event study analysis for the

constructed sample of placebo robot adopters. Finding (placebo) effects would cast doubt on our

findings and the variable measuring robot adoption. However, our event study reveals no placebo

effects, whether we look at the firm’s capital stock, investments in machinery, the stock of process

innovations, or the stock of innovations in terms of organizational methods. Within the constructed

sample, the reported γk coefficients are not statistically different from zero (see Figure A.2 in the

online Appendix), indicating no hike in investment or innovation activities around the placebo

treatment.

Lastly, Table A.3 in the online Appendix presents descriptive statistics on the various variables

we employ in our empirical analysis throughout sections 4 and 5. We pool the data across all

years and then sort observations into groups of firms that adopt robots at some point in time and

those that never use robots within our sample period. The table reveals some suggestive differences

between the two types of firms. Robot adopters turn out to be superior firms in many dimensions.

They produce more output, they are more productive, and they employ more workers, even when

focusing on just workers in manufacturing jobs or just low-skilled workers.24 Moreover, while robot

adopters pay a higher average wage, they have a lower average labor cost share than non-adopters.

In addition, robot adopters are more “globalized”, in the sense that they are more likely to export,

import, be in foreign rather than domestic ownership, and assimilate foreign technologies.25 Of

course, these differences may be caused by factors unrelated to the adoption of robots. In the

empirical analysis that follows later on, we will try to sort out which of the differences between

22There, we obtain propensity scores for all firms by running industry-specific probit regressions for robot adoption
(the treatment) on one-year lags of sales, sales growth, labor productivity, labor productivity growth, capital-, skill-
and R&D-intensity, indicators for exporter, importer and foreign ownership, and year dummies.

23This gives us a sample of 123 firms (1,197 firm-year observations) that are classified as placebo robot adopters.
Like actual adoptions, placebo adoptions span across virtually all years and are distributed across all industries, as
in Table A.2 in the online Appendix. We also constructed different samples for which the results are very similar. As
one alternative, we assign the top 10% of non-adopters that are most likely to adopt robots into the group of robot
adopters. As yet another alternative, we made use of different propensity scores.

24As in Guadalupe et al. (2012), we measure labor productivity as value added per worker, where value added is
defined as the sum of sales plus change in inventory, less purchases and costs of goods sold.

25This finding speaks to studies investigating technology upgrading in the global economy. For example, Bustos
(2011) provides evidence that exporters intensify their investments in technology after a trade liberalization process,
while Lileeva and Trefler (2010) document how improved foreign market access prompted plants in Canada to adopt
more advanced technologies.
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Figure 4: Event study analysis: Before-after effects
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Notes: Points on the graph are the γk, k ∈ −4, ..., 4, coefficients in the estimating equation 1. The values of the
dependent variable are normalized to zero in the year the firm adopts robots, so that γ0 = 0. The underlying sample
consists of 644 firms that adopt robots over the sample period. Vertical lines represent 90% confidence intervals.

robot adopters and non-adopters already existed before firms started to adopt robots, and which

are causally associated with robot adoption.26

3 A theoretical perspective on firm-level robot adoption

This section provides a theoretical framework for our empirical analysis on selection into robot

adoption and its treatment effects in the subsequent sections 4 and 5. It draws from recent attempts

in the literature to formalize the implications of robot technology, and serves to reveal the main

economic trade-offs that we can expect to be at play at the firm level. We use our theoretical

framework to derive hypotheses about the decision of firms to adopt robots, as well as about the

implications of robot adoption for output, labor costs and labor demand. In the interest of space

26Table A.4 in the online Appendix provides summary statistics for the full sample that we use in section 6, including
those firms that use robots already in the first year they appear in the sample. We have also looked at these firms
separately. Not surprisingly, these firms turn out to be special. As for the group of robot adopters, these firms turn
out to be superior firms in many dimensions. They produce more output, they are more productive, and they employ
more workers.
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and readability, we confine ourselves to an intuitive discussion in the main text. We support this

discussion with detailed analytical derivations in online Appendix A.6.

3.1 Basic set-up

Consider an industry in which a large number of monopolistically competitive firms (indexed by

ω) produce horizontally differentiated goods facing an iso-elastic demand. As for production, we

follow Acemoglu and Restrepo (2018b) in writing output as a composite of different tasks combined

in a constant elasticity of substitution aggregate. However, we depart from Acemoglu and Restrepo

(2018b) by introducing two types of firm heterogeneity into their framework. Specifically, we allow

firms to differ (i) in terms of their productivity (and thus size), as in Melitz (2003), and (ii) in

the complexity of their tasks (and thus the likelihood of tasks being automated). We index tasks

by i and assume that they can be ordered according to their complexity where a higher index i

reflects higher complexity. The parameter N(ω) governs the set of tasks the firm has to perform.

The two production factors, robots and labor, are perfect substitutes for one another in all tasks,

which highlights an important aspect of automation, namely that machines are used to substitute

for human labor (Acemoglu and Restrepo, 2018a, p.2). We assume that, while human labor has a

comparative advantage in performing more complex tasks than robot capital, effective robot capital

costs for all technologically automatable tasks are strictly below the effective labor costs. Firms

endogenously decide upon the range of tasks performed by robots, but any degree of automation

requires the payment of a fixed cost.

3.2 The robot adoption decision

In a first step, we use our theoretical model to derive predictions on the decision of firms to adopt

robots, which we can confront with our Spanish firm-level data.

3.2.1 Productivity

Firms face a standard trade-off when deciding upon automation. The reduction in variable costs

requires the payment of a fixed cost. Thereby, the profit gain from robot adoption is increasing in a

firm’s baseline productivity, as ex-ante larger and more productive firms serve a larger market and

have a higher incentive to lower their variable production costs, i.e. they are more likely to adopt

robots in production.

3.2.2 Exporting and imports of technology

Suppose firms can choose to serve consumers not only in the domestic but also in the foreign

economy. While the foreign economy is fully symmetric to the domestic economy, exporting requires

the payment of a fixed export cost and per-unit iceberg type transport costs, denoted by F x and τ ,

respectively. As is well-known, the introduction of a fixed export cost generates (sharp) selection of

ex-ante more productive firms into exporting. Hence, we end up with four different cutoffs leading
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to combinations of robot adopters vs. non-adopters and exporters vs. non-exporter. Table A.5

in the online Appendix reveals that, in our data, the share of exporting firms exceeds the share of

robot adopting firms across all industries. We therefore focus on cost and parameter conditions that

guarantee that the least productive firms serve only the domestic market and do not adopt robots,

while more productive firms export and only the most productive exporters find it attractive to

adopt robots. Due to symmetry of the two countries, operating profits of exporting firms are now

scaled by a constant factor 1 + τ−β/(1−β), where β controls the constant elasticity of substitution

1/(1 − β) > 1 between any two varieties. This is similar to Bustos (2011), and we can conclude

that exporters have stronger incentives to adopt robots as the gains from doing so—the reduction

in variable production costs—can be scaled up to a larger customer base in home and foreign.27

Clearly, in an open economy one could think about alternative explanations, different to the

scale effect, why exporters are more likely to adopt robots. One alternative are knowledge spillovers

in an open economy, giving firms easier access to foreign technologies (robots). Such spillovers

could arise among all firms or they could be firm-type specific, for example such that a reduction

in the fixed cost of robot adoption arises only among the group of exporting firms. Yet, another

alternative, is that trade liberalization intensifies competition and therefore increases the pressure of

productivity enhancing investments, a mechanism that finds recent support in Autor et al. (2020).

In the empirical analysis below, we further investigate these alternative mechanism using specific

firm-level information available in our data-set, e.g. information on the assimilation of foreign

technologies.

3.2.3 Complexity of the production process

Since human labor has a comparative advantage in more complex tasks, cost savings from robot

adoption are lower for firms featuring a more complex production process. Unfortunately, in the

ESEE data-set we do not observe tasks or occupations to compute firm-specific measures of task

complexity, e.g. measures for routinness of production as in the offshoring literature (e.g. Levy and

Murnane, 2004; Blinder, 2006). However, we can proxy task complexity by the skill composition

of firms in our empirical analysis. To rationalize this approach, suppose there are two types of

human labor, low-skilled and high-skilled workers, referenced by subscripts l and h, respectively,

and corresponding wages wl and wh. Following Acemoglu and Autor (2011), we assume that high-

skilled workers have a comparative advantage over their low-skilled coworkers in the performance

of more complex tasks. Specifically, we assume that the relative efficiency of high- to low-skilled

labor, γh(i)/γl(i), is strictly increasing in i. In such an environment, firms will not only compare

the production costs of robots and human labor across tasks, but also consider the skill-specific

effective labor costs in each task, i.e., the firm will benchmark wl/γl(i) against wh/γh(i). Given

27Alternatively, we could set costs and parameters such that only the adoption of robots makes firms sufficiently
productive to serve both foreign and domestic customers. Put differently, by ranking firms such that only the
most productive robot adopters find it attractive to start exporting, an improvement in robot technology raises the
probability of exporting. While we do not find any positive and significant impact of robot adoption on exporting (or
the share of export sales), we reveal a complementarity between exporting and robot adoption in Section 6.
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that high-skilled workers have a relative advantage in performing more complex tasks, this results

in a cut-off task at which firms are exactly indifferent between hiring high-skilled and low-skilled

workers for the performance of that task. Comparing two otherwise identical firms that differ only

in the complexity of their production process, we find that the firm with higher N(ω) employs a

higher share of high-skilled workers. Since firms with higher N(ω) are less likely to adopt robots,

we have established a negative link between the skill intensity of firms and their propensity to adopt

robots.28

3.3 The effects of robot adoption

Having discussed the decision of firms to adopt robots, we now focus attention to the effects of

robot adoption, both at the firm and the industry level.

3.3.1 Firm-level effects

First of all, since robots have a comparative advantage in the production of automatable tasks, it

is straightforward that robot adoption raises firm output. Moreover, due to our assumptions on the

task production function in Eq. (A.3), it follows immediately that robot adoption reduces the labor

cost share, as robots substitute human labor in automated tasks. The overall impact of automation

on labor demand within firms is, however, ambiguous. It depends on two opposing effects: on the one

hand, the displacement effect reduces demand for labor since part of the workforce is substituted

by robots. On the other hand, the productivity effect entails that robots raise the efficiency in

production, and thus output and employment. Similar to the offshoring literature (see Grossman

and Rossi-Hansberg, 2008), the productivity gains may be strong enough to outweigh the losses, so

that total firm-level employment increases. Clearly, the strength of the displacement effect depends

on the share of automatable tasks, while the magnitude of the productivity effect depends on the

variable cost savings from robot adoption. A final question is which skills (and thus workers) are

specifically affected by automation. Using the model with two skill types of labor from above, it is

clear that low-skilled workers are more likely to be affected by automation, since they perform the

less complex tasks which are the ones being automated. However, as long as the low-skilled workers

are not fully replaced by robots, the productivity effect is also working in their favor. This is the

case as long as the level of robot technology is below the cut-off task at which firms are indifferent

between employing high- and low-skilled labor.

3.3.2 Industry-level effects

We can use the model to study the industry-level effects of changes in the fixed cost of adopting

robot, which are similar to changes in the level of robot technology that increase the share of

automatable tasks. A decrease in fixed costs, decrease the cut-off productivity that separates robot

28We restrict the focus to two types of skill here, as we cannot distinguish between multiple skills (or occupations)
in our data-set. However, in the online Appendix we discuss how the model can be extended to multiple skills. We
also discuss there how one can allow for a skill bias in robot adoption.
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adopters from non-adopters and thus raise industry-level robot exposure. Similar to Melitz (2003),

this has important implications for the industry equilibrium. As ex-ante more productive firms gain

market shares by reducing marginal costs due to robot adoption, it raises the cut-off productivity

at which firms are able to survive in the market. Put differently, increasing robot exposure at

the industry level prompts the least productive firms to exit, and the surviving non-robot firms to

reduce their output and employment. This mechanism, along with the direct firm-level efficiency

gains due to the use of robots, raises the industry’s aggregate productivity.

4 Which firms adopt robots?

We now turn to our empirical analysis and begin by investigating which firm-specific characteristics

influence the decision to adopt robots. Identifying whether positive selection of more efficient and

larger firms is at work in the data can help in understanding the large and persistent productivity

differences across firms within industries (Syverson, 2011). In fact, if we find evidence for negative

selection in the data, then this would point towards an alternative scenario with a potential catching-

up of low-productivity firms through the use of robot technology.29

Figure 5: Distribution of base year output and productivity for robot adopters vs. non-adopters
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(a) Base year output
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(b) Base year labor productivity

Notes: In the left panel, the dashed red line shows the empirical probability density function of base year output of
firms that do not use robots when they first appear in the sample at time t and will not have adopted robots four
years later, i.e. at time t + 4. The solid blue line shows the same function of base year output of firms that do not
use robots when they first appear in the sample at time t but will have adopted robots four years later (i.e. at time
t + 4). The base year output is given in logs, deflated, and demeaned by industry and year. The right panel shows
the same as the left panel but for labor productivity instead of output. The base year labor productivity is given by
the log of (deflated) value added per worker demeaned by industry and year.

Before analyzing robot adoption more formally, we use our data to provide graphical evidence

on the relationship between firm size/productivity and robot adoption. The left panel of Figure 5

plots the distribution of base year output (deflated and in logs) for robot adopters vs. non-adopters,

i.e., for firms that have adopted robots four years after they first appear in the sample vs. firms that

29One argument implying negative selection is that more efficient firms are larger and thus require a more complex
degree of bureaucracy that can hamper decision making about new technology and skills.
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have not adopted robots. The figure reveals that the distribution of robot adopters (solid blue line)

clearly dominates the distribution of non-adopters (dashed red line). Since we compute our measure

of output relative to the year specific industry mean, differences in firm size across industries are not

driving this observation.30 Moreover, firms using robots already in the base year are not included

in the figure, so the differences that we see are not explained by the effects of adopting robots.

Importantly, we get a similar picture when using base year labor productivity instead of output,

i.e., the productivity distribution of robot adopters clearly dominates the one of non-adopters; see

the right panel of Figure 5.

We now proceed by investigating the adoption decision through the use of regression analysis.

Equation A.5 in online Appendix A.6.1 and the discussion in subsection 3.2.1 reveal that a firm

i adopts robots if the profit gain from doing so exceeds the fixed cost of robot adoption. That is

firms adopt robots if πai − πi ≥ F a and thus Robot∗i = πai − πi − F a. Hence, the binary outcome

of the adoption decision denoted by Roboti can be understood as reflecting a threshold rule for

an underlying latent variable (denoted by an asterisk).31 We also account for the increase in the

supply and quality of robots, as well as the evolution of wages and adoption costs that can change

the incentives to adopt robots over time, by including industry-base-year fixed effects given by µs0.

Under these assumptions, we adopt the following basic empirical framework to describe the decision

of firms to adopt robots:

Robotsi = βφi0 + γFi0 + δGi0 + µs0 + εi, (2)

where the dependent variable is a 0/1 indicator variable for robot use in the production process of

firm i equal to one if the firm adopts robots during our sample period and zero otherwise, and where

we focus on different sets of explanatory variables: (1) a firm-specific size or productivity variable

in the year of sample entry φi0; (2) a vector of factor intensity variables in the year of sample entry

Fi0; and (3) a vector of globalization variables in the year of sample entry Gi0 (with corresponding

parameters to be estimated collected in β, γ, and δ, respectively). Finally, εi is the error term.

The firm’s size (productivity) is measured as the log of firm’s deflated output value (deflated

labor productivity given by the firm’s value added per worker). The factor intensity variables we use

are the firm’s capital intensity, R&D intensity, skill intensity as well as the share of manufacturing

employment and the share of production workers (all in logs). Thereby, as argued in subsection

3.2.3, skill intensity can be used as a proxy for the complexity of the production process which

determines a firm’s likelihood of robot adoption. In addition, we also use different classifications of

workers available in the ESEE data-set. While the data does not allow to distinguish among specific

occupations, firms are asked to report the share of employment in manufacturing plants (as well

as non-manufacturing plants). Secondly, they classify the workforce into production workers and

employees & auxiliaries (e.g. managers, technicians, office workers, salesmen, auxiliaries, cleaners).

30As we demean by industry-year, we also control for the fact that sample entry of robot adopters might be more
likely in years in which all entrants were larger on average.

31Specifically, we have Roboti = 1 (robot adoption) if Robot∗i ≥ 0 and Roboti = 0 (no adoption) if Robot∗i < 0.
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Arguably, we expect firms to install robots in the production process when they have a high share

of manufacturing employment and production workers, which we therefore use as further proxies

for the complexity of the production process. Additionally, we also use the share of temporary

workers, since these workers might be easier to substitute. The globalization variables we use are

0/1 indicator variables for whether the firm is an exporter, an importer, a foreign-owned firm and

if the firm adopts foreign technologies (see the discussion in subsection 3.2.2).32

In Table 1 we present OLS estimates of Eq. (2). Standard errors are robust to arbitrary forms

of heteroskedasticity. In column (1) we use the most parsimonious specification including output

as the only explanatory variable alongside capital and R&D intensity and industry-base-year fixed

effects as control variables. In columns (2) and (3) we augment the specification to include our

proxies for the complexity of the production process and globalization variables, respectively, and

in column (4) we include all variables simultaneously. Finally, throughout columns (5) to (7) we add

labor productivity, average wage and the interest rate as further control variables for the efficiency

of firms and their labor and capital costs, respectively. Adding these controls does little to our

findings. Throughout all columns our estimates provide evidence that larger firms are significantly

more likely to adopt robots. This is in line with our previous observation that the output and labor

productivity distributions of robot adopters dominate those of non-adopters already before first-time

adoption. The average estimated coefficient across all specifications is around +0.04 and implies

that an increase by one standard deviation in the firm’s base year output raises its probability of

subsequently adopting robots by 7 percentage points.

Looking at other selection variables, we find that the skill intensity enters negatively and sig-

nificantly. This finding is consistent with the idea that higher skill requirements in the production

process reduce the scope for economic benefits through robotization. Similarly, the positive and

significant coefficients of the share of manufacturing and production workers reveal higher gains

from robot adoption for firms employing more workers in these activities. The coefficient of the

firm’s export status is positive and significant throughout all specifications. It implies that export-

ing makes firms 3 to 5 percentage points more likely to adopt robots later on (controlling for size,

factor intensities, and other globalization variables). These results provide compelling evidence for a

fundamental complementarity between exporting and robot adoption at the firm level. Those firms

active on international markets through exporting are considerably more likely to adopt advanced

technology in the form of robots.33

32Trade liberalization might also intensify competition and increases the pressure of productivity enhancing invest-
ments (see above). The data does not provide firm-specific measures for import competition. However, as long as
all firms within an industry face the same degree of import competition, this is captured by the industry-base year
controls.

33In an alternative specification we have used information on the number of international markets instead of the
export indicator. Again, we find evidence that firms selling to more markets are more likely to adopt robots. We
also run regressions similar to columns (1) to (4) where we focus on labor productivity as the main selection control
for productivity. What is interesting is that estimated coefficients on globalization variables are larger and of higher
significance when using firm labor productivity instead of output. Since exporting firms serve a larger market than
non-exporting firms, this is evidence that the scale of operations is a critical channel through which globalization
supports robot adoption.
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Table 1: Selection into robot adoption: Cross-sectional specification

Robot adoption (0/1 indicator)
Base year (1) (2) (3) (4) (5) (6) (7)
Output 0.0355*** 0.0401*** 0.0300*** 0.0342*** 0.0378*** 0.0401*** 0.0448***

(0.00520) (0.00589) (0.00604) (0.00660) (0.00705) (0.00733) (0.00966)

Labor productivity -0.0134 -0.0066 0.0139
(0.0116) (0.0123) (0.0181)

Skill intensity -0.323*** -0.326** -0.357*** -0.346*** -0.224
(0.125) (0.130) (0.130) (0.130) (0.148)

Share of manu- 0.238** 0.231* 0.230* 0.231* 0.249*
facturing workers (0.114) (0.120) (0.120) (0.121) (0.137)

Share of production 0.0459* 0.0420* 0.0422* 0.0388 0.0250
workers (0.0237) (0.0245) (0.0247) (0.0249) (0.0319)

Exporter 0.0319** 0.0311* 0.0315* 0.0325** 0.0554***
(0.0158) (0.0163) (0.0163) (0.0164) (0.0211)

Assimilation of foreign 0.0467** 0.0320 0.0290 0.0284 -0.00597
technologies (0.0237) (0.0244) (0.0246) (0.0246) (0.0371)

Importer 0.00494 0.0123 0.00961 0.00767 0.00466
(0.0157) (0.0165) (0.0166) (0.0166) (0.0230)

Foreign owned -0.0292 -0.0332 -0.0388 -0.0385 -0.0628
(0.0292) (0.0298) (0.0301) (0.0303) (0.0425)

Capital intensity 0.0173*** 0.0159** 0.0166** 0.0157** 0.0164** 0.0176** 0.0123
(0.00645) (0.00683) (0.00653) (0.00691) (0.00705) (0.00716) (0.00890)

R&D intensity 0.0173 0.0285 0.00309 0.0157 0.0165 0.0161 -0.0173
(0.0195) (0.0203) (0.0200) (0.0208) (0.0212) (0.0213) (0.0241)

Average wage -0.0337 -0.0878***
(0.0227) (0.0331)

Interest rate 0.0001
(0.0037)

Observations 3551 3374 3440 3268 3230 3213 1504
R-squared 0.152 0.157 0.151 0.154 0.158 0.158 0.205

Notes: The dependent variable in all columns is a 0/1 indicator variable equal to one if the firm adopts robots during
our sample period and zero otherwise. Output is the firm’s deflated output value (in logs). Labor productivity is
the firm’s deflated value added per worker (in logs). Skill intensity is the firm’s share of workers with a five-year
university degree (in logs). Share manufacturing is the firm’s share of manufacturing workers (in logs). Share
production is the firm’s share of production workers (in logs). Exporter is a dummy variable for positive exports.
Assimilation of foreign technologies is a dummy variable indicating whether the firm assimilated foreign technologies.
Importer is a dummy variable for positive imports. Foreign owned is a dummy variable for foreign ownership (equal
to one if the firm is foreign owned by more than 50 percent and zero otherwise). Capital intensity is defined as the
firm’s deflated capital stock per worker (in logs). R&D intensity is defined as the firm’s deflated R&D expenditures
relative to its deflated total sales (in logs). Average wage is defined as the firm’s labor costs divided by the total
number of workers (in logs). Interest rate is defined as the firm’s interest rate on short-term dept (in percent). All
estimates include industry-base-year fixed effects. We add one to all factor intensity variables before taking logs
in order to keep zero observations. Therefore, all estimates include dummy variables (not reported) equal to one
whenever the respective factor intensity variable is equal to zero before adding one. All explanatory variables are
measured in the base year defined as the first year the firm appears in the sample. The sample is restricted to firms
that do not use robots in the first year they appear in the sample. Robust standard errors are given in parentheses.
*,**,*** denote significance at the 10%, 5%, 1% levels, respectively.
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We have verified the econometric robustness of our results by employing a variety of different

estimators and model specifications. Doing full justice to the binary nature of our robot adoption

variable, we estimate a non-linear Probit model; see Table A.6 in online Appendix A.7. Employing a

more flexible model specification and allowing for non-linearity and non-monotonicity in the effects

of output on robot adoption, we find that firms in the top quartile of the output distribution have

the highest probability of adopting robots; see Table A.7 in online Appendix A.7. Extending the

analysis to a panel version of Eq. 2, we find a picture that largely resembles our cross-sectional

estimates; see Table A.8 in online Appendix A.7.34

A different question, unrelated to the econometric robustness of our results, is whether and to

what extent employment protection legislation has a bearing on a firm’s robot adoption decision.

Intuitively, firms might shy away from adopting robots due to high degrees of employment pro-

tection, which makes it difficult or impossible for firms to lay off workers that would otherwise be

replaced by robots. The ESEE data does not provide explicit information on firm-specific employ-

ment protection or bargaining agreements. Such measures are only available at the level of the

industry and are thus controlled for by our industry-year fixed effects. As an inverse measure of

employment protection at the firm level, we therefore use the share of temporary workers reported

by firms. Dolado et al. (2002) document that Spain increased the possibilities for hiring and firing

temporary workers during the 1980s and 1990s resulting in one of the highest shares of temporary

workers in Europe. In our data set the share across industries varies between 9% (in Chemical

& Pharmaceutical Products) and 28% (in Leather & Footwear). We include the share of tempo-

rary workers as an additional firm-level control in our regression analysis, expecting that higher

shares raise the likelihood of robot adoption. However, in none of the specifications is the estimated

coefficient different from zero (in a statistical sense); see Table A.9 in online Appendix A.7.

5 The effects of robot adoption

We now aim to identify the consequences of robot adoption at the firm level. Our focus here is

on the effects on output, as well as on employment, labor costs, and average wages before we turn

towards a structural approach on the TFP gains from robot adoption in section 6.

5.1 Output effects

We first present graphical evidence on the output distribution of robot adopters before and after the

adoption, and benchmark it against changes in the output distribution of non-adopters. Figure 6

provides a first indication that, in contrast to non-adopters, robot adopters were able to significantly

expand the scale of their operations. The left panel makes a before-after comparison among robot

adopters. It reveals that the distribution of output (deflated and in logs) when firms enter the

sample in t (dashed red line) is clearly dominated by the distribution of output four years later

34To allow for time-varying measures of our selection variables, we estimate a panel specification of the form
Robotsit = βφit−1 + γFit−1 + δGit−1 + µst + εit, where the regressors are lagged by one year and µst is an industry-
year fixed effect.
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at t + 4 (solid blue line) when the same firms have adopted robots. The right panel makes the

same comparison for firms that do not adopt robots and reveals almost no differences in the output

distribution.

Figure 6: Before-after comparison of the output distribution for robot adopters
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(b) Non-adopters

Notes: The left panel makes a before-after comparison of the output distribution of robot adopters, i.e., firms that
do not use robots when they first appear in the sample at time t, but will have adopted robots four years later (i.e.
at time t+ 4). The red dashed line and the solid blue line show the empirical probability density function of output
at time t and at time t + 4, respectively. The right panel makes the same comparison for non-adopters, i.e., firms
that do not use robots when they first appear in the sample at time t and will not have adopted robots four years
later (i.e. at time t+ 4). Output is given in logs, deflated, and demeaned by industry.

To identify the effect of robot adoption on firm-level output more formally, we estimate the

following equation:

Outputit = γ1Robotsit + γ2Robotsit−4 + βXit−4 + µi + µst + εit, (3)

where the dependent variable is deflated output of firm i in year t (in logs), Xit−4 is a vector of

time-varying firm-level controls lagged by four years, with a corresponding vector of parameters β

to be estimated, µi and µst are firm and industry-year fixed effects, respectively, and εit is an error

term with zero conditional mean. The parameter µst captures general time trends and industry

shocks affecting firms equally within industries. The parameters of interest in (3) are γ1 and γ2,

both capturing the impact of robot adoption on firm-level output. These parameters indicate the

percentage change in output after firms start using robots in their production process.

By including fixed effects for individual firms, we identify the output effects of robot adoption

only through within-firm variation, i.e., firms switching from non-robot use to robot use over time.

The firm fixed effects control for robot adoption based on time-invariant factors, like the firm’s

baseline productivity φ(ω) in our theoretical framework. To control for robot adoption based on not

just time-invariant but also time-varying firm-level variables, we include labor productivity, capital

intensity, skill intensity, R&D intensity (all in logs), as well as indicator variables for exporting,

importing, and foreign ownership in Xit−4.
35 We also estimate specifications including the four-

35We let the firm-level control variables enter with a four-year lag in order to control for selection into robot adoption
in t − 4 and t. However, we have also used a one-year lag instead of a four-year lag, to find that this does not alter
our estimates in any significant way.
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year forward of our robot indicator variable (Robotsit+4). This allows us to see whether our model

is reasonably successful at controlling for positive selection into robot adoption as identified in the

previous section.

To make further progress in establishing a causal effect of robot adoption on output, we closely

follow the empirical methodology proposed by Guadalupe et al. (2012) and combine the firm fixed

effects approach with a propensity score reweighting estimator in the spirit of DiNardo et al. (1996).

Specifically, we construct propensity scores and reweigh each firm in order to generate a similar dis-

tribution of key observable characteristics across robot adopters and non-adopters. By matching

along observable firm characteristics, we hope to also match the distribution of important unob-

servable characteristics. To estimate the propensity scores, we consider the years 1991, 1994, 1998,

..., 2014 in our panel and sort those firms that adopt robots in that year into the treatment group

and those that never use robots into the control group. We then pool observations in the treatment

and in the control group across all these years and obtain the propensity scores for all firms by

running industry-specific probit regressions for robot adoption (the treatment) on one-year lags of

sales, sales growth, labor productivity, labor productivity growth, capital-, skill- and R&D-intensity,

indicators for exporter, importer and foreign ownership, and year dummies.36 The growth rates of

both labor productivity and sales control for recent performance differences among firms. We then

use the estimated propensity scores and reweigh each treated firm by 1/p̂ and each control firm by

1/(1− p̂), where p̂ is the estimated propensity score.37

Table 2 shows our estimates of Eq. (3). We first estimate the equation with firm fixed effects, but

without selection controls (columns (1) and (2)); we then add time-varying firm-specific variables

as selection controls (columns (3) and (4)); and we finally use the propensity score reweighting

estimator as described above (columns (5) and (6)). We estimate each of the three variants with

and without the four-year forward of the robot indicator variable. Throughout all specifications

employed, we find positive and significant output effects of robot adoption. We also see that, once

we include selection control variables or use the propensity score reweighting estimator to control

for positive selection into robot adoption, the four-year forward of the robot indicator variable is not

significantly different from zero. This makes us confident that, for our purposes, we are modelling

the selection decision reasonably well.38 To get a sense of the magnitude of the effects, consider the

36In the online Appendix, we report estimates using additional selection controls when obtaining propensity scores.
In a first step, we add the value of the firm’s capital stock, investments in machinery and the stock of process
innovations in computer programs attached to manufacturing processes. These variables increase prior to the adoption
of robots as revealed in our event-study analysis in section 2. In a second step, we furthermore add the share of
manufacturing workers as a proxy for the complexity of the production process, see Tables A.15 and A.16.

37We only keep those observations in the analysis that are in the region of common support, and we have checked
that the balancing property is supported by the data in all industries, i.e., all observed characteristics of robot adopters
and non-adopters are balanced. More output corresponding to the propensity score estimation can be found in Table
A.12 in online Appendix A.9.

38If the coefficient of the four-year forward robot indicator is significantly different from zero, then there are some
anticipatory effects and the pre-treatment is affected by current treatment. That is, firms anticipate robot adoption in
the future and start to adjust accordingly. Furthermore, if the coefficient is significantly different from zero, then the
robot adoption effect in the current period can not be interpreted as causal (see Autor, 2003). Since our coefficients of
the four-year forward robot indicator are not different from zero (in a statistical sense), indeed, we can claim that there
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Table 2: Output effects of robot adoption

Output (in logs)
(1) (2) (3) (4) (5) (6)

Robotst 0.155*** 0.110*** 0.161*** 0.120*** 0.123*** 0.115**
(0.0292) (0.0349) (0.0314) (0.0371) (0.0390) (0.0507)

Robotst−4 0.121*** 0.127*** 0.118*** 0.105** 0.119*** 0.0764
(0.0321) (0.0447) (0.0336) (0.0476) (0.0412) (0.0550)

Robotst+4 0.0725** 0.0466 0.0747
(0.0353) (0.0383) (0.0490)

Observations 4965 2799 4573 2571 4621 2627
R-squared 0.239 0.298 0.249 0.294 0.266 0.287
Selection controls No No Yes Yes No No
Propensity scores No No No No Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes Yes Yes

Notes: Robots is a 0/1 indicator variable equal to one if the firm uses robots in the specified period. The dependent
variable in all columns is the log of the firm’s deflated output value. Selection controls (in t−4) are the firm’s deflated
labor productivity (in logs), deflated capital intensity (in logs), skill intensity (in logs), deflated R&D intensity (in
logs), as well as exporter, importer, and foreign ownership dummies. We add one to all factor intensity variables
before taking logs in order to keep zero observations. For details on the propensity score reweighting estimator see
the text. The sample is restricted to firms that do not use robots in the first year they appear in the sample. Robust
standard errors clustered by firm are given in parentheses. *,**,*** denote significance at the 10%, 5%, 1% levels,
respectively.

estimates of γ1 and γ2 in column (5), which are equal to +0.126 and +0.121, respectively. These

estimates imply that the adoption of robots in the production process raise output by almost 25%

within four years.39,40

5.2 Labor market effects

We now turn to the labor market effects of robot adoption at the firm level. Specifically, we

consider the effects on the firm’s employment (for specific groups of workers and overall), the labor

cost share, and the average wage. Our theoretical considerations in the previous section imply that

robot adopters will reduce their labor cost share, while the impact on total employment is ambiguous

and depends on the relative strength of the displacement effect and the productivity effect. The

employment effects might also be specific to certain groups of workers, especially to those performing

automatable tasks (low-skilled workers as well as workers in the firm’s manufacturing rather than

service-oriented establishments). As for the wage effects, our theoretical framework implies that the

average wage in firms adopting robots increases if the firm changes the composition of its workforce

are no anticipatory trends and from a diff-in-diff perspective, a necessary condition for the parallel trend assumption
holds.

39Since we have robot information available in our data, not every year, but every four years, there is some
uncertainty regarding the precise timing of first time robot adoption. A firm that reports robot use in t − 4, but no
robot use in t − 8, can have adopted robots for the first time in either t − 4, t − 5, t − 6, or t − 7. Hence, the most
conservative interpretation is that the adoption of robots raises output by almost 25% within seven years.

40In an additional set of estimates, we investigate whether the output gains from robot adoption are more pronounced
in firms that are more integrated into the global economy. We do not find robust evidence that exporters (or importers
or foreign-owned firms) experience stronger output gains from adopting robots. Furthermore, we do not find evidence
that robot adoption increases the probability to start exporting or the share of exports in total sales.
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by hiring relatively more high-skilled workers (and given a positive exogenous skill premium). To

shed light on these effects, we estimate an equation akin to Eq. (3), where we use a variety of

different labor market variables as dependent variables. Table 3 reports the results. In Panel A

we control for selection into robot adoption by including the same set of time-varying selection

controls as before. In Panel B we combine the firm fixed effects estimator with our propensity score

weighting approach. All models include firm and industry-year fixed effects.

A striking result in Panel A in Table 3 is that within four years robot adopters raise overall

employment by around 10 percent. Importantly, this applies to all types of workers, low- and high-

skilled workers as well as workers employed in the firm’s manufacturing establishments. Moreover,

while the labor cost share decreases significantly due to robot adoption, by almost 7 percentage

points, we find no significant effect on the firm’s average wage, although the coefficient is estimated

with a negative sign. The results based on the propensity score estimates in Panel B, by and large,

confirm these results, although the positive employment effects for the group of high-skilled workers

are smaller in magnitude and lose significance.

Even though our results indicate a positive impact of robot adoption on overall employment,

the adoption might be seen as a disruptive event on employment within firms. To further shed light

onto the firm level employment effects, we use information available in the ESEE survey data on

workforce reductions that have the flavor of collective dismissals. The additional survey question

that we now exploit in our analysis contains explicit information on the change in regular workers

due to redundancies. Specifically, the survey asks firms (yes/no) whether there has been a significant

change in the regular workforce due to a “reduction in the workforce (termination of con-tracts,

early retirement, incentives for leaves of absence, etc.)” over the last year. We use this information

to construct an indicator variable equal to one if there was a significant change in the current year.

In a first step, we investigate whether robot adoption is associated with an increase in the likelihood

of collective dismissals. Results indicate no statistically significant and robust relationship between

robot adoption and collective dismissals. In a second step, we include the indicator variable for

collective dismissals in the current and previous years as further control variables in the estimates

akin to Table 3. Including them does very little to our estimated effects of robot adoption on

different labor market outcomes. Not surprising, the estimated coefficients for collective dismissals

reveal a negative effect on employment, which is concentrated among low-skilled and manufacturing

workers. To safe on space we present regression details to these additional set of estimates in the

online Appendix of this paper (see subsection A.13).

We furthermore investigate if the positive employment effects documented in Table 3 especially

arise for exporting firms, as only exporting firms might face sufficient demand that compensates

for the substitution of workers for robots. We therefore augmented the specification and added

an interaction term between robot use and exporter status (both, in t and t − 4). Results to this

are reported in Tables A.13 and A.14 in online Appendix A.10. While exporters are larger and

more skill- and manufacturing intensive, it turns out that the positive employment effects are not

limited to exporting firms, as none of the interaction terms turn out to be significantly different from
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zero. Only the reduction in the labor cost share turns out to be more pronounced for exporting

firms. Furthermore, including the export indicators and the interaction term between robot use

and exporter status (both, in t and t− 4) reduces significance of the robot indicator. This already

speaks to a potential complementarity, such that firms jointly decide on robot adoption and export

entry, and we investigate these dynamics in greater detail in Section 6.41

41In online Appendix A.11 we present results on the effects of alternative systems in the production process, namely
computer-digital machine tools (CAM), computer-assisted design (CAD), and a combination of some of the systems
through a central computer (FLEX). It turns out that output and labor market effects of robot adoption reported
above are fully robust to controlling for such alternative systems in the production process. Secondly, while CAM
and FLEX increase firm output, the effects are smaller in magnitude than in the case of robot adoption. Thirdly,
there is evidence for positive employment effects across all three technologies (CAD, CAM, and FLEX) and in all skill
groups. Finally, we identify a striking difference between robot technology and other technologies used in the firm’s
production process: only robots lead to a significant reduction in the firm’s labor cost share.
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Table 3: Labor market effects of robot adoption

Employment Labor cost Low-skilled High-skilled Manufacturing Share of manuf. Average wage

share employment employment

PANEL A: Selection Controls (1a) (2a) (3a) (4a) (5a) (6a) (7a)

Robotst 0.0584** -0.0359*** 0.0597** 0.0796** 0.0413 -0.00662 -0.00247
(0.0251) (0.00880) (0.0260) (0.0383) (0.0279) (0.00566) (0.0117)

Robotst−4 0.0527** -0.0318*** 0.0410 0.106*** 0.0494* -0.00493 -0.0156
(0.0245) (0.0109) (0.0252) (0.0379) (0.0259) (0.00516) (0.0160)

Observations 4575 4544 4552 4552 4568 4568 4535

R-squared 0.201 0.158 0.209 0.140 0.203 0.062 0.615

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes

Industry-year fixed effects Yes Yes Yes Yes Yes Yes Yes

PANEL B: Propensity Score (1b) (2b) (3b) (4b) (5b) (6b) (7b)

Robotst 0.0591** -0.0242** 0.0708** 0.0564 0.0508* -0.00338 0.00934
(0.0276) (0.0113) (0.0286) (0.0432) (0.0290) (0.00476) (0.0171)

Robotst−4 0.0656* -0.0276** 0.0658* 0.0543 0.0642* -0.00474 -0.0151
(0.0351) (0.0138) (0.0350) (0.0492) (0.0349) (0.00498) (0.0185)

Observations 4620 4583 4599 4599 4612 4612 4573

R-squared 0.212 0.204 0.226 0.158 0.242 0.129 0.664

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes

Industry-year fixed effects Yes Yes Yes Yes Yes Yes Yes

Notes: All dependent variables are expressed in logs except for the labor cost share and the share of manufacturing employment. Robots is a 0/1 indicator variable
equal to one if the firm uses robots in the specified period. Selection controls (in t− 4) are the firm’s deflated labor productivity (in logs), deflated capital intensity
(in logs), skill intensity (in logs), deflated R&D intensity (in logs), as well as exporter, importer, and foreign ownership dummies. We add one to all factor intensity
variables before taking logs in order to keep zero observations. For details on the propensity score reweighting estimator see the text. The sample is restricted
to firms that do not use robots in the first year they appear in the sample. Robust standard errors clustered by firm are given in parentheses. *,**,*** denote
significance at the 10%, 5%, 1% levels, respectively.
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5.3 Looking at non-adopting firms

As argued in subsection 3.3.2, robot adopting firms gain market shares prompting the least produc-

tive firms to exit, and the surviving non-robot firms to reduce their output and employment. To

estimate this last set of predictions from our theoretical model, we now estimate the effects of robot

diffusion within industries on non-adopting firms. To do so, we estimate variants of the following

equation:

Outcomeit = γ1Robot-densityst+γ2Robot-densityst×Robotsit+γ3Robotsit+β1Xit−4+µi+µt+εit,

(4)

where we use firm-level employment, output, and market exit as different outcomes of firm i at time t,

and where we interact a time-varying industry-specific measure of robot density with a time-specific

firm-level dummy variable for the use of robots. The variable Robot-densityst is constructed in two

different ways using two different data-sets. First, we use our ESEE data-set and define the variable

as the share of sales attributable to robot-using firms in total industry sales.42,43 This measure is

only available in those years in which we have information on robot use in the survey (i.e. every

four years). In an alternative approach, we use data from the International Federation of Robotics

(IFR) and more specifically the industry-specific stock of robots over the period 1993 to 2016. This

measure of robot density is available on an annual basis and features yearly variation. The variable

Robotsit in Eq. (4) is a 0/1 indicator variable equal to one if the firm uses robots in the specific

period, and zero otherwise.

The coefficients of interest are γ1, γ2 and γ3. The first coefficient tells us the effect of rising

robot density in an industry on non-adopting firms, while the second and third coefficient tells us the

difference in the effect of robot density on robot users vs. non-adopters. In Panel A and B of Table 4

we report estimates when using output and employment as an outcome variable, respectively, while

Table A.17 in the online Appendix reports estimates when looking at market exit.44 In columns

(1) to (3) and columns (4) to (6), we use our robot density measure from the ESEE data and

the IFR data, respectively. All specifications include both firm fixed effects (µi) and year fixed

effects (µt). In columns (2) and (5) we include our selection controls for robot adoption in the

vector Xit−4 (see Section 4). To make sure that our results are indeed due to differences in robot

density across industries, and not other important industry-specific factors, we also augment the

model by including time-varying industry-specific factor intensity variables (namely annual industry

averages of capital, skill, and R&D intensity), and we also interact these variables with our firm-

level indicator variable for robot use. Finally, for the estimates on employment and output we also

42We have verified that our results are robust to alternative definitions of this variable using the ESEE data, viz.
the share of robot-using firms in the total number of firms, the share of output attributable to robot-using firms in
industry output, and the share of employment in robot-using firms in total industry employment.

43To construct meaningful measures of robot density, when computing this variable, we do not restrict the sample to
firms that do not use robots in the first year they appear in the sample, while for the estimation we use the restricted
data-set. However, we have verified that our results do not change when we also use the full sample of firms in the
estimation.

44Firms might disappear from the sample due to either exit (in the form of shutdown by death or abandonment of
activity) or attrition, which can be distinguished in the data (see Doraszelski and Jaumandreu, 2013, p.1343).
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allow the (4-years) lagged dependent variable to enter the right-hand-side of equation 4 in columns

(3) and (6).

Table 4: Robot adoption and intra-industry reallocations

ESEE IFR
PANEL A: Employment in t (1a) (2a) (3a) (4a) (5a) (6a)
Robot-densityt -0.158*** -0.184*** -0.203*** -0.00822 -0.00877 -0.0169

(0.0451) (0.0655) (0.0563) (0.0124) (0.0166) (0.0119)
Robot-densityt × Robotst 0.156 0.320*** 0.235*** 0.0349*** 0.0397*** 0.0260***

(0.106) (0.122) (0.0884) (0.00999) (0.0139) (0.0100)
Robotst 0.0111 -0.124 -0.118* -0.150** -0.157* -0.130*

(0.0443) (0.0791) (0.0655) (0.0605) (0.0902) (0.0739)
Observations 10126 4577 4577 8358 4388 4388
R-squared 0.089 0.133 0.288 0.118 0.136 0.283

PANEL B: Output in t (1b) (2b) (3b) (4b) (5b) (6b)
Robot-densityt -0.232*** -0.275*** -0.229*** -0.0164 -0.0152 -0.0158

(0.0582) (0.0871) (0.0795) (0.0158) (0.0204) (0.0162)
Robot-densityt × Robotst 0.478*** 0.490*** 0.350*** 0.0482*** 0.0528*** 0.0334**

(0.119) (0.142) (0.125) (0.0131) (0.0162) (0.0135)
Robotst -0.0214 -0.184* -0.145 -0.144* -0.166 -0.104

(0.0497) (0.112) (0.101) (0.0822) (0.122) (0.105)
Observations 10168 4575 4575 8341 4384 4384
R-squared 0.139 0.161 0.266 0.159 0.160 0.260
Firm fixed effects Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Selection controls No Yes Yes No Yes Yes
Industry controls + interact. No Yes Yes No Yes Yes
Lagged dependent variable No No Yes No No Yes

Notes: In columns (1) to (3) we define robot density as the share of sales attributable to robot-using firms in total
industry sales constructed from the ESEE data. In columns (4) to (6) we use the stock of robots in an industry (in
logs) constructed from the IFR data. The variable robots is a 0/1 indicator variable equal to one if the firm uses
robots in the sample year, and zero otherwise. In Panels A and B we use employment and deflated output (both in
logs) as the dependent variables, respectively. Selection controls include the firm’s deflated labor productivity (in
logs), deflated capital intensity (in logs), skill intensity (in logs), deflated R&D intensity (in logs), exporter status,
importer status, and foreign ownership status (all in t-4 ). We add one to all factor intensity variables before taking
logs in order to keep zero observations. Industry controls are annual industry averages of capital, skill, and R&D
intensity; these variable are also interacted with the firm-specific robot-use dummy variable. Robust standard errors
clustered by firm are given in parentheses. *,**,*** denote significance at the 10%, 5%, 1% levels, respectively.

The negative estimates of γ1 in Panel A of Table 4 show that an increase in robot density has

a significantly negative impact on employment in firms that do not adopt robot technology. The

estimates in the first three columns imply that 10% of jobs in non-adopting firms are destroyed when

the share of sales attributable to robot-using firms increases from zero to one-half. Importantly,

the positive and significant estimates of γ2 indicate that these effects are exclusive to non-adopters.

Looking at Panel B, we see the same pattern of effects in terms of output, but the implied magnitude

is even more pronounced. Looking at Table A.17, we document some weak evidence of higher

exit rates among non-adopters due to an increase in robot density, which is consistent with the

predicted increase in the survival cut-off productivity in our theoretical framework. Importantly,
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we find similar results on employment, output, and exit rates when using the stock of robots within

industries from the IFR data. This is remarkable because the IFR measure captures the intensive

margin of robot diffusion, regardless of how many firms use this technology, whereas the ESEE

measure reflects the share of firms using robots and thus the extensive margin of robot use.

When interpreting the results presented in Tables 4 and A.17 one should keep in mind that

they are not based on the entire number of firms, and reallocation effects might clearly extend

beyond industry boundaries. That is, in the empirical analysis we implicitly assume that firms

active in different industries are independent from each other, which is violated due to input-output

linkages and competition within specific labor markets or regions. Nevertheless, the results provide

support for the idea that robot adopters expand their scale of operations and create jobs, while

non-adopters experience negative output and employment effects in the face of tougher competition

with high-technology firms. Our results thus imply intra-industry reallocation of market shares and

resources as a result of more widespread diffusion of robot technology and a polarization between

high-productivity robot adopters and low-productivity non-adopters, which also finds recent support

in Acemoglu et al. (2020).

6 Robots and firm-level productivity

In the last part of our analysis, we want to investigate the possibility that firms improve their

performance (productivity) through automation using a structural estimation approach. We borrow

this approach from the literature dealing with production function estimates. Our focus is on the

role of robots in shaping a firm’s future productivity, and our goal is to establish the productivity

gain associated with firms adopting robots in the production process. We will do this by explicitly

allowing the evolution of productivity to depend on prior use of robots in the production process.

For this purpose, we will accommodate endogenous productivity processes in the spirit of De Loecker

(2013), who applied this approach in the context of learning by exporting.

6.1 Empirical framework

Following the literature, we consider a Cobb-Douglas production function (in logs) for firm i at time

t producing output (yit) from labor (lit) and capital (kit):

yit = βllit + βkkit + ωit + εit, (5)

where ωit reflects the firm’s productivity (including a constant term) and εit is an i.i.d. error term.45

In our set-up, the use of robots in the production process is allowed to impact future productivity

as given by

ωit+1 = E[ωit+1|ωit,Robotsit] + ξit+1 = g(ωit,Robotsit) + ξit+1, (6)

45Our approach shares a standard set of assumptions with the literature; see Ackerberg et al. (2007) and De Loecker
(2013) for details.
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where Robotsit is a 0/1 indicator variable for robot use in the (endogenous) production process of

firm i at time t.46,47 Hence, actual productivity in period t + 1 can be decomposed into expected

productivity g(ωit,Robotsit) and a random shock ξit+1. Importantly, the conditional expectation

function g(·) depends, not just on already attained productivity ωit, but also on the use of robots

Robotsit. The random shock ξit+1, or productivity innovation, captures uncertainties that are nat-

urally linked to productivity plus the uncertainties inherent in the use of robots, such as success in

implementation.

The timing of decisions is important. When the decision about robot use is made in period t, the

firm is only able to anticipate the expected effect of robots on productivity in period t+ 1 as given

by g(ωit,Robotsit). The actual effect also depends on the realization of the productivity innovation

ξit+1 that occurs after robots have already been integrated into the production process.48

The parameters of interest are identified using the following moment conditions of the produc-

tivity innovation ξit+1:

E

{
ξit+1(βl, βk)

(
lit

kit+1

)}
= 0. (7)

To obtain ξit+1(·) we regress ωit+1(βl, βk) on (ωit(βl, βk),Robotsit), and ωit+1(βl, βk) = ŷit+1 −
βllit+1 − βkkit+1. Predicted output ŷit+1 is obtained from a first-stage regression of output on

inputs and the proxy variables intermediate inputs, capital, and robot dummy.49,50

6.2 Estimates of productivity effects

For the endogenous productivity process, we rely on a third-order polynomial in productivity, in-

teracting all terms with our robot dummy variable. Formally,

ωit+1 =

3∑
j=0

θjω
j
it +

3∑
k=0

ϑk

[
ωkit × Robotsit

]
+ ξit+1. (8)

46The earlier literature on structural identification of productivity uses an exogenous first-order Markov process for
the productivity evolution (Olley and Pakes, 1996; Levinsohn and Petrin, 2003).

47In the actual estimation, we also include an estimated survival probability in the function g(·) to correct for sample
selection, as in Olley and Pakes (1996). We omit the term here and in the following to avoid cluttered notation.

48The assumption that firms decide on whether to use robots before they learn about the productivity innovation
is crucial for identification. Formally, the condition we rely on is E(ξit+1εit) = 0.

49For the first stage, we write productivity ωit as a function of observables and substitute this into the production
function to obtain

yit = βllit + βkkit + f−1
t (kit,mit,Robotsit) + εit,

where mit are intermediate inputs and f−1
t (kit,mit,Robotsit) is the inverse of the firm’s intermediate input demand

function.
50Descriptive statistics for the full sample of firms we use throughout this section are reported in Table A.4.

We measure output as value added (production value minus the value sum of energy purchases, raw materials, and
services), suitably deflated with a combined firm-level output and intermediate input price index available in our data;
labor as effective work-hours; and capital using the perpetual inventory method and deflated using an industry-level
price index.
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Table 5 reports estimates of θ and ϑ, looking at the average effects for the Spanish manufacturing

sector at large. We report the estimates of different specifications for the model, viz. for j = 1,

k = 0 (column (1)), j = 3 and k = 0 (column (2)), and j = k = 3 (column (3)). In addition to a

high degree of persistence in productivity (θ1 close to one), we find evidence that the adoption of

robots on average increases firm productivity. The coefficient of the robot dummy variable is small

(ϑ1 between 0.004 and 0.01) but positive and statistically significant at least at the five percent level

across all specifications (1) through (3). There is also some evidence that the use of robots interacts

with the productivity of the firm, but overall this evidence is not very conclusive; see column (3). In

summary, our analysis demonstrates a clear causal effect of robots on firm-level productivity, and

thus highlights robot technology as a specific source of productivity gains in the modern economy.

Table 5: Estimates of productivity effects of robots

(1) (2) (3)

Robotst−1 0.00378** 0.00609*** 0.0102***

(0.00181) (0.00182) (0.00255)

Productivityt−1 0.995*** 0.995*** 0.994***

(0.000492) (0.00178) (0.00204)

Productivity2
t−1 -0.00866*** -0.00807***

(0.00143) (0.00164)

Productivity3
t−1 -0.00305*** -0.00269***

(0.000349) (0.000397)

Productivityt−1 × Robotst−1 0.00708*

(0.00426)

Productivity2
t−1 × Robotst−1 -0.00414

(0.00346)

Productivity3
t−1 × Robotst−1 -0.00208**

(0.000870)

Observations 15372 15372 15372

R-squared 0.997 0.997 0.997

Notes: The table reports estimates of θ and ϑ in Equation (8). The first stage includes labor, capital, materials and
robot indicator. *,**,*** denote significance at the 10%, 5%, 1% levels, respectively.

As is well-known from the trade literature, exporting is another and much-studied activity

generating productivity gains for firms (see Wagner, 2007, 2012, for comprehensive surveys of studies

using firm-level data). To see whether our results are robust to accounting for exports, and to explore

potential interactions with the productivity effects of exporting, we adjust the structural TFP

estimation following the approach in Aw et al. (2011) and De Loecker (2013). Specifically, we modify

the endogenous productivity process in Eq. (8) to include an export dummy variable, Exportit,

interacted with the robot dummy (higher-order productivity terms are omitted for simplicity). Thus,

exporting and the use of robots in the production process are allowed to impact future productivity

in Eq. (6).51 The key message from Table 6 is that robots raise firm-level productivity if, and

only if, the robot-adopting firm is also an exporter; see column (1). This finding is in line with our

51Here we include labor, capital, intermediate inputs, and the export and robots indicators in the first stage.
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results on the link between robot adoption and exporting documented in the previous sections. As

exporters serve larger markets than non-exporting firms, this is evidence that the scale of operations

is a critical channel through which exporting supports productivity-enhancing innovations within

firms (see, for example, Lileeva and Trefler (2010), Aw et al. (2011), and De Loecker (2013)). In

terms of quantitative implications, our estimates imply that within exporting firms productivity

increases by more than 1.3% one year after the adoption. Column (2) reveals that the positive

and significant interaction between exporting and robots is robust to including further interactions

among productivity, exports, and robots.

Table 6: Estimates of productivity effects of robots and exports

(1) (2)

Robotst−1 -0.00345 -0.00331

(0.00254) (0.00352)

Productivityt−1 0.994*** 0.995***

(0.00135) (0.000923)

Exportt−1 0.00912*** 0.00755**

(0.00342) (0.00369)

Exportt−1 × Robotst−1 0.0165** 0.0160**

(0.00683) (0.00812)

Productivityt−1 × Robotst−1 -0.000273

(0.00290)

Productivityt−1 × Exportt−1 -0.00323

(0.00329)

Productivityt−1 × Exportt−1 × Robotst−1 -0.00108

(0.00706)

R-squared 15349 15349

Observations 0.993 0.993

Notes: *,**,*** denote significance at the 10%, 5%, 1% levels, respectively.

6.3 Robots and aggregate TFP in Spain

Finally, we use our structural productivity estimates to visualize the evolution of productivity

in Spanish manufacturing across the years 1995 to 2014. As is thoroughly documented by Garćıa-

Santana et al. (2020), Spanish TFP actually declined between 1995 and 2007. The poor productivity

performance over this period is an interesting phenomenon in and of itself, not least because this

period is also the historically longest uninterrupted period of GDP growth in Spain. To validate

our structural estimation approach, we want to see whether this phenomenon is also reflected in our

estimates. We find that it is. Specifically, the solid black line in Figure 7 displays the evolution of

TFP for the Spanish manufacturing sector at large (TFP is normalized to equal 100 in 1994). Thus,

each point in the figure reflects the TFP level relative to its level in 1994, indicating that, between

1994 and 2007, TFP declined by 25%. However, there are interesting between-firm differences in

the level and growth of TFP. Across all years, TFP levels are consistently higher for robot adopters
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than for non-adopters. Moreover, TFP growth was less negative for robot adopters than for non-

adopters up until 2007. In fact, most of the decline in the productivity of Spanish manufacturing in

our sample can be attributed to non-adopters. Interestingly, the largest difference in TFP growth

between the two groups of firms is visible at the onset of the financial crisis, with robot adopters

showing strong positive TFP growth, and non-adopters showing strong negative TFP growth from

2006 to 2007. However, non-adopters had a markedly better productivity performance between

2007 and 2014 than adopters.

Figure 7: Evolution of TFP in Spanish manufacturing (1995-2014))
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Notes: The figure illustrates the evolution of TFP for the Spanish manufacturing sector at large (solid black line),
for the group of robot adopters (dark gray dashed line with diamonds) and non-adopters (light gray dashed line with
triangles) for the years 1995 to 2014, where TFP is normalized to 100 in the year 1994. Each point reflects the TFP
relative to 1994.

7 Conclusion

This paper provides novel evidence on how automation in the form of robot adoption affects firm-

level outcomes. We use detailed firm-level information from a survey conducted on Spanish ma-

nufacturing firms over a 27-year period (1990-2016). We provide insight into the following central

questions: Which firm characteristics have a causal impact on the probability of adopting robots

in the production process? What are the implications for output and workers in robot adopting

firms relative to non-adopting firms? How does the adoption of robots contribute to the growth in

total factor productivity (TFP)? As for the first question, we establish robust evidence that ex-ante
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larger and more productive firms and exporters are more likely to adopt robots, while, conditional

on size, ex-ante more skill-intensive firms are less likely to do so. As for the second question, we

find that robot adoption generates substantial output gains in the vicinity of 20-25% within four

years, reduces the labor cost share by 5-7%-points, and leads to net job creation at a rate of 10%.

We also reveal substantial job losses in firms that do not adopt robots, and thus a productivity-

enhancing reallocation of labor across firms, away from non-adopters, and toward adopters. Finally,

we estimate TFP improvements that are causally related to the adoption of robots, and we reveal

a complementarity between robot adoption and exporting. Using our structural TFP estimates, we

document that most of the manufacturing productivity decline in Spain before the financial crisis

in our sample can be attributed to non-adopters.

By focusing attention on heterogeneity in robot adoption within narrowly defined industries, our

results provide novel evidence how robots can potentially affect industry heterogeneity. Importantly,

we find strictly non-negative employment effects in robot adopters, even when focusing on specific

skills or groups of workers. Indeed, negative employment effects materialize where they are ex-ante

the least expected, namely in those firms that do not automate their production process.
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A Online Appendix

A.1 Details to data from the International Federation of Robotics (IFR)

Table A.1: Sector mapping IFR to ESEE

Description SEPI website Corresponding IFR industries

1. Meat products 10-12 - Food and beverages

2. Food and tobacco 10-12 - Food and beverages

3. Beverage 10-12 - Food and beverages

4. Textiles and clothing 13-15 - Textiles

5. Leather, fur and footwear 13-15 - Textiles

6. Timber 16 - Wood and furniture

7. Paper 17-18 - Paper

8. Printing 17-18 - Paper

9. Chemicals and pharmaceuticals 19 - Pharmaceuticals, cosmetics

& 20-21 - other chemical products n.e.c.

& 229 - Chemical products, unspecified

10. Plastic and rubber products 22 - Rubber and plastic products (non-automotive)

11. Nonmetal mineral products 23 - Glass, ceramics, stone, mineral products

12. Basic metal products 24 - Basic metals

& 289 - Metal, unspecified

13. Fabricated metal products 25 - Metal products

14. Machinery and equipment 28 - Industrial machinery

15. Computer products, electronics and optical 275 - Household/domestic appliances

& 262 - Computers and peripheral equipment

& 263 - Info communication equipment, domestic and prof.

& 265 - Medical, precision, optical instruments

& 279 - Electrical/electronics unspecified

16. Electric materials and accessories 271 - Electrical machinery n.e.c.

& 260 - Electronic components/devices

& 261 - Semiconductors, LCD, LED

17. Vehicles and accessories 29 - Automotive

18. Other transport equipment 30 - Other vehicles

19. Furniture 16 - Wood and furniture

20. Other manufacturing 91 - All other manufacturing branches

Notes: This table shows our mapping of industries between the official classification in the ESEE data according to
the SEPI website (left column) and the official sector definition in the IFR data (right column).
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A.2 ESEE and IFR data: Time Series Comparisons

Figure A.1: Evolution of robot diffusion in Spain: Comparison of Data Sources

0
50

10
0

15
0

20
0

IF
R

: m
ar

ke
t v

al
ue

 o
f r

ob
ot

s

.0
5

.1
.1

5
.2

.2
5

ES
EE

: S
ha

re
 o

f f
irm

s

1990 1994 1998 2002 2006 2010 2014

ESEE IFR

(a) Share of robot firms vs. market value of robots
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(b) Share of robot firms vs. stock of industrial robots

Notes: In both panels the solid black line depicts the share of firms using robots in their production process according
to the full sample of firms in the ESEE data-set, while the dashed gray line depicts the market value of robots (left
panel) or the stock of industrial robots (right panel) according to the IFR data.
Source: Authors’ computations based on ESEE and IFR data.
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A.3 Descriptive Statistics to Section 2

Table A.2: Timing of robot adoption across industries

1991 1994 1998 2002 2006 2010 2014 Total
Motorized Vehicles 8 4 2 6 3 7 2 32
Furniture 5 1 4 4 1 2 4 21
Plastic & Rubber Products 8 7 6 2 7 4 7 41
Ferrous & Non-Ferrous Metals 1 2 3 3 2 5 0 16
Mineral Products (Non -Metal) 11 8 11 6 4 13 3 56
Other Transportation 4 3 3 3 2 2 1 18
Machinery & Electrical Equipments 8 7 5 2 2 4 3 31
Miscellaneous Manufacturing 3 4 1 2 1 1 2 14
Metal Products 13 7 7 11 9 20 10 77
Chemicals & Pharmaceuticals 7 7 7 7 1 11 10 50
Beverage 2 3 3 4 0 2 0 14
Paper Products 2 2 1 2 7 5 2 21
Industry & Agriculture Machinery 6 5 7 2 2 5 5 32
Food Products & Tobacco 9 12 14 6 4 12 13 70
Informatics, Electronics, Optics 2 3 3 2 1 1 1 13
Meat 5 3 3 2 5 7 3 28
Graphics Design 2 3 8 7 4 3 3 30
Textile & Wearing Apparel 4 8 9 7 9 8 2 47
Timber & Wooden Products 2 1 5 3 5 5 2 23
Leather & Footwear 1 0 4 1 3 1 0 10
Total 103 90 106 82 72 118 73 644

Notes: The table reports the number of firms that adopt robots across industries and years.
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Table A.3: Descriptive statistics

Robot adopters
(1)

Non-adopters
(2)

Observations
(1)/(2)

Output (in logs) 16.164 14.873 7,483/24,402
(1.766) (1.648)

Labor productivity (in logs) 10.552 10.316 7,381/24,027
(0.650) (0.674)

Total employment (in logs) 4.474 3.511 7,500/24,595
(1.368) (1.188)

Manufacturing employment (in logs) 4.421 3.463 7,360/24,155
(1.344) (1.164)

Share of manufacturing employment 0.961 0.964 7,366/24,168
(0.128) (0.118)

Share of production workers 0.699 0.705 2,420/9,418
(0.183) (0.197)

# temporary workers (in logs) 2.754 1.981 5,713/16,410
(1.445) (1.343)

# low-skilled workers (in logs) 4.409 3.509 2,370/9,271
(1.316) (1.122)

# high-skilled workers (in logs) 1.567 0.859 2,370/9,271
(1.352) (1.102)

Average wage (in logs) 10.136 9.968 7,419/24,204
(0.447) (0.488)

Labor cost share 0.285 0.342 7,446/24,144
(0.214) (0.476)

Capital stock (in logs) 15.297 13.714 7,130/23,266
(1.973) (1.994)

Investments in machinery (in logs) 4.058 3.976 5,992/14,913
(0.798) (0.931)

Capital intensity (in logs) 3.433 2.853 7,081/23,191
(0.987) (1.147)

Skill intensity (in logs) 0.055 0.047 2,391/9,376
(0.081) (0.081)

R&D intensity (in logs) 0.342 0.189 7,443/24,581
(0.618) (0.495)

Exporter status 0.701 0.482 7,529/24,729
(0.458) (0.500)

Importer status 0.686 0.467 7,529/24,729
(0.464) (0.499)

Foreign owned 0.155 0.081 7,522/24,714
(0.362) (0.273)

Assimilation of foreign technologies 0.169 0.083 2,221/8,630
(0.375) (0.276)

Notes: The table reports means and standard deviations (in parentheses) of firm-specific variables for robot
adopters (i.e. firms that start using robots at some point in time; column (1)) vs. non-adopters (i.e. firms
that never use robots; column (2)). The numbers of observations reported in the final column correspond to
the firm-year observations in columns (1) and (2). The sample spans the years 1990-2016 and is restricted
to firms that do not use robots in the first year they enter the sample. Output is a firm’s total production
value. Labor productivity is value added per worker. Total employment is the average number of workers
during the year. Manufacturing employment is the workforce employed at manufacturing as opposed to
non-manufacturing establishments. Share of manufacturing employment is the number of workers employed
at manufacturing establishments divided by the total number of workers employed by the firm. Share of
production workers reports the share of workers in production jobs. Temporary workers are employees with
temporary contracts. High-skilled workers are defined as workers with a five-year university degree, while
low-skilled workers are all other workers. Average wage is computed as labor costs divided by the total
number of workers. Labor cost share is labor costs divided by the total production value. Capital stock is
the deflated capital stock for each firm. Investments in machinery include investments into installation of
technical equipment and machinery tools. Capital intensity is the value of the firm’s capital stock divided by
effective work-hours. Skill intensity is the share of high-skilled workers. R&D intensity is the ratio of total
expenses in R&D over total sales volume. We add one to all factor intensity variables as well as the number
of high- and low-skilled workers before taking logs in order to keep zero observations. Exporter (importer)
status is a dummy variable equal to one if the firm reports positive exports (imports). Foreign ownership
indicates whether a firm is foreign owned by more than 50%. Assimilation of foreign technologies is a dummy
variable indicating whether the firm assimilated foreign technologies.
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A.4 Further descriptives

Table A.4: Descriptive statistics – Full Sample

Full sample
(1)

Observations
(2)

Output (in logs) 15.509 40,123
(1.880)

Labor productivity (in logs) 10.437 39,561
(0.684)

Total employment (in logs) 3.979 40,421
(1.401)

Manufacturing employment (in logs) 3.925 39,642
(1.376)

Share of manufacturing employment 0.961 39,669
(0.123)

Share of production workers 0.702 15,159
0.190

# temporary workers (in logs) 2.369 28,492
(1.478)

# low-skilled workers (in logs) 3.924 14,878
(1.320)

# high-skilled workers (in logs) 1.215 14,878
(1.304)

Average wage (in logs) 10.064 39,894
(0.478)

Labor cost share 0.314 39,789
(0.394)

Capital stock (in logs) 14.492 38,290
(2.197)

Investments in machinery (in logs) 4.034 27,942
(0.853)

Capital intensity (in logs) 3.143 38,106
(1.139)

Skill intensity (in logs) 0.052 15,016
(0.081)

R&D intensity (in logs) 0.266 40,298
(0.554)

Exporter status 0.584 40,609
(0.493)

Importer status 0.567 40,609
(0.495)

Foreign owned 0.130 40,567
(0.337)

Assimilation of foreign technologies 0.125 13,799
(0.331)

Notes: The table reports means and standard deviations (in parentheses) of firm-specific variables for the full sample
(i.e. robot adopters, non-adopters, and firms entered with robots; column (1)). The numbers of observations reported
in column (2) correspond to the firm-year observations. The sample spans the years 1990-2016 and is restricted to firms
that do not use robots in the first year they enter the sample. Output is a firm’s total production value. Labor produc-
tivity is value added per worker. Total employment is the average number of workers during the year. Manufacturing
employment is the workforce employed at manufacturing as opposed to non-manufacturing establishments. Share of
manufacturing employment is the number of workers employed at manufacturing establishments divided by the total
number of workers employed by the firm. Share of production workers reports the share of workers in production
jobs. Temporary workers are employees with temporary contracts. High-skilled workers are defined as workers with a
five-year university degree, while low-skilled workers are all other workers. Average wage is computed as labor costs
divided by the total number of workers. Labor cost share is labor costs divided by the total production value. Capital
stock is deflated for each firm. Investments in machinery include investments into installation of technical equipment
and machinery tools. Capital intensity is the value of the firm’s capital stock divided by effective work-hours. Skill
intensity is the share of high-skilled workers. R&D intensity is the ratio of total expenses in R&D over total sales
volume. We add one to all factor intensity variables as well as the number of high- and low-skilled workers before
taking logs in order to keep zero observations. Exporter (importer) status is a dummy variable equal to one if the firm
reports positive exports (imports). Foreign ownership indicates whether a firm is foreign owned by more than 50%.
Assimilation of foreign technologies is a dummy variable indicating whether the firm assimilated foreign technologies.
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Table A.5: Descriptive statistics – Exports and robot adoption accross industries

Industry Share of exporting firms Share of firms using robots
Meat .565 .159
Food Products & Tobacco .473 .217
Beverage .625 .311
Textile & Wearing Apparel .525 .122
Leather & Footwear .599 .059
Timber & Wooden Products .426 .154
Paper Products .65 .197
Graphics Design .419 .103
Chemical & Pharmaceutical Products .773 .197
Plastic & Rubber Products .653 .34
Mineral Products (Non-Metal Products) .467 .303
Ferrous Metals & Non-Ferrous Metals .743 .296
Metal Products .501 .251
Agricultural Machinery .729 .228
Informatics, Electronics, Optics .744 .366
Machinery & Electrical Equipment .614 .323
Motorized Vehicles .8 .524
Other Transportation Equipment .695 .285
Furniture .513 .197
Miscellaneous Manufacturing .743 .185
Missing .745 .343

Notes: The table reports the share of exporting firms and the share of firms using robots in their production process
by industry.
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A.5 Placebo event study analysis

Figure A.2: Placebo event study analysis: before-after effects
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Notes: Points on the graph are the γk, k ∈ −4, ..., 4, coefficients in the estimating equation 1. The values of the
dependent variable are normalized to zero in the year the firm adopts robots, so that γ0 = 0. The underlying sample
consists of 123 firms that are classified as placebo robot adopters over the sample period using propensity scores to
assign the top 5% of non-adopters, which are most likely to adopt robots, into the group robot adopters. Vertical
lines represent 90% confidence intervals.
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A.6 Detailed derivations corresponding to Section 3

We use this section to provide analytical details corresponding to the results presented in Section 3

in the main text of the paper. We proceed as follows. First, we present the main model and its

basic assumptions. Second, we discuss the main results of the basic model with one source of firm

heterogeneity, viz. across-firm differences in φ(ω) but no differences in the degree of complexity,

N(ω) = N . These results form the basis of our discussion in Section 3.3. Thirdly, we introduce

the possibility of exporting and discuss its implications. This corresponds to Section 3.2.2. Finally,

we allow for firm heterogeneity in N(ω) and consider two skill types of labor, low- and high-skilled

workers. This is relevant for Section 3.2.3.

A.6.1 Basic set-up

Consider an industry in which a large number of monopolistically competitive firms produce hor-

izontally differentiated goods. A firm ω is selling its unique variety at price p(ω) to consumers,

facing an iso-elastic demand q(ω) of the form

q(ω) = Ap(ω)
− 1

1−β , (A.1)

where β controls the (constant) elasticity of substitution 1/(1− β) > 1 between any two varieties,

and A is a demand shifter.52 As for the production side, we follow Acemoglu and Restrepo (2018b)

in writing output as a composite of different tasks combined in a constant elasticity of substitution

(CES) aggregate. However, we depart from Acemoglu and Restrepo (2018b) by introducing two

types of firm heterogeneity into their framework. Specifically, we allow firms to differ in terms of

their productivity (and thus size) and the complexity of tasks (and thus the likelihood of tasks being

automated). The first type is the standard Melitz (2003) heterogeneity meaning that firms differ

in their exogenous (baseline) productivity denoted by φ(ω). We index tasks by i and assume that

they can be ordered according to their complexity where a higher index i reflects higher complexity.

Specifically, output of firm ω is given by

x(ω) = φ(ω)

(∫ N(ω)

N(ω)−1
x(ω, i)

σ−1
σ di

) σ
σ−1

, (A.2)

where σ denotes the elasticity of substitution between any two tasks and x(ω, i) is the output of

task i in firm ω. The parameter N(ω) generates a second type of firm heterogeneity in the model.

It is given exogenously and governs the set of tasks the firm has to perform, with the task range

normalized to one and with the limits of integration given by N(ω)− 1 and N(ω).53 An increase in

52As is well known, the demand function in Eq. (A.1) with A ≡ EP
β

1−β and P =
[∫
ω∈Ω

p(ω)
−β
1−β dω

]− 1−β
β

is implied

by a standard utility maximization problem where consumers have a CES utility function U =
[∫
ω∈Ω

q(ω)βdω
] 1
β

and

face a budget constraint E =
∫
ω∈Ω

p(ω)q(ω)dω with E being the total expenditure on the set of available varieties Ω.
53Capuano et al. (2020) provide evidence for substantial heterogeneity in the type of tasks performed by German

plants even if they are operating in the same industry. Most of the results we derive in our theoretical analysis do
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N(ω) reflects quality upgrading, in the sense that new and more complex tasks appear and replace

old tasks in the production process (the least complex ones). Crucially, we assume that the simpler

tasks with index numbers i ≤ I can be performed by robots or human labor, while the more complex

tasks with index numbers i > I are bound to be performed by human labor. The parameter I thus

reflects the ability level of robots in performing complex tasks. This parameter is likely to vary

across industries and through time as technology advances. Output at the task level is given by

x(ω, i) = 1 [i ≤ I] η(i)k(ω, i) + γ(i)l(ω, i), (A.3)

where 1[i ≤ I] is a 0/1 indicator equal to one if i ≤ I and zero otherwise, and γ(i) and η(i) denote,

respectively, the productivity of labor l and robot capital k in task i.54 Crucially, robot capital and

labor are perfect substitutes for one another in all tasks i ≤ I. This view highlights an important

aspect of automation, namely that machines are used to substitute for human labor (Acemoglu and

Restrepo, 2018a, p.2).

As in Acemoglu and Restrepo (2018a), we assume that the ratio of η(i)/γ(i) is strictly decreasing

in i, which formalizes a comparative advantage of labor in more complex tasks. Moreover, we assume

that the effective robot capital costs (at rental rate r) are strictly below the effective labor costs (at

wage rate w) for all automatable tasks. Formally, we have r/η(I) < w/γ(I). These assumptions

reflect the view that human labor is more valuable in performing complex tasks than robot capital.

Accordingly, we can write the unit production costs of a firm using robots to perform all tasks i ≤ I
as

ca(φ(ω), N(ω), I) =
1

φ(ω)

[
η(N(ω), I)r1−σ + γ(N(ω), I)w1−σ] 1

1−σ , (A.4)

where η(N(ω), I) ≡
(∫ I

N(ω)−1 η(i)σ−1di
) 1
σ

and γ(N(ω), I) ≡
(∫ N(ω)

I γ(i)σ−1di
) 1
σ

summarize the

productivity over all tasks performed by robots and labor, respectively.55 The superscript a indicates

that the production process has been automated. However, this decision is endogenous and requires

incurring a fixed cost, denoted by F a > 0. Not paying the fixed cost means that the firm has to

perform all tasks using human labor with corresponding unit cost of c(φ(ω), N(ω), N(ω) − 1) =

not depend on differences in N(ω). However, allowing for this heterogeneity in a simple extension of our model will
generate differences in the skill intensity of firms that are consistent with our data, as will become evident below.

54Combining the specifications for output at the firm and task level according to Eq. A.2 and A.3, respec-
tively, imply that firms only need capital if they use robots in the production process. To allow for non-
robot capital in the production function one could adjust Eq. A.2 and write output of firm ω as x(ω) =

φ(ω)xk(ω)αk
[(∫ N(ω)

N(ω)−1
x(ω, i)

σ−1
σ di

) σ
σ−1

]αl
, with αk + αl = 1 and αk, αl > 0, and xk(ω) denoting tasks purely

performed by capital (e.g. machines). We simplify the analysis throughout section 3 by setting αk = 0 and αl = 1
and thus, abstract from non-robot capital as an additional source of input here, since it does not affect the analysis
on the selection and treatment effects, as long as firms do not differ in terms of the cost-share parameters αk and
αl. However, in part 6, when we turn towards a TFP estimation, we explicitly allow for non-robot capital in the
production function.

55As shown in Acemoglu and Restrepo (2018b), we can write output as x(ω) =

[η(N(ω), I)K(ω)ρ + γ(N(ω), I)L(ω)ρ]
1
ρ , with ρ = (σ − 1)/σ, where

∫ I
N(ω)−1

k(ω, i)di = K(ω) and∫ N(ω)

I
l(ω, i)di = L(ω). The corresponding unit-cost function is thus given by (A.4).
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1
φ(ω)

[
γ(N(ω), N(ω)− 1)w1−σ] 1

1−σ .

Using constant mark-up pricing, we can write a firm’s profit gain from robot adoption, defined

as ∆π(ω) ≡ πa(ω)− π(ω), as follows:56

∆π(ω) = (1− β)A

{
1

β

1

φ(ω)

[
γ (N(ω), N(ω)− 1)w1−σ] 1

1−σ

}− β
1−β

[κ (N(ω), I)− 1]− F a, (A.5)

where κ(·) is defined as

κ (N(ω), I) ≡


(∫ I

N(ω)−1 η(i)σ−1di
)1/σ

r1−σ +
(∫ N(ω)

I γ(i)σ−1di
)1/σ

w1−σ(∫ I
N(ω)−1 γ(i)σ−1di

)1/σ
w1−σ +

(∫ N(ω)
I γ(i)σ−1di

)1/σ
w1−σ


1

σ−1
β

1−β

. (A.6)

This expression is (weakly) larger than one and reflects the marginal cost savings from robot adop-

tion. Given that labor has a comparative advantage in performing more complex tasks and the fact

that r/η(I) < w/γ(I), we find that κ(·) is, ceteris paribus, increasing in the level of robot technology

I and decreasing in the complexity of tasks N(ω). If firms face a highly complex production process

such that I = N(ω)− 1, then all tasks must be performed by labor and there are consequently no

cost savings from robot adoption, κ(N(ω), N(ω)− 1) = 1.57

A.6.2 The robot adoption decision

In the model, firms differ in their baseline productivity φ(ω) and the complexity of their production

process N(ω). In a first step, we focus on just one-dimensional heterogeneity by assuming that all

firms have to perform the same set of tasks, given by N(ω) = N . Hence, firms are fully described

by their productivity φ and we can omit the firm index ω to save on notation. We can write firm

profits for robot adopters and non-adopters, respectively, as

π(φ) = (1− β)A

{
1

β

[
γ(N,N − 1)w1−σ] 1

1−σ

}− β
1−β
− F and (A.7)

πa(φ) = (1− β)A

{
1

β

[
η(N, I)r1−σ + γ(N, I)w1−σ] 1

1−σ

}− β
1−β
− F − F a. (A.8)

Given that robots have a comparative advantage in all tasks i ≤ I, we know that
[
γ(N,N − 1)w1−σ] <[

η(N, I)r1−σ + γ(N, I)w1−σ]. Without loss of generality, we normalize the left-hand side by set-

56Note that profits of firm ω using robots can be written as πa(ω) = (1 − β)A
[

1
β
ca(φ(ω), N(ω), I)

]− β
1−β −

F a − F while profits for the same firm using human labor instead of robots are π(ω) = (1 −

β)A
[

1
β
c(φ(ω), N(ω), N(ω)− 1)

]− β
1−β − F , where F denotes overall fixed costs of production. Computing the differ-

ence between the two gives Eq. (A.5).
57Clearly, from inspection of Eq. A.6 cost savings also depend on factor prices for labor and capital. While allowing

firms to differ in terms of factor prices by introducing capital or labor market frictions is way beyond the scope of the
theoretical framework, we control for such differences in the empirical exercise below.
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ting
[
γ(N,N − 1)w1−σ] 1

1−σ = 1 and we define
[
η(N, I)r1−σ + γ(N, I)w1−σ] 1

1−σ = 1/η̄ with η̄ > 1.

Furthermore, we choose F a = (α− 1)F with α > 1. We can thus rewrite profits as

π(φ) = (1− β)A

(
1

β

1

φ

)− β
1−β
− F, (A.9)

πa(φ) = (1− β)A

(
1

β

1

φη̄

)− β
1−β
− αF. (A.10)

To determine the domestic cut-off productivity, denoted by φ∗, we can use π(φ∗) = 0. The cut-off

productivity for robot adoption φr can be determined by using the indifference condition π(φr) =

πa(φr) along with π(φ∗) = 0 to compute

φr = φ∗

(
α− 1

η̄
β

1−β − 1

) 1−β
β

. (A.11)

Using these cut-off productivities, we can define the share of firms that use robots as

sr ≡
1−G(φr)

1−G(φ∗)
, (A.12)

where G(·) denotes the cumulative distribution function of productivity. From inspection of Equa-

tion (A.11) we can conclude that a lower fixed cost for robot adoption or a higher share of automat-

able tasks (and thus η̄) raises the share of robot adopters, i.e. ∂sr/∂α < 0 and ∂sr/∂I > 0.

Discussing the implications for the composition of firms within industries requires to also specify

the details on the entry (and exit) process of firms. As this is standard in the literature on hetero-

geneous firms, we refer the interested reader for details to Melitz (2003). Here, we briefly outline

how the endogenous cut-off productivity φ∗ can be determined. Specifically, it is determined by two

conditions. The first condition uses the relation between the average profit per firm and the cut-off

productivity level, the so-called zero-cutoff productivity. It can be computed as the average profits

over all active firms, that is

π̄ = (1− β)A

(
1

β

1

φ̃

)− β
1−β
− F − F (α− 1)

1−G(φr)

1−G(φ∗)
, (A.13)

where π̄ denotes the average profits over all active firms and φ̃ is the average (expected) productivity

level, defined as

φ̃ ≡
(∫ φr

φ∗
φ

β
1−β

g(φ)

1−G(φ∗)
dφ+

∫ ∞
φr

(ηφ)
β

1−β
g(φ)

1−G(φ∗)
dφ

) 1−β
β

. (A.14)

The second condition, called the free entry condition, requires that the net value of entry is zero,

i.e. the sunk market entry costs (fe) are equal to the expected profits (discounted by δ). Formally,
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this condition reads as:

π̄ =
δfe

1−G(φ∗)
. (A.15)

Both equations can be used to determine a unique cut-off productivity level and show that a lower

fixed cost of robot adoption or a higher level of robot technology affects the composition of firms

within industries. Following Melitz (2003), we know that ex-ante more productive firms gain market

share by reducing marginal costs due to robot adoption. This raises the cut-off productivity at which

firms are able to survive in the market. Put differently, increasing robot exposure raises the exit

rate among non-robot firms and reduces their output and employment. This proves the results

described in Section 3.3.

A.6.3 Exporting

When allowing for trade with a symmetric partner country, we can sort firms into four groups,

namely combinations of robot adopters vs. non-adopters (indicating robot adopters by a superscript

a) and exporters vs. non-exporters (indicated by subscripts x and d, respectively). Specifically, we

can write firm profits for the different types as

πd(φ) = (1− β)A

{
1

β

[
γ(N,N − 1)w1−σ] 1

1−σ

}− β
1−β
− F, (A.16)

πad(φ) = (1− β)A

{
1

β

[
η(N, I)r1−σ + γ(N, I)w1−σ] 1

1−σ

}− β
1−β
− F − F a, (A.17)

πx(φ) =
(

1 + τ
− β

1−β
)

(1− β)A

{
1

β

[
γ(N,N − 1)w1−σ] 1

1−σ

}− β
1−β
− F − F x, (A.18)

πax(φ) =
(

1 + τ
− β

1−β
)

(1− β)A

{
1

β

[
η(N, I)r1−σ + γ(N, I)w1−σ] 1

1−σ

}− β
1−β
− F − F a − F x.

(A.19)

Again, setting
[
γ(N,N − 1)w1−σ] 1

1−σ = 1, defining
[
η(N, I)r1−σ + γ(N, I)w1−σ] 1

1−σ = 1/η̄ with

η̄ > 1, and setting F a = (α− 1)F , we can rewrite profits as

πd(φ) = (1− β)A

(
1

β

1

φ

)− β
1−β
− F, (A.20)

πad(φ) = (1− β)A

(
1

β

1

φη̄

)− β
1−β
− αF, (A.21)

πx(φ) =
(

1 + τ
− β

1−β
)

(1− β)A

(
1

β

1

φ

)− β
1−β
− F − F x, (A.22)

πrx(φ) =
(

1 + τ
− β

1−β
)

(1− β)A

(
1

β

1

φη̄

)− β
1−β
− αF − F x. (A.23)
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Except for different variable labels, this system is identical to the one described in Bustos (2011)

(on page 310). We can thus build on her insights and follow the same steps. Accordingly, we

focus on cost and parameter conditions that guarantee that the least productive firms serve only

the domestic market and do not adopt robots, while more productive firms export and only the

most productive exporters find it attractive to adopt robots. Importantly, the descriptive statistics

obtained from our data and described in the main text reveal that the share of robot adopters

is considerably lower than the share of exporting firms. It is therefore plausible to assume that

the marginal exporter is a non-adopter, i.e., a firm that does not use robots. As shown in Bustos

(2011), this is the case with a sufficiently high fixed cost of robot adoption relative to exporting.

The exporter cut-off φx is determined by the indifference condition πd(φ
x) = πx(φx). Combining

this condition with πd(φ
∗) = 0 entails

φx = φ∗τ

(
F x

F

) 1−β
β

. (A.24)

To determine the cut-off productivity for robot adoption in the open economy φr, we use πx(φr) =

πax(φr). Using the zero cut-off profit condition for the least productive firm, this allows us to

compute:

φr = φ∗
1(

1 + τ
− β

1−β
) β

1−β

(
α− 1

η̄
β

1−β − 1

) 1−β
β

. (A.25)

Using Equation (A.25), we can conclude that a reduction in variable trade costs τ raises the share

of robot adopters, i.e. ∂sr/∂τ < 0. As discussed in detail in Bustos (2011), we know that the

incentives for adopting robots are higher for exporting firms, as the gains from doing so—the

reduction in variable production costs—can be scaled up to a larger customer base in home and

foreign. This completes the discussion corresponding to Section 3.2.2.

A.6.4 Skill heterogeneity

In the main text we briefly discuss an extension with two types of workers, namely low-skilled and

high-skilled workers, indexed by subscripts l and h, respectively. Accordingly, we have

x(ω, i) = 1 [i ≤ I] η(i)k(ω, i) + γl(i)ll(ω, i) + γh(i)lh(ω, i). (A.26)

In such an environment, firms will not only compare the production costs of robots and human

labor across tasks, but also consider the skill-specific effective labor costs in each task, i.e., the firm

will benchmark wl/γl(i) against wh/γh(i). The task-level production function in (A.26) implies that

low-skilled and high-skilled workers are substitutes in the performance of tasks. Following Acemoglu

and Autor (2011), we impose a comparative advantage of high-skilled workers over their low-skilled

coworkers that is increasing in the complexity of tasks. As discussed in detailed in Koch (2016), we
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can define a unique threshold task z ∈ (0, 1) for which the firm is exactly indifferent between hiring

low-skilled and hiring high-skilled workers, at prevailing skill premium s ≡ wh/wl. Put differently,

the unit costs of performing task z are the same irrespective of the assigned skill type k = l, h. This

establishes

wl/γl(z) = wh/γh(z). (A.27)

Koch (2016) discusses parameter constraints (on the comparative advantage schedule, factor en-

dowments, etc.) within a general equilibrium framework that guarantee the existence of an interior

solution, z ∈ (N − 1, N). Intuitively, we need a skill premium that exceeds the productivity advan-

tage of high-skilled workers in some tasks. Under this constraint, we can establish that low-skilled

workers will be assigned to all tasks i < z, while high-skilled workers will be assigned to all tasks

i ≥ z. Under the additional constraint that robots cannot automate all tasks performed by low-

skilled workers, I < z, we obtain for the unit production costs

ca(φ,N, I) =
1

φ

[
η(N, I)r1−σ + γl(I, z)w

1−σ + γh(N, z)w1−σ] 1
1−σ , (A.28)

where η(N, I) ≡
(∫ I

N−1 η(i)σ−1di
) 1
σ

, γl(I, z) ≡
(∫ z
I γl(i)

σ−1di
) 1
σ and γh(N, z) ≡

(∫ N
z γh(i)σ−1di

) 1
σ

.

In the main text, we use this extension with two skill types to conclude that firms with a higher

skill intensity are less likely to adopt robots. Therefore, we now also consider heterogeneity of firms

in the complexity of the production process, N(ω). For ease of exposition, we assume that some

firms operate with a complexity equal to N , while others operate with N c > N .58 Suppose that

I > N c − 1, so that there is always some tasks that are automatable. Figure A.3 illustrates this

situation. It is evident that more complex firms have (i) a higher share of tasks that are performed

by high-skilled workers and (ii) that in these firms only a smaller fraction of tasks can be performed

by robots. It follows that firms with a lower skill intensity are more likely to adopt robots. This

completes the discussion corresponding to Section 3.2.3.59

The task-output specified in A.26 can be in principle extended to additional allow for a skill-

bias in the adoption of robots. To do so one could allow the efficiency parameter of high-skilled

58Different studies in the field of international economics have extended the Melitz (2003) framework to allow for
heterogeneity in more than one dimension. Prominent examples include Davis and Harrigan (2011), Eaton et al.
(2011), Hallak and Sivadasan (2013), Armenter and Koren (2015), Harrigan and Reshef (2015), and Helpman et al.
(2017). For instance, Harrigan and Reshef (2015) also consider two types of labor with firms differing in both the
baseline productivity ϕ and the Cobb-Douglas share parameter α which governs the skill intensity of the firm. They
characterize firms by their “competitiveness”, determined by both ϕ and α, and they apply the theory of copulas
from mathematical statistics to determine the distribution of firms’ competitiveness allowing for flexible correlations
between ϕ and α. Another example is Capuano et al. (2020), who allow for two-dimensional heterogeneity in the
context of offshoring. In their framework, firms differ in the range of tasks to be performed as well as the share of
offshorable tasks.

59Of course, we could allow firms to hire multiple skills for the performance of tasks. One tractable way is by
introducing a third group of medium-skilled workers, similar to the approach in Acemoglu and Autor (2011). In such
a setting task output reads x(ω, i) = 1 [i ≤ I] η(i)k(ω, i)+γl(i)ll(ω, i)+γm(i)lm(ω, i)+γh(i)lh(ω, i), where lower-script
m denotes medium-skilled workers. However, since we are only able to distinguish between two types of workers in
our data-set, we restrict the attention two low- and high-skilled workers.
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workers to depend on the type of technology, such that is higher for firms that adopted robots. In

such a setting robot adoption raises the comparative advantage of high-skilled relative to low-skilled

workers in the performance of complex tasks. Hence, firms will hire more high-skilled workers and

assign them to a broader range of task after the adoption of robots in the production process. While

the decision to adopt robots is monotonic in the complexity of tasks in the current version, things

are different when introducing a skill-bias of technological change. Even if firms might only have

a small share of automatable tasks (and thus a high share of high-skilled workers) the skill-bias of

robot adoption might still incentivize firms to do so. However, as long as the skill-bias is sufficiently

small, this mechanism would not affect the selection analysis but would favor the hiring of high-

skilled over low-skilled workers after the adoption of robots. Yet, another alternative to introduce

a skill bias of robots is to explicitly allow robots to create new (more complex) tasks, that replace

(or upgrade) the lowest-index tasks (see Acemoglu and Restrepo, 2018b). Again, this would favor

the hiring of high-skilled relative to low-skilled workers after the adoption of robots. However, as

our empirical analysis in section 5 has not revealed a skill bias after the adoption of robots, we stick

to the simple version here.

Figure A.3: Skill allocation and automatable tasks for different complexities of the production
process

N − 1 N|
I

|
z

robots low-skilled high-skilled

N c − 1 N c|
I

|
z
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A.7 Further results on robot adoption

Table A.6: Selection into robot adoption: Probit cross-sectional specification

Robot adoption (0/1 indicator)
Base year (1) (2) (3) (4) (5) (6) (7)
Output 0.170*** 0.197*** 0.144*** 0.169*** 0.180*** 0.189*** 0.296***

(0.0236) (0.0277) (0.0281) (0.0312) (0.0334) (0.0345) (0.0544)

Labor productivity -0.0442 -0.00446 0.119
(0.0579) (0.0627) (0.109)

Skill intensity -2.270** -2.230** -2.548** -2.473** -2.240*
(0.925) (0.976) (1.044) (1.048) (1.324)

Share of manu- 1.202* 1.165* 1.144* 1.127* 2.205
facturing workers (0.614) (0.653) (0.659) (0.666) (1.360)

Share of production 0.193 0.169 0.168 0.148 0.0561
workers (0.125) (0.129) (0.131) (0.131) (0.199)

Exporter 0.175** 0.159** 0.161** 0.166** 0.411***
(0.0761) (0.0788) (0.0793) (0.0793) (0.136)

Assimilation of foreign 0.154* 0.0921 0.0825 0.0803 -0.119
technologies (0.0895) (0.0943) (0.0951) (0.0953) (0.185)

Importer 0.0476 0.0875 0.0684 0.0583 0.0703
(0.0785) (0.0809) (0.0815) (0.0815) (0.141)

Foreign owned -0.164 -0.171 -0.192* -0.189 -0.404*
(0.108) (0.113) (0.115) (0.116) (0.213)

Capital intensity 0.0855** 0.0787** 0.0856** 0.0827** 0.0852** 0.0921** 0.0902
(0.0335) (0.0355) (0.0346) (0.0366) (0.0376) (0.0384) (0.0673)

R&D intensity 0.116 0.182** 0.0561 0.130 0.135 0.131 -0.0974
(0.0758) (0.0816) (0.0813) (0.0877) (0.0876) (0.0878) (0.146)

Average wage -0.180 -0.655***
(0.115) (0.225)

Interest rate -0.004
(0.0240)

Observations 2769 2648 2666 2550 2515 2500 1015
Pseudo R-squared 0.114 0.124 0.120 0.127 0.127 0.126 0.187

Notes: The dependent variable in all columns is a 0/1 indicator variable equal to one if the firm adopts robots during
our sample period and zero otherwise. Output is the firm’s deflated output value (in logs). Labor productivity is
the firm’s deflated value added per worker (in logs). Skill intensity is the firm’s share of workers with a five-year
university degree (in logs). Share manufacturing is the firm’s share of manufacturing workers (in logs). Share
production is the firm’s share of production workers (in logs). Exporter is a dummy variable for positive exports.
Assimilation of foreign technologies is a dummy variable indicating whether the firm assimilated foreign technologies.
Importer is a dummy variable for positive imports. Foreign owned is a dummy variable for foreign ownership (equal
to one if the firm is foreign owned by more than 50 percent and zero otherwise). Capital intensity is defined as the
firm’s deflated capital stock per worker (in logs). R&D intensity is defined as the firm’s deflated R&D expenditures
relative to its deflated total sales (in logs). Average wage is defined as the firm’s labor costs divided by the total
number of workers (in logs). Interest rate is defined as the firm’s interest rate on short-term dept (in percent). All
estimates include industry-base-year fixed effects. We add one to all factor intensity variables before taking logs
in order to keep zero observations. Therefore, all estimates include dummy variables (not reported) equal to one
whenever the respective factor intensity variable is equal to zero before adding one. All explanatory variables are
measured in the base year defined as the first year the firm appears in the sample. The sample is restricted to firms
that do not use robots in the first year they appear in the sample. Robust standard errors are given in parentheses.
*,**,*** denote significance at the 10%, 5%, 1% levels, respectively.
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Table A.7: Robot adoption based on output quartiles: Linear cross-sectional specification

Robot adoption (0/1 indicator)
Base year (1) (2) (3) (4) (5) (6) (7)
Output 2nd quartile 0.0211 0.0228 0.0138 0.0160 0.0218 0.0227 0.0254

(0.0151) (0.0160) (0.0153) (0.0161) (0.0169) (0.0173) (0.0214)

Output 3rd quartile 0.0549*** 0.0635*** 0.0425** 0.0504*** 0.0552*** 0.0577*** 0.0887***
(0.0168) (0.0185) (0.0179) (0.0193) (0.0201) (0.0207) (0.0284)

Output 4th quartile 0.138*** 0.152*** 0.115*** 0.130*** 0.139*** 0.143*** 0.152***
(0.0217) (0.0241) (0.0245) (0.0265) (0.0276) (0.0285) (0.0367)

Labor productivity -0.00713 -0.00170 0.0197
(0.0114) (0.0122) (0.0177)

Skill intensity -0.310** -0.319** -0.353*** -0.345*** -0.207
(0.125) (0.130) (0.130) (0.131) (0.148)

Share of manu- 0.220* 0.222* 0.219* 0.218* 0.237*
facturing workers (0.114) (0.120) (0.121) (0.121) (0.138)

Share of production 0.0429* 0.0394 0.0404 0.0381 0.0259
workers (0.0238) (0.0246) (0.0249) (0.0250) (0.0322)

Exporter 0.0326** 0.0317* 0.0330** 0.0341** 0.0561***
(0.0158) (0.0163) (0.0164) (0.0164) (0.0212)

Assimilation of foreign 0.0494** 0.0346 0.0327 0.0325 -0.00142
technologies (0.0237) (0.0243) (0.0245) (0.0245) (0.0374)

Importer 0.00820 0.0156 0.0128 0.0114 0.00734
(0.0157) (0.0165) (0.0166) (0.0166) (0.0232)

Foreign owned -0.0291 -0.0343 -0.0392 -0.0394 -0.0586
(0.0292) (0.0299) (0.0302) (0.0304) (0.0426)

Capital intensity 0.0199*** 0.0187*** 0.0182*** 0.0174** 0.0177** 0.0187*** 0.0132
(0.00639) (0.00677) (0.00648) (0.00687) (0.00703) (0.00715) (0.00889)

R&D intensity 0.0166 0.0264 0.00311 0.0150 0.0156 0.0150 -0.0243
(0.0196) (0.0204) (0.0201) (0.0208) (0.0213) (0.0214) (0.0242)

Average wage -0.0247 -0.0781**
(0.0227) (0.0334)

Interest rate 0.001
(0.00371)

Observations 3551 3374 3440 3268 3230 3213 1504
R-squared 0.151 0.156 0.151 0.154 0.158 0.158 0.203

Notes: The dependent variable in all columns is a 0/1 indicator variable equal to one if the firm adopts robots during
our sample period and zero otherwise. The regressions include a full set of dummy variables indicating the firm’s
(quartile) position in the output distribution of the industry in which it is active. Labor productivity is the firm’s
deflated value added per worker (in logs). Skill intensity is the firm’s share of workers with a five-year university
degree (in logs). Share manufacturing is the firm’s share of manufacturing workers (in logs). Share production is
the firm’s share of production workers (in logs). Exporter is a dummy variable for positive exports. Assimilation of
foreign technologies is a dummy variable indicating whether the firm assimilated foreign technologies. Importer is a
dummy variable for positive imports. Foreign owned is a dummy variable for foreign ownership (equal to one if the
firm is foreign owned by more than 50 percent and zero otherwise). Capital intensity is defined as the firm’s deflated
capital stock per worker (in logs). R&D intensity is defined as the firm’s deflated R&D expenditures relative to
its deflated total sales (in logs). Average wage is defined as the firm’s labor costs divided by the total number of
workers (in logs). Interest rate is defined as the firm’s interest rate on short-term dept (in percent). All estimates
include industry-base-year fixed effects. We add one to all factor intensity variables before taking logs in order to
keep zero observations. Therefore, all estimates include dummy variables (not reported) equal to one whenever the
respective factor intensity variable is equal to zero before adding one. All explanatory variables are measured in
the base year defined as the first year the firm appears in the sample. The sample is restricted to firms that do not
use robots in the first year they appear in the sample. Robust standard errors are given in parentheses. *,**,***
denote significance at the 10%, 5%, 1% levels, respectively.
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Table A.8: Selection into robot adoption: Panel specification

Robot adoption (0/1 indicator)
Lagged (1) (2) (3) (4) (5) (6) (7)
Output 0.0256*** 0.0278*** 0.0255*** 0.0265*** 0.0283*** 0.0294*** 0.0359***

(0.00264) (0.00296) (0.00317) (0.00336) (0.00360) (0.00367) (0.00547)

Labor productivity -0.0113** -0.00714 -0.0120
(0.00573) (0.00633) (0.0102)

Skill intensity -0.102 -0.0960 -0.105 -0.103 -0.194*
(0.0792) (0.0845) (0.0810) (0.0811) (0.105)

Share of manu- 0.0575 0.0594 0.0586 0.0600 -0.0130
facturing workers (0.0450) (0.0448) (0.0448) (0.0448) (0.0986)

Share of production 0.0237** 0.0239** 0.0218* 0.0189 0.0230
workers (0.0116) (0.0119) (0.0120) (0.0122) (0.0167)

Exporter 0.00313 0.00210 0.00314 0.00312 0.0194*
(0.00776) (0.00769) (0.00772) (0.00774) (0.0111)

Importer -0.00399 -0.000930 -0.00155 -0.00209 -0.00728
(0.00815) (0.00823) (0.00823) (0.00824) (0.0120)

Foreign owned -0.00780 -0.00235 -0.00498 -0.00293 0.00966
(0.0154) (0.0157) (0.0156) (0.0157) (0.0262)

Assimilation of foreign 0.0173 0.0197 0.0174 0.0174 0.00458
technologies (0.0129) (0.0131) (0.0131) (0.0132) (0.0223)

Capital intensity 0.00652* 0.00619* 0.00549 0.00496 0.00683* 0.00772** 0.0107**
(0.00341) (0.00342) (0.00344) (0.00345) (0.00349) (0.00355) (0.00524)

R&D intensity 0.00203 0.00773 0.000835 0.00568 0.00390 0.00413 -0.00952
(0.0114) (0.0118) (0.0116) (0.0120) (0.0121) (0.0121) (0.0176)

Average wage -0.0189* -0.0192
(0.0112) (0.0188)

Interest rate -0.0015
(0.0019)

Observations 6861 6760 6696 6599 6548 6523 3494
R-squared 0.067 0.068 0.068 0.068 0.069 0.069 0.077

Notes: The dependent variable in all columns is a 0/1 indicator variable equal to one if the firm adopts robots during
our sample period and zero otherwise. Output is the firm’s deflated output value (in logs). Labor productivity is
the firm’s deflated value added per worker (in logs). Skill intensity is the firm’s share of workers with a five-year
university degree (in logs). Share manufacturing is the firm’s share of manufacturing workers (in logs). Share
production is the firm’s share of production workers (in logs). Exporter is a dummy variable for positive exports.
Assimilation of foreign technologies is a dummy variable indicating whether the firm assimilated foreign technologies.
Importer is a dummy variable for positive imports. Foreign owned is a dummy variable for foreign ownership (equal
to one if the firm is foreign owned by more than 50 percent and zero otherwise). Capital intensity is defined as the
firm’s deflated capital stock per worker (in logs). R&D intensity is defined as the firm’s deflated R&D expenditures
relative to its deflated total sales (in logs). Average wage is defined as the firm’s labor costs divided by the total
number of workers (in logs). Interest rate is defined as the firm’s interest rate on short-term dept (in percent). All
estimates include industry-base-year fixed effects. We add one to all factor intensity variables before taking logs
in order to keep zero observations. Therefore, all estimates include dummy variables (not reported) equal to one
whenever the respective factor intensity variable is equal to zero before adding one. All explanatory variables are
measured in the base year defined as the first year the firm appears in the sample. The sample is restricted to firms
that do not use robots in the first year they appear in the sample. Robust standard errors are given in parentheses.
*,**,*** denote significance at the 10%, 5%, 1% levels, respectively.
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Table A.9: Selection into robot adoption: Cross-sectional specification incl. temp workers

Robot adoption (0/1 indicator)
Base year (1) (2) (3) (4) (5) (6) (7)
Share of temporary 0.00934 0.00760 0.00694 0.00523 0.00627 0.00579 0.00399

workers (0.00858) (0.00873) (0.00872) (0.00886) (0.00894) (0.00936) (0.0146)

Output 0.0362*** 0.0409*** 0.0300*** 0.0346*** 0.0392*** 0.0404*** 0.0448***
(0.00656) (0.00729) (0.00604) (0.00811) (0.00868) (0.00916) (0.0137)

Labor productivity -0.0192 -0.0166 -0.00191
(0.0142) (0.0149) (0.0265)

Skill intensity -0.324* -0.301* -0.356** -0.352** -0.265
(0.166) (0.167) (0.166) (0.166) (0.194)

Share of manu- 0.280** 0.281** 0.281** 0.281** 0.350**
facturing workers (0.131) (0.137) (0.139) (0.139) (0.159)

Share of production 0.0479 0.0399 0.0379 0.0359 0.0268
workers (0.0311) (0.0322) (0.0327) (0.0326) (0.0453)

Exporter 0.0319** 0.0360* 0.0375* 0.0385* 0.0658**
(0.0158) (0.0208) (0.0209) (0.0210) (0.0322)

Assimilation of foreign 0.0467** 0.0401 0.0348 0.0349 -0.00318
technologies (0.0237) (0.0301) (0.0304) (0.0304) (0.0545)

Importer 0.00494 0.0168 0.0141 0.0116 -0.00817
(0.0157) (0.0205) (0.0207) (0.0208) (0.0327)

Foreign owned -0.0292 -0.0770** -0.0803** -0.0828** -0.0684
(0.0292) (0.0341) (0.0347) (0.0349) (0.0538)

Capital intensity 0.0246*** 0.0227** 0.0166** 0.0222** 0.0235** 0.0237** 0.0205
(0.00855) (0.00901) (0.00653) (0.00916) (0.00939) (0.00951) (0.0134)

R&D intensity 0.0130 0.0275 0.00309 0.0141 0.0155 0.0149 -0.0280
(0.0235) (0.0247) (0.0200) (0.0254) (0.0266) (0.0266) (0.0331)

Average wage -0.0138 -0.0645
(0.0293) (0.0462)

Interest rate 0.000898
(0.00539)

Observations 2520 2453 2434 2369 2337 2325 973
R-squared 0.167 0.175 0.166 0.174 0.177 0.177 0.250

Notes: The dependent variable in all columns is a 0/1 indicator variable equal to one if the firm adopts robots
during our sample period and zero otherwise. Share of temporary workers in the number of temporary workers over
total employment (in logs). Output is the firm’s deflated output value (in logs). Labor productivity is the firm’s
deflated value added per worker (in logs). Skill intensity is the firm’s share of workers with a five-year university
degree (in logs). Share manufacturing is the firm’s share of manufacturing workers (in logs). Share production is
the firm’s share of production workers (in logs). Exporter is a dummy variable for positive exports. Assimilation of
foreign technologies is a dummy variable indicating whether the firm assimilated foreign technologies. Importer is a
dummy variable for positive imports. Foreign owned is a dummy variable for foreign ownership (equal to one if the
firm is foreign owned by more than 50 percent and zero otherwise). Capital intensity is defined as the firm’s deflated
capital stock per worker (in logs). R&D intensity is defined as the firm’s deflated R&D expenditures relative to
its deflated total sales (in logs). Average wage is defined as the firm’s labor costs divided by the total number of
workers (in logs). Interest rate is defined as the firm’s interest rate on short-term dept (in percent). All estimates
include industry-base-year fixed effects. We add one to all factor intensity variables before taking logs in order to
keep zero observations. Therefore, all estimates include dummy variables (not reported) equal to one whenever the
respective factor intensity variable is equal to zero before adding one. All explanatory variables are measured in
the base year defined as the first year the firm appears in the sample. The sample is restricted to firms that do not
use robots in the first year they appear in the sample. Robust standard errors are given in parentheses. *,**,***
denote significance at the 10%, 5%, 1% levels, respectively.
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A.8 The decision to stop using robots

Here we investigate if firms that stop using robots are different to firms using robots continuously

and what could potentially explain the decision to stop using robots. Table A.10 report means and

standard deviations (in parentheses) of firm-specific variables for continuing firms (i.e. firms that

start using robots at some point in time and do not switch afterwards; column (1)) vs. stoppers

(i.e. firms that used robots before but stopped doing so at some point in time; column (2)). Table

A.11 investigates the selection out of robot adoption by following a similar strategy to the one in

Section 4.
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Table A.10: Descriptive statistics

Continuing
(1)

Stoppers
(2)

Observations
(1)/(2)

Output (in logs) 16.722 16.172 9,089/6,191
(1.744) (1.804)

Labor productivity (in logs) 10.661 10.567 8,981/6,117
(0.627) (0.694)

Total employment (in logs) 4.878 4.459 9,188/6,197
(1.398) (1.366)

Manufacturing employment (in logs) 4.823 4.398 8,970/6,082
(1.376) (1.331)

Share of manufacturing employment 0.955 0.959 8,977/6,089
(0.130) (0.133)

# temporary workers (in logs) 3.020 2.709 7,168/4,606
(1.481) (1.486)

# low-skilled workers (in logs) 4.751 4.379 3,438/2,038
(1.333) (1.314)

# high-skilled workers (in logs) 1.955 1.559 3,438/2,038
(1.395) (1.362)

Average wage (in logs) 10.239 10.173 9,095/6,157
(0.412) (0.434)

Labor cost share 0.263 0.286 9,035/6,171
(0.170) (0.221)

Capital stock (in logs) 15.921 15.368 8,666/5,940
(1.869) (1.997)

Investments in machinery (in logs) 4.140 4.037 7,764/4,901
(0.688) (0.833)

Capital intensity (in logs) 3.646 3.508 8,592/5,910
(0.931) (1.011)

Skill intensity (in logs) 0.065 0.057 3,459/2,049
(0.082) (0.079)

R&D intensity (in logs) 0.439 0.312 9,115/6,162
(0.643) (0.572)

Exporter status 0.778 0.695 9,224/6,214
(0.415) (0.461)

Importer status 0.758 0.683 9,224/6,214
(0.428) (0.465)

Foreign owned 0.236 0.168 9,210/6,201
(0.424) (0.374)

Share of production workers 69.305 70.197 3,521/2,087
(17.617) (18.446)

Assimilation of foreign technologies 0.218 0.157 3,143/1,904
(0.413) (0.363)

Notes: The table reports means and standard deviations (in parentheses) of firm-specific variables for continuing
firms (i.e. firms that start using robots at some point in time and do not switch afterwards; column (1)) vs.
stoppers (i.e. firms that used robots before but stopped doing so at some point in time; column (2)). The
numbers of observations reported in the final column correspond to the firm-year observations in columns (1)
and (2). The sample spans the years 1990-2016 and is restricted to firms that do not use robots in the first
year they enter the sample. Output is a firm’s total production value. Labor productivity is value added per
worker. Total employment is the average number of workers during the year. Manufacturing employment is the
workforce employed at manufacturing as opposed to non-manufacturing establishments. Share of manufacturing
employment is the number of workers employed at manufacturing establishments divided by the total number of
workers employed by the firm. Temporary workers are employees with temporary contracts. High-skilled workers
are defined as workers with a five-year university degree, while low-skilled workers are all other workers. Average
wage is computed as labor costs divided by the total number of workers. Labor cost share is labor costs divided by
the total production value. Capital stock is deflated for each firm. Investments in machinery include investments
into installation of technical equipment and machinery tools. Capital intensity is the value of the firm’s capital
stock divided by effective work-hours. Skill intensity is the share of high-skilled workers. R&D intensity is the
ratio of total expenses in R&D over total sales volume. We add one to all factor intensity variables as well as
the number of high- and low-skilled workers before taking logs in order to keep zero observations. Exporter
(importer) status is a dummy variable equal to one if the firm reports positive exports (imports). Foreign
ownership indicates whether a firm is foreign owned by more than 50%. Assimilation of foreign technologies is
a dummy variable indicating whether the firm assimilated foreign technologies.
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Table A.11: Selection out of robot adoption: Cross-sectional specification

Stoppers (0/1 indicator)
Base year (1) (2) (3) (4) (5) (6) (7)
Output -0.0308*** -0.0307** -0.0313*** -0.0298** -0.0286** -0.0310** -0.0259

(0.0104) (0.0120) (0.0117) (0.0130) (0.0139) (0.0145) (0.0179)

Labor productivity -0.00539 -0.0107 -0.0375
(0.0282) (0.0302) (0.0373)

Skill intensity 0.417 0.336 0.412 0.395 0.337
(0.283) (0.291) (0.297) (0.299) (0.345)

Share of manu- 0.121 0.219 0.214 0.210 0.0599
facturing workers (0.196) (0.197) (0.196) (0.197) (0.312)

Share of production -0.0153 -0.00610 -0.00649 -0.00223 -0.0425
workers (0.0466) (0.0484) (0.0486) (0.0488) (0.0554)

Exporter 0.00379 -0.00476 0.000390 -0.00157 -0.0349
(0.0358) (0.0383) (0.0386) (0.0387) (0.0488)

Assimilation of foreign -0.0620* -0.0586* -0.0545 -0.0534 -0.0307
technologies (0.0331) (0.0344) (0.0347) (0.0349) (0.0473)

Importer 0.0234 0.0240 0.0196 0.0195 0.0570
(0.0344) (0.0368) (0.0371) (0.0372) (0.0450)

Foreign owned -0.00744 -0.00854 -0.0112 -0.00952 0.0462
(0.0384) (0.0393) (0.0396) (0.0400) (0.0540)

Capital intensity -0.0116 -0.0118 -0.00794 -0.00666 -0.00908 -0.0113 0.00125
(0.0159) (0.0173) (0.0166) (0.0179) (0.0188) (0.0190) (0.0264)

R&D intensity -0.0384 -0.0388 -0.0371 -0.0340 -0.0526 -0.0538 -0.0529
(0.0316) (0.0332) (0.0330) (0.0345) (0.0334) (0.0338) (0.0397)

Average wage 0.0296 0.0607
(0.0553) (0.0718)

Interest rate 0.000346
(0.00877)

Observations 1534 1448 1453 1374 1363 1359 775
R2 0.250 0.252 0.256 0.258 0.260 0.261 0.270

Notes: The dependent variable in all columns is a 0/1 indicator variable equal to one if the firm stops using robots
during our sample period and zero if the firm started using robots and never stopped. Output is the firm’s deflated
output value (in logs). Labor productivity is the firm’s deflated value added per worker (in logs). Skill intensity is
the firm’s share of workers with a five-year university degree (in logs). Share manufacturing is the firm’s share of
manufacturing workers (in logs). Share production is the firm’s share of production workers (in logs). Exporter is a
dummy variable for positive exports. Assimilation of foreign technologies is a dummy variable indicating whether
the firm assimilated foreign technologies. Importer is a dummy variable for positive imports. Foreign owned is a
dummy variable for foreign ownership (equal to one if the firm is foreign owned by more than 50 percent and zero
otherwise). Capital intensity is defined as the firm’s deflated capital stock per worker (in logs). R&D intensity
is defined as the firm’s deflated R&D expenditures relative to its deflated total sales (in logs). Average wage is
defined as the firm’s labor costs divided by the total number of workers (in logs). Interest rate is defined as the
firm’s interest rate on short-term dept (in percent). All estimates include industry-base-year fixed effects. We add
one to all factor intensity variables before taking logs in order to keep zero observations. Therefore, all estimates
include dummy variables (not reported) equal to one whenever the respective factor intensity variable is equal to
zero before adding one. All explanatory variables are measured in the base year defined as the first year the firm
appears in the sample. The sample is restricted to firms that reported using robots at any point in time. Robust
standard errors are given in parentheses. *,**,*** denote significance at the 10%, 5%, 1% levels, respectively.
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A.9 Propensity score estimates

In column (1) of Table A.12 we present multivariate probit regressions where we regress the robot

indicator variable on a set of lagged variables we use in the propensity score estimation. In column

(2) we present the univariate probit regression using the same variables. To construct the table we

pool across all industries, while for the results shown in the paper, we estimate the propensity score

by industry. All regressions include industry dummies.

Table A.12: Propensity scores estimation equation (probit specification)

Robots multivariate Robots univariate
(1) (2)

Sales 0.284*** 0.304***
(0.0311) (0.0209)

Sales growth -0.0145 0.221**
(0.126) (0.101)

Labor productivity -0.114* 0.361***
(0.0684) (0.0545)

Labor productivity growth 0.0226 -0.0144
(0.0664) (0.0458)

Capital intensity 0.127*** 0.320***
(0.0381) (0.0323)

Skill intensity -1.806*** 1.014**
(0.649) (0.459)

R&D intensity 0.165*** 0.359***
(0.0613) (0.0556)

Exporter status 0.0567 0.554***
(0.0780) (0.0615)

Importer status 0.0331 0.579***
(0.0803) (0.0619)

Foreign ownership status -0.0529 0.475***
(0.109) (0.0984)

Observations 4053 4053
Pseudo R-squared 0.157

Standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01

A.10 Further results on the effects of robot adoption
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Table A.13: Labor market effects of robot adoption – the role of exports: Selection control

Employment Labor cost Low-skilled High-skilled Manufacturing Share of manuf. Average wage
share employment employment

(1a) (2a) (3a) (4a) (5a) (6a) (7a)
Robotst 0.0523 -0.0436** 0.0214 0.130** 0.0258 -0.00520 -0.0148

(0.0404) (0.0175) (0.0439) (0.0547) (0.0530) (0.0125) (0.0196)

Robotst−4 0.0142 0.00152 -0.0138 0.0311 0.00788 -0.00168 -0.0183
(0.0411) (0.0226) (0.0425) (0.0580) (0.0477) (0.0105) (0.0271)

Exportert 0.117*** -0.0327*** 0.112*** 0.0674** 0.115*** 0.000137 0.00121
(0.0260) (0.0111) (0.0258) (0.0338) (0.0263) (0.00336) (0.0134)

Exportert × Robotst 0.0111 0.0117 0.0579 -0.0730 0.0248 -0.00197 0.0179
(0.0505) (0.0189) (0.0552) (0.0681) (0.0600) (0.0127) (0.0232)

Exportert−4 0.0581** 0.00860 0.0454** 0.0558* 0.0548** -0.000725 0.0167
(0.0229) (0.00902) (0.0230) (0.0328) (0.0233) (0.00279) (0.0121)

Exportert−4 × Robotst−4 0.0530 -0.0476** 0.0714 0.112 0.0561 -0.00429 0.00283
(0.0484) (0.0233) (0.0499) (0.0715) (0.0543) (0.0115) (0.0310)

Observations 4572 4541 4549 4549 4565 4565 4532
R-squared 0.211 0.164 0.219 0.143 0.212 0.062 0.615
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes Yes Yes Yes

Notes: All dependent variables are expressed in logs except for the labor cost share and the share of manufacturing employment. Robots is a 0/1 indicator variable
equal to one if the firm uses robots in the specified period. Export is an indicator variable equal to firm reports positive exports in the specific year. Selection
controls (in t− 4) are the firm’s deflated labor productivity (in logs), deflated capital intensity (in logs), skill intensity (in logs), deflated R&D intensity (in logs),
as well as importer, and foreign ownership dummies. We add one to all factor intensity variables before taking logs in order to keep zero observations. The sample
is restricted to firms that do not use robots in the first year they appear in the sample. Robust standard errors clustered by firm are given in parentheses. *,**,***
denote significance at the 10%, 5%, 1% levels, respectively.
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Table A.14: Labor market effects of robot adoption – the role of exports: Propensity score

Employment Labor cost Low-skilled High-skilled Manufacturing Share of manuf. Average wage
share employment employment

(1a) (2a) (3a) (4a) (5a) (6a) (7a)
Robotst 0.0639 -0.0373* 0.0481 0.122** 0.0655 0.00569 -0.000775

(0.0397) (0.0210) (0.0381) (0.0617) (0.0409) (0.00709) (0.0242)

Robotst−4 0.0205 -0.0260 0.00435 0.0128 0.0268 0.00241 -0.0173
(0.0473) (0.0248) (0.0436) (0.0770) (0.0461) (0.00654) (0.0244)

Exportert 0.105*** -0.0348*** 0.0959*** 0.0630* 0.110*** 0.00447 0.00309
(0.0261) (0.0122) (0.0258) (0.0348) (0.0267) (0.00448) (0.0147)

Exportert × Robotst -0.00298 0.0189 0.0450 -0.122 -0.0201 -0.0156* 0.0223
(0.0542) (0.0239) (0.0539) (0.0785) (0.0557) (0.00859) (0.0298)

Exportert−4 0.0639** 0.00833 0.0487* 0.0412 0.0713*** 0.00539 0.0237*
(0.0255) (0.0105) (0.0258) (0.0363) (0.0257) (0.00374) (0.0135)

Exportert−4 × Robotst−4 0.0678 -0.00525 0.0888 0.0839 0.0563 -0.0107 0.00504
(0.0596) (0.0265) (0.0588) (0.0916) (0.0594) (0.00772) (0.0318)

Observations 4626 4589 4605 4605 4618 4618 4579
R-squared 0.218 0.206 0.228 0.158 0.248 0.117 0.664
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes Yes Yes Yes

Notes: All dependent variables are expressed in logs except for the labor cost share and the share of manufacturing employment. Robots is a 0/1 indicator variable
equal to one if the firm uses robots in the specified period. Export is an indicator variable equal to firm reports positive exports in the specific year. For details
on the propensity score reweighting estimator see the text. The sample is restricted to firms that do not use robots in the first year they appear in the sample.
Robust standard errors clustered by firm are given in parentheses. *,**,*** denote significance at the 10%, 5%, 1% levels, respectively.
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Table A.15: Output effects of robot adoption (alternative propensity scores)

Output (in logs)
(1) (2) (3) (4)

Robotst 0.109** 0.121** 0.0937** 0.0958*
(0.0431) (0.0484) (0.0437) (0.0529)

Robotst−4 0.116*** 0.0465 0.111*** 0.0458
(0.0410) (0.0589) (0.0420) (0.0603)

Robotst+4 0.0491 0.0377
(0.0486) (0.0518)

Observations 4654 2641 4672 2650
R-squared 0.253 0.268 0.253 0.265
Selection controls No No No No
Propensity score A Yes Yes No No
Propensity score B No No Yes Yes
Firm fixed effects Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes

Notes: Robots is a 0/1 indicator variable equal to one if the firm uses robots in the specified period. The dependent
variable in all columns is the log of the firm’s deflated output value. Propensity score A includes stock of innovations
(computer programs attached to manufacturing processes), real capital stock and investments in machinery as
additional variables used in the propensity scores estimation (relative to the main text specification). Propensity
score B additionally accounts for the share of manufacturing workers. For details on the propensity score reweighting
estimator see the text. The sample is restricted to firms that do not use robots in the first year they appear in the
sample. Robust standard errors clustered by firm are given in parentheses. *,**,*** denote significance at the 10%,
5%, 1% levels, respectively.

A. 26



Table A.16: Labor market effects of robot adoption (alternative propensity scores)

Employment Labor cost Low-skilled High-skilled Manufacturing Share of manuf. Average wage
share employment employment

Propensity Score A (1a) (2a) (3a) (4a) (5a) (6a) (7a)
Robotst 0.0423 -0.0228** 0.0516* 0.0443 0.0382 -0.00105 0.0114

(0.0295) (0.0116) (0.0310) (0.0445) (0.0300) (0.00473) (0.0197)
Robotst−4 0.0750** -0.0212 0.0739** 0.0580 0.0753** -0.00411 -0.0148

(0.0335) (0.0135) (0.0339) (0.0582) (0.0320) (0.00560) (0.0199)
Observations 4654 4616 4634 4634 4646 4646 4606
R-squared 0.194 0.193 0.205 0.152 0.232 0.114 0.655
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes Yes Yes Yes

Propensity Score B (1b) (2b) (3b) (4b) (5b) (6b) (7b)
Robotst 0.0211 -0.0228** 0.0311 0.0358 0.0192 -0.000652 0.0149

(0.0326) (0.0109) (0.0337) (0.0439) (0.0324) (0.00401) (0.0213)
Robotst−4 0.0689* -0.0260** 0.0708** 0.0327 0.0727** -0.00245 -0.0254

(0.0352) (0.0122) (0.0350) (0.0570) (0.0336) (0.00548) (0.0199)
Observations 4672 4634 4652 4652 4665 4665 4624
R-squared 0.199 0.198 0.212 0.140 0.234 0.098 0.655
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes Yes Yes Yes

Notes: All dependent variables are expressed in logs except for the labor cost share and the share of manufacturing employment. Robots is a 0/1 indicator variable
equal to one if the firm uses robots in the specified period. Propensity score A includes stock of innovations (computer programs attached to manufacturing
processes), real capital stock and investments in machinery as additional variables used in the propensity scores estimation (relative to the main text specification).
Propensity score B additionally accounts for the share of manufacturing workers. For details on the propensity score reweighting estimator see the text. The
sample is restricted to firms that do not use robots in the first year they appear in the sample. Robust standard errors clustered by firm are given in parentheses.
*,**,*** denote significance at the 10%, 5%, 1% levels, respectively.
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Table A.17: Robot adoption and intra-industry reallocations

ESEE IFR
PANEL: Exit in t+ 1 (1c) (2c) (3c) (4c)
Robot-densityt 0.0313* 0.0334 0.00383 0.0123**

(0.0188) (0.0301) (0.00467) (0.00610)
Robot-densityt × Robotst -0.0530** -0.0659* -0.00428 -0.00639

(0.0256) (0.0350) (0.00367) (0.00479)
Robotst 0.0210 0.0856** 0.0245 0.0795*

(0.0148) (0.0400) (0.0258) (0.0443)
Observations 9274 4168 7566 3997
R-squared 0.030 0.040 0.034 0.039
Firm fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
Selection controls No Yes No Yes
Industry controls + interact. No Yes No Yes

Notes: In columns (1) to (3) we define robot density as the share of sales attributable to robot-using firms in total
industry sales constructed from the ESEE data. In columns (4) to (6) we use the stock of robots in an industry
(in logs) constructed from the IFR data. The variable robots is a 0/1 indicator variable equal to one if the firm
uses robots in the sample year, and zero otherwise. We use a 0/1 indicator variable as the dependent variable; this
variable is equal to one if the firm exits the market in the next period, and zero if it continues its operations. Selection
controls include the firm’s deflated labor productivity (in logs), deflated capital intensity (in logs), skill intensity
(in logs), deflated R&D intensity (in logs), exporter status, importer status, and foreign ownership status (all in
t-4 ). We add one to all factor intensity variables before taking logs in order to keep zero observations. Industry
controls are annual industry averages of capital, skill, and R&D intensity; these variable are also interacted with the
firm-specific robot-use dummy variable. Robust standard errors clustered by firm are given in parentheses. *,**,***
denote significance at the 10%, 5%, 1% levels, respectively.
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A.11 Alternative systems in the production process

As stated in Section 2 of the paper, we exploit information on the use of robots from the follow-

ing survey question: “State whether the production process uses any of the following systems: 1.

Computer-digital machine tools; 2. Robotics; 3. Computer-assisted design; 4. Combination of some

of the above systems through a central computer (CAM, flexible manufacturing systems, etc.); 5.

Local Area Network (LAN) in manufacturing activity”. In the following, we show that the effects of

robot adoption are different from those associated with alternative systems included in the survey

question. We create three additional indicator variables from the survey question, labelled CAM,

CAD, and FLEX, respectively. They are defined as 0/1 indicator variables equal to one if the firm

uses computer-digital machine tools (CAM), computer-assisted design (CAD), or a combination

of systems through a central computer (FLEX). Table A.18 provides summary statistics on these

indicator variables along with our robot dummy variable from the main text. Table A.19 shows

correlations among the four indicator variables. We see from these statistics that robots are used

less frequently in the production process than the other three alternative systems. We also see

slightly positive pairwise correlations among all variables.

Table A.18: Descriptive statistics on systems in the production process

Mean STD. Obs.

Robot 0.086 0.281 12808
CAM 0.358 0.479 12808
CAD 0.266 0.442 12808
FLEX 0.244 0.430 12808

Notes: Robots, CAM, CAD or FLEX are construct as 0/1 indicator variables equal to one if the firm uses
robotics (Robot), computer-digital machine tools (CAM), computer-assisted design (CAD), or, combination of
some of the above systems through a central computer (FLEX).

Table A.19: Correlations among different systems in the production process

Robot CAM CAD FLEX

Robot 1.000
CAM 0.199* 1.000
CAD 0.195* 0.330* 1.000
FLEX 0.114* 0.200* 0.126* 1.000

Notes: Robots, CAM, CAD or FLEX are construct as 0/1 indicator variables equal to one if the firm uses
robotics (Robot), computer-digital machine tools (CAM), computer-assisted design (CAD), or, combination of
some of the above systems through a central computer (FLEX), where * p < 0.01.

To estimate the output effects associated with the use of different technologies, we follow the

exact same strategy as in Section 5.1 of our paper. Specifically, we estimate Eq. (3) but replace

the robots indicator with our indicators for CAM, CAD, and FLEX, respectively. In Tables A.20,

A.21, and A.22, we report our estimates based on samples of firms that, respectively, do not use

CAM, CAD, or FLEX in the first year they appear in the sample. It turns out that both the
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adoption of computer-digital machine tools and of flexible manufacturing systems through a central

computer raise firm output. However, the magnitudes of the effects are smaller than in the case of

robot adoption. Adopting computer-assisted designs turns out to have no statistically significant

effect on output, although the relevant coefficients are estimated with a positive sign. We also

investigated whether the output effects of robot adoption reported in the main text of our paper

are robust to controlling for alternative systems in the production process. Table A.23 reports the

estimates. The results are striking. We find that including the additional controls has no impact

on the significance and the size of our estimated coefficients for robot adoption. At the same time,

we find that the coefficients of the alternative systems are much smaller than before and, with few

exceptions, insignificant.

Table A.20: Output effects of computer-digital machine tools

Output (in logs)
(1) (2) (3) (4)

CAMt 0.0661** 0.105*** 0.0657** 0.106***
(0.0278) (0.0343) (0.0289) (0.0350)

CAMt−4 0.0794*** 0.0865** 0.0870*** 0.0766**
(0.0287) (0.0337) (0.0295) (0.0346)

CAMt+4 0.0584 0.0350
(0.0382) (0.0382)

Observations 3477 1898 3185 1736
R-squared 0.288 0.343 0.300 0.350
Selection controls No No Yes Yes
Industry-year fixed effects Yes Yes Yes Yes

Notes: CAM is a 0/1 indicator variable equal to one if the firm uses computer-digital machine tools in a period
t. The dependent variable in all columns is the log of the firm’s deflated output. Selection controls (in t − 4) are
the firm’s deflated labor productivity (in logs), deflated capital intensity (in logs), skill intensity (in logs), deflated
R&D intensity (in logs), as well as exporter, importer, and foreign ownership dummies. We add one to all factor
intensity variables before taking logs in order to keep zero observations. The sample is restricted to firms that do
not use CAM in the first year they appear in the sample. Robust standard errors are clustered by firm and given
in parentheses. *,**,*** denote significance at the 10%, 5%, 1% levels, respectively.

We then proceed by investigating the labor market affects of these alternative systems following

our strategy from the main text. Table A.24 reports the effects of adopting CAM, CAD, and FLEX,

respectively. We find positive and significant employment effects for all three systems. However,

the most striking difference when comparing the results for these alternative systems with those of

robots is that only the latter reduce the firm’s labor cost share, as is evident from columns (2a),

(2b), and (2c) in Table A.24. When introducing the alternative systems as further control variables

in our estimations of the labor market effects of robots, we find that this has virtually no impact on

the size and significance of our coefficient estimates; see Tables A.25 and A.26 for estimates with

selection controls and propensity score reweighting, respectively.
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Table A.21: Output effects of computer-assisted design

Output (in logs)
(1) (2) (3) (4)

CADt 0.0223 0.0269 0.0276 0.0318
(0.0340) (0.0397) (0.0370) (0.0436)

CADt−4 0.0535 0.0702 0.0503 0.0584
(0.0356) (0.0448) (0.0371) (0.0463)

CADt+4 -0.0255 -0.0241
(0.0398) (0.0398)

Observations 4493 2532 4115 2326
R-squared 0.219 0.284 0.232 0.285
Selection controls No No Yes Yes
Firm fixed effects Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes

Notes: CAD is a 0/1 indicator variable equal to one if the firm uses computer-assisted design in a period t. The
dependent variable in all columns is the log of the firm’s deflated output. Selection controls (in t − 4) are the
firm’s deflated labor productivity (in logs), deflated capital intensity (in logs), skill intensity (in logs), deflated
R&D intensity (in logs), as well as exporter, importer, and foreign ownership dummies. We add one to all factor
intensity variables before taking logs in order to keep zero observations. The sample is restricted to firms that do
not use CAD in the first year they appear in the sample. Robust standard errors are clustered by firm and given in
parentheses. *,**,*** denote significance at the 10%, 5%, 1% levels, respectively.

Table A.22: Output effects of flexible manufacturing systems

Output (in logs)
(1) (2) (3) (4)

FLEXt 0.0845*** 0.0712* 0.0797** 0.0654*
(0.0308) (0.0368) (0.0315) (0.0394)

FLEXt−4 0.0969** 0.100* 0.0926** 0.0996*
(0.0395) (0.0553) (0.0426) (0.0593)

FLEXt+4 -0.0134 -0.00645
(0.0358) (0.0378)

Observations 3366 1743 3131 1620
R-squared 0.287 0.321 0.309 0.340
Selection controls No No Yes Yes
Firm fixed effects Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes

Notes: FLEX is a 0/1 indicator variable equal to one if the firm uses flexible manufacturing systems through a
central computer in a period t. The dependent variable in all columns is the log of the firm’s deflated output.
Selection controls (in t− 4) are the firm’s deflated labor productivity (in logs), deflated capital intensity (in logs),
skill intensity (in logs), deflated R&D intensity (in logs), as well as exporter, importer, and foreign ownership
dummies. We add one to all factor intensity variables before taking logs in order to keep zero observations. The
sample is restricted to firms that do not use FLEX in the first year they appear in the sample. Robust standard
errors are clustered by firm and given in parentheses. *,**,*** denote significance at the 10%, 5%, 1% levels,
respectively.
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Table A.23: Output effects of robot adoption controlling for other systems in the production
process

Output (in logs)
(1) (2) (3) (4) (5) (6)

Robotst 0.157*** 0.106*** 0.162*** 0.120*** 0.126*** 0.119**
(0.0289) (0.0344) (0.0315) (0.0370) (0.0385) (0.0495)

Robotst−4 0.121*** 0.126*** 0.119*** 0.111** 0.121*** 0.0815
(0.0325) (0.0446) (0.0337) (0.0468) (0.0415) (0.0545)

Robotst+4 0.0743** 0.0471 0.0724
(0.0348) (0.0383) (0.0478)

CAMt 0.0436* 0.0340 0.0422* 0.0247 0.0671** 0.0476
(0.0232) (0.0299) (0.0236) (0.0304) (0.0275) (0.0351)

CAMt−4 0.0297 -0.00699 0.0255 -0.0190 0.0332 -0.0203
(0.0227) (0.0272) (0.0233) (0.0279) (0.0252) (0.0308)

CAMt+4 0.00971 -0.00130 0.0502
(0.0282) (0.0295) (0.0323)

CADt 0.0189 0.00583 0.00546 -0.00641 -0.0219 -0.0296
(0.0292) (0.0365) (0.0324) (0.0410) (0.0396) (0.0464)

CADt−4 0.00805 0.0238 0.00372 0.0128 -0.0172 0.0209
(0.0273) (0.0351) (0.0291) (0.0362) (0.0311) (0.0415)

CADt+4 -0.0216 -0.00727 -0.0168
(0.0355) (0.0380) (0.0439)

FLEXt 0.0256 0.0334 0.0250 0.0401 0.0207 0.0256
(0.0255) (0.0283) (0.0266) (0.0285) (0.0281) (0.0350)

FLEXt−4 -0.00607 -0.00357 -0.00972 -0.0122 -0.0232 -0.00480
(0.0217) (0.0257) (0.0238) (0.0290) (0.0260) (0.0318)

FLEXt+4 -0.0240 -0.0248 -0.00570
(0.0286) (0.0283) (0.0361)

Observations 4977 2813 4570 2574 4633 2634
R-squared 0.240 0.295 0.249 0.294 0.264 0.284
Selection controls No No Yes Yes No No
Propensity scores No No No No Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes Yes Yes

Notes: Robots is a 0/1 indicator variable equal to one if the firm uses robots in a period t. CAM is a 0/1 indicator
variable equal to one if the firm uses computer-digital machine tools in a period t. CAD is a 0/1 indicator variable
equal to one if the firm uses computer-assisted design in a period t. FLEX is a 0/1 indicator variable equal to one
if the firm uses flexible manufacturing systems through a central computer in a period t. The dependent variable
in all columns is the log of the firm’s deflated output. Selection controls (in t − 4) are the firm’s deflated labor
productivity (in logs), deflated capital intensity (in logs), skill intensity (in logs), deflated R&D intensity (in logs),
as well as exporter, importer, and foreign ownership dummies. We add one to all factor intensity variables before
taking logs in order to keep zero observations. For details on the propensity score reweighting estimator see the
text. The sample is restricted to firms that do not use robots in the first year they appear in the sample. Robust
standard errors are clustered by firm and given in parentheses. *,**,*** denote significance at the 10%, 5%, 1%
levels, respectively.
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A.12 Regression results for two different samples

Here we present estimation results akin to the one presented throughout Sections 4 and 5 for two

different samples. In a first sample we include all 644 firms that start to use robots, even though

some of them switch back and forth several times, see Table A.27 for the selection analysis and

Tables A.28 and A.29 for the treatment analysis. In a second sample we restrict the focus only on

those 397 firms that start to use robots and continuously report to use robots in the production

process afterwards, see Table A.30 for the selection analysis and Tables A.31 and A.32 for the

treatment analysis.
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Table A.27: Selection into robot adoption: Cross-sectional specification – all firms

Robot adoption (0/1 indicator)
Base year (1) (2) (3) (4) (5) (6) (7)
Output 0.0352*** 0.0406*** 0.0293*** 0.0345*** 0.0376*** 0.0400*** 0.0447***

(0.00533) (0.00606) (0.00617) (0.00677) (0.00720) (0.00748) (0.00965)

Labor productivity -0.0111 -0.00414 0.0138
(0.0120) (0.0129) (0.0181)

Skill intensity -0.331*** -0.317** -0.348*** -0.337** -0.225
(0.126) (0.132) (0.132) (0.132) (0.148)

Share of manu- 0.289** 0.278** 0.280** 0.281** 0.247*
facturing workers (0.116) (0.121) (0.122) (0.123) (0.137)

Share of production 0.0453* 0.0471* 0.0481* 0.0446* 0.0247
workers (0.0240) (0.0247) (0.0249) (0.0251) (0.0319)

Exporter 0.0360** 0.0363** 0.0371** 0.0380** 0.0554***
(0.0162) (0.0167) (0.0167) (0.0168) (0.0211)

Assimilation of foreign . 0.0463* 0.0318 0.0303 0.0296 -0.00597
technologies (0.0240) (0.0247) (0.0249) (0.0249) (0.0371)

Importer 0.0101 0.0186 0.0154 0.0134 0.00462
(0.0161) (0.0169) (0.0170) (0.0170) (0.0230)

Foreign owned -0.0310 -0.0330 -0.0375 -0.0372 -0.0617
(0.0292) (0.0298) (0.0301) (0.0303) (0.0422)

Capital intensity 0.0203*** 0.0188*** 0.0188*** 0.0179** 0.0181** 0.0192*** 0.0123
(0.00663) (0.00701) (0.00670) (0.00708) (0.00723) (0.00735) (0.00890)

R&D intensity 0.0174 0.0291 0.00750 0.0215 0.0226 0.0222 -0.0175
(0.0198) (0.0206) (0.0202) (0.0210) (0.0215) (0.0215) (0.0240)

Average wage -0.0340 -0.0879***
(0.0237) (0.0331)

Interest rate 0.00001
(0.0037)

Observations 3611 3434 3494 3322 3283 3266 1506
R-squared 0.160 0.166 0.159 0.164 0.168 0.168 0.213

Notes: The dependent variable in all columns is a 0/1 indicator variable equal to one if the firm adopts robots during
our sample period and zero otherwise. Output is the firm’s deflated output value (in logs). Labor productivity is
the firm’s deflated value added per worker (in logs). Skill intensity is the firm’s share of workers with a five-year
university degree (in logs). Share manufacturing is the firm’s share of manufacturing workers (in logs). Share
production is the firm’s share of production workers (in logs). Exporter is a dummy variable for positive exports.
Assimilation of foreign tech. is a dummy variable indicating whether the firm assimilated foreign technologies.
Importer is a dummy variable for positive imports. Foreign owned is a dummy variable for foreign ownership (equal
to one if the firm is foreign owned by more than 50 percent and zero otherwise). Capital intensity is defined as the
firm’s deflated capital stock per worker (in logs). R&D intensity is defined as the firm’s deflated R&D expenditures
relative to its deflated total sales (in logs). Average wage is defined as the firm’s labor costs divided by the total
number of workers (in logs). Interest rate is defined as the firm’s interest rate on short-term dept (in percent). All
estimates include industry-base-year fixed effects. We add one to all factor intensity variables before taking logs
in order to keep zero observations. Therefore, all estimates include dummy variables (not reported) equal to one
whenever the respective factor intensity variable is equal to zero before adding one. All explanatory variables are
measured in the base year defined as the first year the firm appears in the sample. The sample is restricted to firms
that do not use robots in the first year they appear in the sample. Robust standard errors are given in parentheses.
*,**,*** denote significance at the 10%, 5%, 1% levels, respectively.
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Table A.28: Output effects of robot adoption – all firms

Output (in logs)
(1) (2) (3) (4) (5) (6)

Robotst 0.125*** 0.0938*** 0.139*** 0.103*** 0.0982*** 0.0880**
(0.0257) (0.0300) (0.0282) (0.0329) (0.0345) (0.0447)

Robotst−4 0.0906*** 0.0833** 0.0918*** 0.0695* 0.113*** 0.0816*
(0.0288) (0.0354) (0.0309) (0.0372) (0.0361) (0.0427)

Robotst+4 0.0631** 0.0359 0.0910**
(0.0295) (0.0326) (0.0416)

Observations 5283 3044 4855 2788 4791 2761
R-squares 0.239 0.300 0.252 0.296 0.264 0.288
Selection controls No No Yes Yes No No
Propensity scores No No No No Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes Yes Yes

Notes: Robots is a 0/1 indicator variable equal to one if the firm uses robots in the specified period. The dependent
variable in all columns is the log of the firm’s deflated output value. Selection controls (in t−4) are the firm’s deflated
labor productivity (in logs), deflated capital intensity (in logs), skill intensity (in logs), deflated R&D intensity (in
logs), as well as exporter, importer, and foreign ownership dummies. We add one to all factor intensity variables
before taking logs in order to keep zero observations. For details on the propensity score reweighting estimator see
the text. The sample is restricted to firms that do not use robots in the first year they appear in the sample. Robust
standard errors clustered by firm are given in parentheses. *,**,*** denote significance at the 10%, 5%, 1% levels,
respectively.
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Table A.29: Labor market effects of robot adoption – all firms

Employment Labor cost Low-skilled High-skilled Manufacturing Share of manuf. Average wage
share employment employment

PANEL A: Selection Controls (1a) (2a) (3a) (4a) (5a) (6a) (7a)
Robotst 0.0543** -0.0296*** 0.0539** 0.0534 0.0370 -0.00744 -0.00267

(0.0220) (0.00755) (0.0226) (0.0339) (0.0243) (0.00492) (0.0102)
Robotst−4 0.0462** -0.0205** 0.0373* 0.0970*** 0.0446* -0.00285 -0.00778

(0.0219) (0.00899) (0.0223) (0.0320) (0.0229) (0.00404) (0.0130)
Observations 4857 4825 4830 4830 4850 4850 4816
R-squared 0.202 0.156 0.210 0.142 0.203 0.054 0.625
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes Yes Yes Yes

PANEL B: Propensity Score (1b) (2b) (3b) (4b) (5b) (6b) (7b)
Robotst 0.0548** -0.0180* 0.0625** 0.0485 0.0392 -0.00724 0.00238

(0.0248) (0.00971) (0.0257) (0.0389) (0.0274) (0.00613) (0.0152)
Robotst−4 0.0600* -0.0242** 0.0606* 0.0559 0.0596* -0.00293 -0.00851

(0.0314) (0.0111) (0.0312) (0.0413) (0.0314) (0.00450) (0.0151)
Observations 4790 4751 4765 4765 4781 4781 4741
R-squared 0.210 0.202 0.224 0.157 0.237 0.120 0.669
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes Yes Yes Yes

Notes: All dependent variables are expressed in logs except for the labor cost share and the share of manufacturing employment. Robots is a 0/1 indicator variable
equal to one if the firm uses robots in the specified period. Selection controls (in t− 4) are the firm’s deflated labor productivity (in logs), deflated capital intensity
(in logs), skill intensity (in logs), deflated R&D intensity (in logs), as well as exporter, importer, and foreign ownership dummies. We add one to all factor intensity
variables before taking logs in order to keep zero observations. For details on the propensity score reweighting estimator see the text. The sample is restricted
to firms that do not use robots in the first year they appear in the sample. Robust standard errors clustered by firm are given in parentheses. *,**,*** denote
significance at the 10%, 5%, 1% levels, respectively.
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Table A.30: Selection into robot adoption: Cross-sectional specification – continuous adoption
firms

Robot adoption (0/1 indicator)
Base year (1) (2) (3) (4) (5) (6) (7)
Output 0.0325*** 0.0365*** 0.0282*** 0.0323*** 0.0357*** 0.0387*** 0.0376***

(0.00475) (0.00541) (0.00552) (0.00604) (0.00643) (0.00667) (0.00907)

Labor productivity -0.0136 -0.00508 0.0222
(0.0105) (0.0111) (0.0170)

Skill intensity -0.297*** -0.287** -0.314*** -0.301*** -0.159
(0.111) (0.115) (0.113) (0.112) (0.139)

Share of manu- 0.184* 0.158 0.160 0.160 0.183
facturing workers (0.107) (0.112) (0.113) (0.115) (0.130)

Share of production 0.0209 0.0177 0.0169 0.0125 0.0176
workers (0.0223) (0.0230) (0.0233) (0.0234) (0.0311)

Exporter 0.0254* 0.0252* 0.0237 0.0245* 0.0389*
(0.0143) (0.0147) (0.0148) (0.0148) (0.0201)

Assimilation of foreign 0.0492** 0.0374 0.0337 0.0328 0.0109
technologies (0.0223) (0.0228) (0.0230) (0.0231) (0.0357)

Importer 0.00469 0.00988 0.00918 0.00710 -0.00682
(0.0141) (0.0149) (0.0150) (0.0150) (0.0218)

Foreign owned -0.0276 -0.0381 -0.0376 -0.0365 -0.0554
(0.0275) (0.0281) (0.0285) (0.0286) (0.0414)

Capital intensity 0.0143*** 0.0130** 0.0127** 0.0119** 0.0126** 0.0142** 0.0115
(0.00553) (0.00584) (0.00562) (0.00595) (0.00605) (0.00613) (0.00812)

R&D intensity 0.00556 0.0132 -0.00415 0.00437 0.00556 0.00510 -0.00745
(0.0183) (0.0190) (0.0188) (0.0195) (0.0200) (0.0200) (0.0225)

Average wage -0.0428** -0.0837***
(0.0200) (0.0315)

Interest rate 0.0011
(0.0034)

Observations 3391 3220 3289 3122 3086 3069 1473
R-squared 0.149 0.153 0.147 0.148 0.154 0.155 0.197

Notes: The dependent variable in all columns is a 0/1 indicator variable equal to one if the firm adopts robots during
our sample period and zero otherwise. Output is the firm’s deflated output value (in logs). Labor productivity is
the firm’s deflated value added per worker (in logs). Skill intensity is the firm’s share of workers with a five-year
university degree (in logs). Share manufacturing is the firm’s share of manufacturing workers (in logs). Share
production is the firm’s share of production workers (in logs). Exporter is a dummy variable for positive exports.
Assimilation of foreign tech. is a dummy variable indicating whether the firm assimilated foreign technologies.
Importer is a dummy variable for positive imports. Foreign owned is a dummy variable for foreign ownership (equal
to one if the firm is foreign owned by more than 50 percent and zero otherwise). Capital intensity is defined as the
firm’s deflated capital stock per worker (in logs). R&D intensity is defined as the firm’s deflated R&D expenditures
relative to its deflated total sales (in logs). Average wage is defined as the firm’s labor costs divided by the total
number of workers (in logs). Interest rate is defined as the firm’s interest rate on short-term dept (in percent). All
estimates include industry-base-year fixed effects. We add one to all factor intensity variables before taking logs
in order to keep zero observations. Therefore, all estimates include dummy variables (not reported) equal to one
whenever the respective factor intensity variable is equal to zero before adding one. All explanatory variables are
measured in the base year defined as the first year the firm appears in the sample. The sample is restricted to firms
that do not use robots in the first year they appear in the sample. Robust standard errors are given in parentheses.
*,**,*** denote significance at the 10%, 5%, 1% levels, respectively.
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Table A.31: Output effects of robot adoption – continuous adoption firms

Output (in logs)
(1) (2) (3) (4) (5) (6)

Robotst 0.198*** 0.118** 0.195*** 0.124** 0.125** 0.266***
(0.0398) (0.0567) (0.0427) (0.0627) (0.0567) (0.0901)

Robotst−4 0.136*** 0.119** 0.142*** 0.0802 0.158** 0.0556
(0.0464) (0.0598) (0.0481) (0.0649) (0.0709) (0.0952)

Robotst+4 0.0990* 0.0772 0.0209
(0.0506) (0.0525) (0.0684)

Observations 4396 2410 4061 2218 4193 2314
R-squared 0.240 0.297 0.252 0.294 0.264 0.290
Selection controls No No Yes Yes No No
Propensity scores No No No No Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes Yes Yes

Notes: Robots is a 0/1 indicator variable equal to one if the firm uses robots in the specified period. The dependent
variable in all columns is the log of the firm’s deflated output value. Selection controls (in t−4) are the firm’s deflated
labor productivity (in logs), deflated capital intensity (in logs), skill intensity (in logs), deflated R&D intensity (in
logs), as well as exporter, importer, and foreign ownership dummies. We add one to all factor intensity variables
before taking logs in order to keep zero observations. For details on the propensity score reweighting estimator see
the text. The sample is restricted to firms that do not use robots in the first year they appear in the sample. Robust
standard errors clustered by firm are given in parentheses. *,**,*** denote significance at the 10%, 5%, 1% levels,
respectively.
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Table A.32: Labor market effects of robot adoption – continuous adoption firms

Employment Labor cost Low-skilled High-skilled Manufacturing Share of manuf. Average wage
share employment employment

PANEL A: Selection Controls (1a) (2a) (3a) (4a) (5a) (6a) (7a)
Robotst 0.0596* -0.0414*** 0.0501 0.135*** 0.0370 -0.00520 -0.00448

(0.0339) (0.0101) (0.0351) (0.0497) (0.0404) (0.00909) (0.0152)
Robotst−4 0.0650* -0.0422*** 0.0564 0.0668 0.0642* -0.00750 -0.0225

(0.0344) (0.0125) (0.0362) (0.0608) (0.0367) (0.00744) (0.0205)
Observations 4062 4033 4043 4043 4055 4055 4025
R-squared 0.200 0.173 0.206 0.151 0.205 0.066 0.630
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes Yes Yes Yes

PANEL B: Propensity Score (1b) (2b) (3b) (4b) (5b) (6b) (7b)
Robotst 0.0699* -0.0163 0.0733* 0.00749 0.0703* 0.00596 0.00623

(0.0385) (0.0158) (0.0388) (0.0637) (0.0401) (0.00912) (0.0244)
Robotst−4 0.0865 -0.0466** 0.0893 0.0788 0.0786 -0.0124 -0.0210

(0.0551) (0.0201) (0.0580) (0.0915) (0.0547) (0.00926) (0.0271)
Observations 4192 4156 4173 4173 4184 4184 4147
R-squared 0.209 0.211 0.221 0.166 0.243 0.137 0.670
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes Yes Yes Yes

Notes: All dependent variables are expressed in logs except for the labor cost share and the share of manufacturing employment. Robots is a 0/1 indicator variable
equal to one if the firm uses robots in the specified period. Selection controls (in t− 4) are the firm’s deflated labor productivity (in logs), deflated capital intensity
(in logs), skill intensity (in logs), deflated R&D intensity (in logs), as well as exporter, importer, and foreign ownership dummies. We add one to all factor intensity
variables before taking logs in order to keep zero observations. For details on the propensity score reweighting estimator see the text. The sample is restricted
to firms that do not use robots in the first year they appear in the sample. Robust standard errors clustered by firm are given in parentheses. *,**,*** denote
significance at the 10%, 5%, 1% levels, respectively.
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A.13 Labor market effects of robot adoption – controlling for collective dis-

missals

Robot adoption can be seen as a disruptive event on employment within firms. In this subsection,

we aim to shed further light on the impact of robot adoption on employment, while controlling

for collective dismissals within firms. We do so, by using explicit information in the data set on a

change in regular workers due to redundancies. Specifically, the survey asks firms (yes/no) whether

there has been a significant change in the regular workforce due to a “reduction in the workforce

(termination of contracts, early retirement, incentives for leaves of absence, etc.)” over the last

year.60 We use this information to construct an indicator variable equal to one if there was a

significant change in the current year. The question has been included in the survey every year

since 1993. In less than 9% of all firm-year observations, the indicator variable is equal to one. The

mean (SD) of the indicator variable is 0.084 (0.277) for non-adopters and 0.103 (0.304) for robot

adopting firms.

In a first step, we investigate whether robot adoption is associated with an in-crease in the

likelihood of collective dismissals. To do so, we follow the strategy from Table 2 and use the

indicator variable for collective dismissals as an alternative outcome variable. Results presented

in Table A.33 indicate no statistically significant and robust (linear) relationship between robot

adoption and collective dismissals.

60The original wording in Spanish is: “Reducción de plantilla (expedientes con extinción de contratos, jubilaciones
anticipadas, bajas incentivada, etc.)”
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Table A.33: Robot adoption and the likelihood of collective dismissals

Collective dismissals
(1) (2) (3) (4) (5) (6)

Robotst 0.0190 -0.0337 0.00281 -0.0460* 0.0479** -0.0268
(0.0203) (0.0262) (0.0198) (0.0250) (0.0241) (0.0397)

Robotst−4 -0.0109 -0.0378 -0.0186 -0.0467 0.0119 -0.0611*
(0.0218) (0.0349) (0.0234) (0.0369) (0.0316) (0.0354)

Robotst+4 -0.0498** -0.0461* -0.00318
(0.0246) (0.0272) (0.0267)

Observations 4986 2811 4587 2580 4632 2633
R-squared 0.057 0.090 0.076 0.118 0.101 0.118
Selection controls No No Yes Yes No No
Propensity scores No No No No Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes Yes Yes

Notes: Robots is a 0/1 indicator variable equal to one if the firm uses robots in the specified period. The dependent
variable in all columns is a 0/1 indicator variable equal to one if there has been a significant change in the regular
workforce due to any workforce reduction. Selection controls (in t − 4) are the firm’s deflated labor productivity
(in logs), deflated capital intensity (in logs), skill intensity (in logs), deflated R&D intensity (in logs), as well as
exporter, importer, and foreign ownership dummies. We add one to all factor intensity variables before taking logs in
order to keep zero observations. For details on the propensity score reweighting estimator see the text. The sample
is restricted to firms that do not use robots in the first year they appear in the sample. Robust standard errors
clustered by firm are given in parentheses. *,**,*** denote significance at the 10%, 5%, 1% levels, respectively.

In a second step, we rerun the estimation from Table 3 while using the indicator variable

for collective dismissals in the current and previous years as further control variables. Results

from this exercise are presented in Tables A.34 and A.35. Comparing the indicator variable for

robots (in t and t − 4) to the estimated coefficients reported in the main text in Table 3, one can

conclude that this does very little to our estimated effects of robot adoption on different labor market

outcomes. Furthermore, the estimated coefficients for collective dismissals reveal a negative effect

on employment (column 1), which is concentrated among low-skilled (column 3) and manufacturing

(column 5) workers. In an additional set of estimates, we also include interaction terms between

robot adoption and collective dismissals (in t and t − 4). It turns out that the interaction terms

are not statistically different from zero and do not change the results presented in Tables A.34 and

A.35.
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