
Liquidity in Residential Real Estate Markets*

Nadia Kotova†and Anthony Lee Zhang‡

December 2020

Abstract

We develop two model-based measures of housing market liquidity: time-on-
market and price dispersion. We show how these arise from a search-and-bargaining
model of housing markets, in which sellers face a trade-off between selling quickly
and selling at high prices. The tradeoffs faced by individual sellers aggregate to a
market-level relationship between average time on market and average idiosyncratic
price dispersion. We measure time-on-market and price dispersion in a large sample
of US counties, and show cross-sectional and time-series evidence supporting the
predictions of our model. Calibrated to the data, the model can simultaneously match
the macro-relationships between TOM and PD, and produce micro-estimates of the
TOM-price tradeoff which are consistent with estimates in the housing literature.
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1 Introduction

Residential real estate is a very illiquid asset class. Many measures designed to measure
the “liquidity” or “hotness” of housing markets, in the cross-section and over time, are
closely monitored and discussed by industry participants.1 While these measures often
have intuitive interpretations, there has been relatively little academic work discussing
how liquidity should be measured, in a microfounded model of frictional housing markets.

In this paper we develop model-based aggregate measures of housing market liquidity.
We focus on two measures: seller time-on-market and idiosyncratic house price dispersion.
We show how these arise from a search-and-bargaining model of housing markets, in
which sellers face a trade-off between selling quickly and selling at high prices. We use
this theoretical framework to argue that neither time on market nor price dispersion
alone are sufficient as metrics of market liquidity. However, we can use the empirical
relationship between the two measures and the structure of our model to quantify the
menu of prices and time on markets individual sellers face. Under our model estimates, a
seller who chooses to spend an additional month on the market sells at a 5.33% higher
price.

We start by building a tractable search-and-bargaining model of a housing market. In
our model, price dispersion arises from heterogeneity in seller and buyer preferences:
sellers have different utility costs of keeping their houses on the market per unit time, and
buyers receive an independent match quality shock every time they match with a house.
Both dimensions of heterogeneity affect distribution of prices in equilibrium. Buyers
with higher match quality draws pay higher prices, and sellers with higher holding costs
sell for lower prices. We study how the supply of liquidity, measured by ratio of buyers
to sellers, and the demand for liquidity, measured by average holding costs of sellers,
determine time on market and price dispersion in equilibrium.

In sellers’ markets with many buyers, liquidity supply is high, and time on market and
price dispersion are both low. Hence, shifts in liquidity supply cause time on market and
price dispersion to co-move positively. On the contrary, shifts in liquidity demand cause
them to co-move negatively. When sellers have higher holding costs, their demand for
liquidity is higher. Sellers collectively sell faster, even though this causes prices to be lower

1Some examples are Realtor.com’s Market Hotness Index, Zillow’s report on Hottest Markets for 2019,
Redfin’s report on Hottest Neighborhoods 2020, and an Inman article on hotness in the Chicago housing
market.
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and more dispersed. This leads to lower time-on-market, but higher price dispersion. This
implies that neither time on market nor price dispersion alone are sufficient for measuring
housing market liquidity. In particular, time on market can be low both because liquidity
supply is high or because liquidity demand is high. We next argue that patterns in the
data are consistent with both supply and demand factors being important drivers of
equilibrium outcomes.

To test our model predictions in the data, we first measure average time on market and
average idisyncratic price dispersion at the county level. We use the CoreLogic MLS and
Deed datasets, which contain US-wide microdata on house listings and sales respectively,
to measure time on market and idiosyncratic price dispersion. To measure price dispersion,
we regress log sale prices of houses on county-month fixed effects, house fixed effects, and
a smooth function of house characteristics and time. This approach combines repeat-sales
and hedonic specifications for house prices: it absorbs time-invariant house quality into
the house fixed effects, and also allows observable house characteristics to affect the
evolution of house prices over time. We measure price dispersion using the squared
residuals from this regression, which we can aggregate flexibly across locations and over
time.

This strategy for measuring price dispersion is novel to the literature. The main
innovation is that we use individual house sales rather than returns between sales as the
primary unit of analysis. The benefit of our approach is that our estimates of idiosyncratic
price dispersion can be flexibly aggregated cross-sectionally and over time, while return-
based dispersion estimates can only be aggregated cross-sectionally. This measurement
strategy allows us to produce a set of novel stylized facts about idiosyncratic price
dispersion that we describe next.

Before testing our model predictions, we document a number of stylized facts about
the behavior of time-on-market and price dispersion in the time series. We show that
time-on-market and price dispersion are countercyclical and seasonal, and track other
measures of “market hotness”, such as sales volume and average price. At business cycle
frequencies, both price dispersion and time-on-market are countercyclical: both metrics
fell during the 2000-2006 housing boom, rose during the 2006-2012 crash, and fell again
during the recovery. Seasonally, price dispersion and time-on-market are lower in the
summer hot season, and higher in the winter cold season. These results suggest that
time-on-market and price dispersion both behave like measures of market hotness in
the time series. While time on market has been extensively studied in the literature, we
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believe we are the first to document the seasonality and cyclicity of idiosyncratic house
price dispersion.

We proceed to test the predictions of our model in the cross-section of counties. In
order to test the model, we need empirical proxies for liquidity supply and demand.
We use two proxies for liquidity supply: county net migration rate and vacancy rate.
Net migration rate is a direct measure of buying pressure: a county which has high
inmigration rate should have a large mass of buyers interested in purchasing houses.
Vacancy rate is an inverse measure of liquidity supply: high vacancy rate indicates that
there is a large quantity of houses waiting to be sold, relative to buyers, indicating that
the supply of liquidity is low. Using these proxies, we verify the predictions of our model.
Net inmigration is negatively correlated with both price dispersion and time-on-market,
and vacancy rates are positively correlated with both liquidity metrics.

Our proxy for liquidity demand is the ratio of average household income to average
house prices. Intuitively, household income is a direct measure of the value of house sellers’
time. Holding fixed house prices, higher-income sellers should rationally be willing to
sell faster, even if this lowers sale prices, since their opportunity cost of time is higher.
Our model thus predicts that higher-income areas should have lower time-on-market, but
actually higher price dispersion. We verify this prediction in the data.

Our empirical results survive a number of robustness checks. Our results are robust
to three other methods for estimating price dispersion: a pure hedonic price model, a
pure repeat-sales model, and a model in which estimated residuals are nonparametrically
adjusted for the number of times a house is sold, and the average time between house
sales. Our results are robust to using two alternative time-on-market measures, from
Zillow and Realtor.com. Moreover, we argue that our empirical results are difficult to
explain using alternative theories, such as unobserved house heterogeneity, asymmetric
information, and adverse selection.

Quantitatively, we use empirical relationship between time on market and price
dispersion to estimate the menu of prices and time-on-markets that sellers with different
holding costs face. Under our model estimates, a seller who chooses to spend an additional
month on the market sells at a price 5.33% higher. We survey a number of papers in the
literature about the micro-trade off between time on market and prices, and show that
estimates of the 1-month effect range from 1.9% to around 11%. Thus, our model shows
that a single set of primitives can simultaneously match the macro-relationship between
time on market and price dispersion, and the micro-level liquidity discounts.
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1.1 Related literature

This paper is related to a number of papers that study idiosyncratic house price volatility.
An early paper studying the topic is Case and Shiller (1988). Giacoletti (2017) studies
the residential real estate market in California and shows that idiosyncratic house price
risk does not scale with holding period, which suggests that much of idiosyncratic house
price volatility is due to liquidity risk. Sagi (2015), using commercial real estate data, also
documents that idiosyncratic risk does not scale one-to-one with holding periods, and
constructs a search model to rationalize these results.

Peng and Thibodeau (2017) calculates price dispersion at the zipcode level using a
hedonic regression specification and documents relationships between idiosyncratic price
dispersion and characteristics of zipcodes such as average income. Two other papers which
measure idiosyncratic price dispersion are Anenberg and Bayer (2015) and Landvoigt,
Piazzesi and Schneider (2015). Another related paper is Ben-Shahar and Golan (2019),
who show that improved disclosure of transaction prices reduced price dispersion in the
Israeli housing market.

In terms of the modeling approach, our work fits into the literature on applying search-
and-bargaining models2 to housing markets3 and to financial markets more generally.4

Relative to this literature, an innovation of our model is that we allow for continuously
distributed persistent seller values as well as match-specific quality shocks. In an appendix,
we show that the model can also accommodate continuously distributed persistent buyer
values.

A few papers which have closely related models to ours are Albrecht et al. (2007), Al-
brecht, Gautier and Vroman (2016), Anenberg and Bayer (2015), and Sagi (2015). Albrecht
et al. (2007) study a random search model of the housing market with two seller types.
Albrecht, Gautier and Vroman (2016) construct a directed housing search model with two
seller types, which can predict sellers’ asking prices and the sale-to-ask spread. Anenberg

2For earlier applications to labor markets, see, for example, Mortensen and Pissarides (1994), or the
survey article Rogerson, Shimer and Wright (2005)

3See, for example, Wheaton (1990), Albrecht et al. (2007), Piazzesi and Schneider (2009), Genesove
and Han (2012), Anenberg and Bayer (2015), Ngai and Tenreyro (2014), Head, Lloyd-Ellis and Sun (2014),
Piazzesi, Schneider and Stroebel (2015), Sagi (2015), Albrecht, Gautier and Vroman (2016), Guren (2018),
Gabrovski and Ortego-Marti (2019a), Gabrovski and Ortego-Marti (2019b), Arefeva (2019), Guren and
McQuade (2019), and Ouazad and Rancière (2019).

4See, for example, Duffie, Gârleanu and Pedersen (2005), Duffie, Gârleanu and Pedersen (2007), Vayanos
and Wang (2007), Vayanos and Weill (2008), Weill (2008), Afonso (2011), Duffie, Qiao and Sun (2017),
Gavazza (2016), Trejos and Wright (2016), Hugonnier, Lester and Weill (2018).
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and Bayer (2015) allows continuous match quality shocks and a discrete number of seller
types. Sagi (2015) allows a discrete number of seller types.

The fact that volume, prices, and time-on-market are correlated in housing markets is
the subject of a number of papers; see, for example, Stein (1995), Krainer (2001), Genesove
and Mayer (2001), Leung, Lau and Leong (2002), Clayton, Miller and Peng (2010), Diaz
and Jerez (2013), and DeFusco, Nathanson and Zwick (2017). Our contribution to this
literature is to show how idiosyncratic price dispersion co-moves with these variables at
the aggregate level.

Two other papers that analyze the relationship between list prices and time-on-market
at the level of individual house sales are Drenik, Herreno and Ottonello (2019), who study
Spanish commercial real estate, and Guren (2018). Drenik, Herreno and Ottonello (2019)
attempts to rationalize the data using adverse selection, without search frictions, and
Guren (2018) emphasizes strategic complementarity in sellers’ price-setting decisions. Our
model abstracts away from both of these forces, focusing on market tightness and its
effects on price dispersion.

1.2 Outline

The rest of the paper proceeds as follows. Section 2 describes our model, theoretical
results, and predictions. Section 3 describes our data and measurement strategy. Section
4 contains our empirical results, and Section 5 does robustness checks and discusses
alternative explanations of our results. Section 6 describes our calibration. Section 7
discusses implications of our findings and concludes.

2 Model

2.1 Primitives

There is a unit mass of houses which are ex-ante identical. Time is continuous, and all
agents discount the future at rate r. There are three kinds of agents in the model: sellers,
buyers, and matched homeowners. The lifecycle of agents in the model is as follows:
buyers purchase houses and become matched homeowners, matched homeowners receive
separation shocks to become sellers, and sellers leave the market upon successfully selling
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their houses.

Sellers. We use MS to denote the mass of sellers in the market who are waiting to sell
their houses to buyers. Sellers are matched homeowners who have received separation
shocks from their houses. Once a seller successfully sells her house, she permanently
leaves the market, attaining a continuation value which we normalize to 0.

Sellers are heterogeneous, characterized by some time-invariant holding cost, c, which
she incurs per unit time her house is on the market. c is drawn from F (·) when a
homeowner unmatches from her house and becomes a seller. In the main text, we assume
that F (·) is uniform, with mean c̄ and support [c̄−∆c, c̄+∆c]. We use VS (c) to denote
the expected utility of a seller with cost c in equilibrium. We use Feq (c) denote the
distribution of holding utilities among sellers in stationary equilibrium, which will in
general differ from F (c).

The parameter c represents the dollar value of sellers for staying on the market a unit
of time longer. Sellers with higher values of c are less willing to stay on market, and will
tend to sell faster, but at lower prices. Sellers with low values of c are willing to wait
longer to sell for higher prices. c thus represents a classic tradeoff documented in the
housing literature, between time-on-market and prices.

There are many possible sources of differences in c. Since selling houses involves
significant time and effort for owners, agents with higher incomes may have higher values
of c; they may be willing to sell faster, even if this means accepting lower prices. Sellers
who are moving within the same city may be willing to hold on to their houses for longer
than sellers who are moving out of the city.5 Sellers who have less home equity to extract
upon sale may have a relatively high value of cash, and thus will be willing to wait longer
to sell at higher prices (Genesove and Mayer (1997), Guren (2018)). We survey papers
which document other drivers of sellers’ effective holding costs in table 5, which we
discuss in subsection 6.2. Our model remains agnostic with respect to the exact source of
this heterogeneity.

Buyers. Our model of buyers is similar to Head, Lloyd-Ellis and Sun (2014). Potential
buyers enter the market at some exogeneous flow rate ηB, and each buyer draws a value
ξ ∼ H (·) for entering the city. ξ can be thought of as representing the attractiveness of
amenities and job opportunities in the county, which may vary idiosyncratically across

5This is related to Anenberg and Bayer (2015), who study a model in which sellers may buy houses
before attempting to sell their houses; sellers who buy before selling and who sell before buying will thus
endogenously have different flow utilities from their houses.
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buyers. After observing ξ, each potential buyer can choose to either enter the city, receiving
utility ξ immediately and becoming an active homebuyer, or leave forever, receiving utility
normalized to 0. As in Head, Lloyd-Ellis and Sun (2014), we assume that entry decisions
are irreversible.

We use MB to denote the mass of active buyers who are present in the market. All
active buyers are identical, and receive flow utility normalized to 0 while waiting to
buy a house. Buyers meet sellers through a process we describe below. When a buyer
meets a seller, he draws, independently across matches, some idiosyncratic match utility
ε ∼ G (·) for the house. If the buyer buys the house, he becomes a matched homeowner,
receiving ε from the house per unit time, until he receives a separation shock and becomes
a seller. We assume that G (·) is non-centered exponential, with lower bound ε0, and
standard deviation σε. We use VB to denote the expected value of an unmatched buyer in
equilibrium.

Matched homeowners. Matched homeowners are buyers who have purchased houses,
and have not yet received separation shocks to become sellers. Each house is owned
either by a matched homeowner or a seller, so the mass of matched homeowners is always
1 −MS. A homeowner with match utility ε receives flow utility ε from their house per
unit time. Homeowners receive separation shocks at Poisson rate λM. When a homeowner
receives a separation shock, she draws some c ∼ F (·), and becomes a seller with cost c.

We use Geq (ε) to denote the distribution of match utilities among matched homeown-
ers; this will, in general, differ from G (ε), the distribution of match utilities that buyers
draw when they meet sellers, because higher draws of ε are more likely to result in a
successful trade.

Price determination. We assume that prices are set through bilateral Nash bargaining.
Suppose that a buyer is matched with a seller with holding cost c, and the buyer draws
match utility ε. If the buyer purchases at price P, the buyer receives VM (ε) − P, and the
seller leaves the market and receives P. If the buyer does not purchase, the buyer receives
VB and the seller receives VS (c). The bilateral match surplus from trade, as a function of
ε and c, is thus:

VM (ε) − VB − VS (c) (1)

We assume trade occurs in all cases where the bilateral match surplus is nonnegative.
Thus, a seller with holding cost c will trade with any buyer with match utility ε higher
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than some trade cutoff ε∗ (c), which satisfies:

VM (ε∗ (c)) = VB + VS (c)

When trade occurs, we assume that the price is set to give the seller a share θ of the
bilateral match surplus. That is, the trade price P (c, ε) is:

P (c, ε) = VS (c) + θ (VM (ε) − VB − VS (c)) (2)

We will assume that ε0 is sufficiently low that, in equilibrium,

ε∗ (c) > ε0 ∀c

that is, no seller type wishes to trade with all buyer types.

2.2 Stationary equilibrium

Stationary equilibrium, in our model, requires two sets of conditions to be satisfied: the
decisions of entrants, buyers, sellers, and matched homeowners must be optimal; and
inflows and outflows of all kinds of agents must be equal. The following proposition sum-
marizes the equilibrium conditions in our model. Formal derivations of these conditions
are in Appendix A.1.

Proposition 1. Given primitives:

r,α,φ, θ, λM,ηB, c̄,∆c, ε0,σε,H(·)

a stationary equilibrium of the model is described by buyer and seller masses MB,MS, stationary
distributions Feq (c) and Geq (ε), matching rates λS, λB, value functions VS (c) ,VM (ε) ,VB, and
a trade cutoff function ε∗ (c), which satisfy the following conditions:

Buyer, seller, and matched owner Bellman equations:

rVB = λB

ˆ ˆ
ε>ε∗(c)

[(1 − θ) (VM (ε) − VB − VS (c))]dG (ε)dFeq (c) (3)

rVS (c) = −c+ λS

ˆ
ε>ε∗(c)

θ (VM (ε) − VB − VS (c))dG (ε) (4)
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rVM (ε) = ε+ λM

(ˆ
VS (c)dF (c) − VM (ε)

)
(5)

Trade cutoffs:
VM (ε∗ (c)) = VS (c) + VB (6)

Matching rates:
MSλS =MBλB = αMφ

BM
1−φ
S (7)

Flow equality:
(1 −MS) λMf (c) = λSMSfeq (c) (1 −G (ε∗ (c))) (8)

Geq (ε) =

´
c λSMS

[´ ε
ε̃=ε0

1 (ε̃ > ε∗ (c))dG (ε̃)
]
dFeq (c)´

c λSMS (1 −G (ε∗ (c)))dFeq (c)
(9)

(1 −MS) λM = ηB (1 −H (−VB)) (10)

2.3 Time-on-market and price dispersion

Claim 1. In stationary equilibrium, the variance of P (c, ε) among trading sellers and
buyers is:

Var (P (c, ε)) = Varc∼F(·) (VS (c))︸ ︷︷ ︸
Seller holding costs

+

(
θσε

r+ λM

)2

︸ ︷︷ ︸
Buyer match utility

(11)

Expected time-on-market for a seller of type cis:

TOM (c) = E

[
1

λS (1 −G (ε∗ (c)))

]
(12)

Expression (11) shows that equilibrium price dispersion arises from two sources:
differences in sellers’ value functions VS (c), caused by differences in sellers’ holding
utilities; and differences in buyers’ match utilities ε. Equilibrium time-on-market of seller
of type c depends on matching rate, λS, and the probability of trade conditional on a
match, 1 −G (ε∗ (c)).

The seller value term VS (c) is an equilibrium object which we cannot analytically
characterize, but there is a simple analytical expression for its derivative V ′S (c).

Claim 2. The seller value function VS (c) satisfies:
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V ′S (c) =
−TOM (c)

rTOM (c) + θ
(13)

Qualitatively, Claim 2 shows that V ′S (c) is higher, and hence, the dispersion in seller
values is higher, when equilibrium time-on-market TOM (c) is higher. Intuitively, suppose
MB/MS is high, so markets are tight. All sellers spend relatively little time on the market,
so the relative benefit of being a low-cost seller is smaller.

2.4 Comparative statics and predictions

In Figure 1, we simulate our model. The top two panels show the micro-level tradeoff
between time-on-market and price menu faced by individual sellers. Each line is one
equilibrium. The dots represent the TOM and price pairs chosen by 0th, 30th, 60th, and
100th percentile sellers.

The top left panel shows what happens when we shift the buyer inflow rate, ηB. When
ηB increases, there are more buyers. We can think of this as liquidity supply being higher.
Hence, time-on-market decreases for all sellers: the entire curve shifts towards the left.
Moreover, the menu compresses vertically: the prices attained by different types of sellers
are closer to each other. Hence, price dispersion also declines. Thus, when ηB – liquidity
supply – increases, both time-on-market and price dispersion decrease.

The top right panel shows what happens when we change the seller average cost,
c̄. This parameter can be thought of as liquidity demand parameter: the higher the
average cost c̄, the more costly it is for sellers to stay on the market, and the higher their
demand is for low time on market. When c̄ increases, sellers have higher urgency to sell.
This decreases time-on-market, as sellers try to sell faster, but it actually increases price
dispersion: the gaps between the black dots increase. Increases in c̄ cause average prices
to decrease, increasing relative price dispersion. Thus, when liquidity demand increases,
time-on-market decreases, but price dispersion actually increases.

These effects are summarized in the bottom panel of Figure 1. This plot shows the
macro-quantities: average time-on-market on the x-axis, and market-level price dispersion
as a percentage of average price on the y-axis. Each curve is a fixed value of ηB, and
shows outcomes as we vary c̄. We see that, holding fixed liquidity supply ηB, varying
liquidity demand, c̄, causes time-on-market and price dispersion to co-move negatively.

A simple, though informal, intuition is that, as sellers are more impatient and have

10



higher liquidity demand, holding fixed liquidity supply, sellers move along a kind of
“liquidity supply curve”, trading off aggregate lower time-on-market for higher aggregate
price dispersion. These “liquidity supply curves” are downward sloping lines. Conversely,
if ηB increases holding fixed c̄, the entire frontier shifts: the market is able to attain both
lower time-on-market and lower price dispersion.

Together, these comparative statics allow us to make two core predictions, which we
can bring to the data.

Prediction 1. Suppose a variable Zi is correlated with liquidity supply: it is positively correlated
with ηB, the buyer entry rate. Zi should be negatively correlated with price dispersion and
time-on-market.

Prediction 1 states that any variables which are correlated with liquidity supply should
be correlated with price dispersion and time-on-market in the same direction.

Prediction 2. Suppose a variable Zi is correlated with liquidity demand: it is positively correlated
with c̄, the average seller cost. Zi should be negatively correlated with time-on-market, but
positively correlated with price dispersion.

The intuition for Prediction 2 is from the comparative statics in Figure 1: increases
in liquidity demand will tend to lead to lower time-on-market, but actually higher price
dispersion.

2.5 Extensions

Our baseline model assumes buyers are undifferentiated for simplicity, as it implies that
VB is a scalar, so the model is easier to solve computationally. A natural extension of
the model is to allow buyers to have persistent heterogeneous types so that buyers’ flow
utilities for remaining unmatched can differ. However, the model is robust to including
buyer heterogeneity. Appendix A.6 derives equilibrium conditions under persistent buyer
heterogeneity, and shows that the main theoretical results, Claims 1 and 2, are unchanged.

In the model, we assume the only drivers of price dispersion are sellers’ and buyers’
preferences. In reality, there are many other possible drivers of price dispersion, besides
these two. For example, realtor quality affects time-on-market and prices Gilbukh and
Goldsmith-Pinkham (2019). We abstract away from these for simplicity; they can be
thought of as adding additional error terms to the price equation (2) in the model.
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Figure 1: Liquidity supply and demand

Notes. Model comparative statics.
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Table 1: Descriptive statistics, county sample

Name Mean SD P10 P90
Average monthly sales 414 595 70 918
Mean price (x1000 USD) 488.4 1454.5 142.7 579.2
Mean TOM (Months) 3.25 0.75 2.44 4.20
Total counties 477
Total sales 11,835,915

Notes. Monthly sales and mean price data are from the CoreLogic Deed dataset, and mean
time-on-market data is from the CoreLogic MLS dataset.

3 Data and measurement

3.1 Data sources

The main data source we use for house prices is microdata on single-family house sales
and house characteristics from the CoreLogic Tax and Deed database, spanning the time
period 2000-2017. For time-on-market, we use the Corelogic MLS dataset, and we use
demographic data on county-years and counties from ACS 1-year and 5-year samples.
Further details of data sources we use and data cleaning steps are described in Appendix
B.

Since we estimate price dispersion using a repeat-sales specification, we filter to
counties with a large enough number of sales; details of how we select counties are
described in Appendix B.1. Descriptive statistics for counties in our primary estimation
sample are shown in Table 1. Our primary dataset comprises 11 million house sales within
477 counties, over the period 2000-2017. As Appendix Table A1 shows, our estimation
sample contains 14.8% of all counties, but covers 61.8% of the US population. Our sample
is concentrated in relatively large, dense, and high-income counties, but is representative
in terms of other demographic characteristics.

13



3.2 Measuring idiosyncratic price dispersion

We measure house price dispersion by regressing observed house sale prices on a set of
predictors, and taking the residual. Our preferred specification for log house prices is:

pit = γi + ηct + fc (xi, t) + εit (14)

Where i indexes properties, c indexes counties, and t indexes months. In words, (14) says
that log prices pit are determined by a time-invariant house fixed effect, γi, a county-
month fixed effect, ηct, a smooth function fc (xi, t) of observable house characteristics xi
and time t, and a mean-0 error term εit.

Specification (14) combines elements of repeat-sales and hedonic models of house
prices. The house fixed effect term, γi, absorb all features of a house, observed and
unobserved, which have time-invariant effects on the price of house i. The ηct term
absorbs parallel shifts in log house prices in a county over time. The fc (xi, t) term allows
houses with different observable characteristics xi to appreciate at different rates: for
example, the fc (xi, t) term allows larger houses to appreciate faster than smaller houses,
or houses in the east of a certain county to appreciate faster than houses in the west.
Additional details on how we implement specification (14) are described in Appendix B.6.

We estimate price dispersion at the level of individual house sales using the estimated
residuals, ε̂it, from (14). While each individual estimate is very noisy, these estimates can
be flexibly aggregated over time and across geographical regions. For example, we will
use σ̂c to denote the empirical estimate of standard deviation of all ε̂it terms in county c.
σ̂c can be thought of as the log standard deviation of house prices, after controlling for
features in (14), so we will sometimes refer to these estimates as logSD. As we describe
in Appendix B.6, we apply a degrees-of-freedom adjustment to ε̂it, so the squared error
estimates are unbiased at the county level.

In Figure 2, we plot the distribution of σ̂c. The mean of σ̂c is 18.2% of house prices,
and the standard deviation is 3.64%. The 10th percentile is 13.8% and the 90th percentile
is 22.6%.
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Figure 2: Distribution of σ̂c

Notes. Distribution of σ̂c across counties, 2000-2017. Each data point is a county.

4 Empirical results

4.1 The time-series of housing market liquidity

In this section, we show that, over time, price dispersion and time-on-market robustly
co-move positively with each other and negatively with prices and volume. While the
joint dynamics of time on market, prices and volume is well-studied in the literature, we
believe that our results for price dispersion are a novel contribution.

Figure 3 shows the seasonal behavior of prices, total sales, time-on-market, and logSD,
aggregated to the level of calendar months over the period 2010-2016. All four variables
are seasonal: during summer, sales and prices are higher, and time-on-market and price
dispersion are lower. 6

On average, comparing June values to January values, summer prices are on average
4.03% higher, sales are 66.7% higher, time-on-market is 0.664 months (19.6%) higher, and
price dispersion is 1.15% of house prices lower (6.47% in relative percentage points).

Figure 4 analyzes this further by dividing counties into 3 quantile buckets, based on

6Ngai and Tenreyro (2014) analyze seasonal trends in sales, prices, and time-on-market.
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how seasonal prices are. This plot shows that more seasonal counties are more seasonal
in all variables: that is, when seasonal price variation in larger, seasonal variation in sales,
time-on-market, and price dispersion also tends to be larger.

Figure 5 shows the behavior of all four variables at the yearly level, across counties.
Once again, all four variables co-move robustly. In the 2000-2005 boom, prices and sales
increased, and time-on-market and price dispersion decreased. During the crash, prices
and sales decreased, and time-on-market and price dispersion increased. During the
recovery, we observe the reverse. As of 2016, on average across counties, sales, time-on-
market and price dispersion are now roughly back to their level in 2000, though prices
have increased somewhat.

Quantitatively, average time-on-market falls from 2.66 months in 2000 to 2.46 months
in 2004, rises to 3.5 months in 2011, and falls to 2.62 months in 2016. Price dispersion falls
from 16.6% in 2000 to 15.7% in 2004, rises to 18.2% in 2011, and falls to 16.8% in 2016.

Figure 6 divides counties into three quantile buckets, based on the size of the housing
cycle, measured as the ratio between average prices in 2000 and 2005. Similar to the right
panel of Figure 3, we see that counties which had bigger price booms also had larger
decreases in time-on-market and price dispersion during the boom, and larger increases
during the bust.

Together, we have shown that, seasonally and over the business cycle, all four liquidity
measures co-move positively. Through the lens of our model, this suggests that seasonal
and business cycle movements in housing market liquidity are largely driven by shifts in
liquidity supply, rather than demand.

4.2 Cross-sectional relationships

Liquidity supply. In Table 2, we test Prediction 1 in the cross-section, by estimating the
following two specifications:

logSDc = Z
S
cα1 +Xcβ1 + εc (15)

TOMc = Z
S
cα2 +Xcβ2 + εc (16)

Where, ZSc is a county-level liquidity supply shifter, and Xc is a vector of controls. We
control for third-order polynomials in a number of control variables: the average price,
average age, average square footage, average bedroom and bathroom counts of sold
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Figure 3: Seasonal variation in sales, prices, logSD, and time-on-market

Notes. Total sales, average prices, logSD, and time-on-market (TOM) by calendar month,
over the time period 2010-2016. All variables are indexed by dividing by their January
level.

Figure 4: Seasonal variation in sales, prices, logSD, and time-on-market, heterogeneity

Notes. Indexed prices, sales, time-on-market, and logSD for three quantile buckets of
counties, divided based on the ratio between summer and winter prices. Data is from
2010-2016.
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Figure 5: Business cycle variation in sales, prices, logSD, and time-on-market

Notes. Total sales, average prices, and logSD, 2000-2016, and time-on-market (TOM),
2010-2016. All variables are indexed so that they are equal to 1 in 2000.

houses, county’s population density, and the fractions of the county’s population which
are aged 18-35, 35-64, black, high school and college graduates, married, unemployed,
and homeowners.

We use two liquidity supply shifters for ZSc . First, we use population growth rates.
High population growth should indicate high ηB, so both α1 and α2 should be negative.
Second, we use vacancy rates. High vacancy rates should indicate low ηB, so both α1 and
α2 should be positive.

The results from this are shown in Table 2. Columns 1 and 6 show results from
regressing logSD and TOM, respectively, on vacancy rates. Both coefficients are positive,
supporting Prediction 1. Columns 2 and 7 show results from regressing both liquidity
measures on population growth rates. Both coefficients are negative, again supporting
Prediction 1. Columns 4 and 8 include both vacancy rates and population growth rates
together, and columns 5 and 9 add state fixed effects: the signs and significance of all
coefficients are unchanged. Hence, both liquidity supply shifters appear to be robustly
correlated with price dispersion and time-on-market, supporting Prediction 1.

In addition, column 3 estimates the following specification:

logSDc = TOMcα+Xcβ+ εc
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Figure 6: Business cycle variation in sales, prices, logSD, and time-on-market, heterogene-
ity

Notes. Indexed prices, sales, time-on-market, and logSD for three quantile buckets of
counties, divided into three buckets based on the ratio between average prices in 2000
and 2005. All variables are indexes so they are equal to 1 in 2000.
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The estimated α is positive. Thus, logSD and TOM are positively correlated in the cross-
section of counties, controlling for other features of counties. Informally, this suggests that
the cross-sectional variation in liquidity measures is driven somewhat more by liquidity
supply than liquidity demand.

Liquidity demand. Prediction 2 of the model states that variables which are correlated
with liquidity demand – sellers’ costs c̄ – should drive time-on-market and price dispersion
in opposite directions. To test this, we run the following regressions.

logSDc = Z
D
c α1 +Xcβ1 + εc (17)

TOMc = Z
D
c α2 +Xcβ2 + εc (18)

We control for the same variables as in (15) and (16). Our main liquidity demand shifter
is income. If homeowners’ income is higher, their value of time should be higher. Hence,
they should be willing to sell faster, even if that means they have to sell for lower prices.
Thus, Prediction 2 states that α1 should be positive, and α2 should be negative: higher
income should be associated with lower time-on-market, but higher price dispersion.

Columns 1 and 2 of Table 2 show that this holds in the data. Controlling for prices,
higher average income is associated with lower time-on-market, but actually higher price
dispersion. The magnitudes of these correlations are nontrivial: a 10% increase in average
income is associated with approximately a 0.5% increase in price dispersion, and a 0.15
month (roughly 4.5 day) decrease in time-on-market.

Note also that, holding fixed income, higher prices are associated with higher time-on-
market, and lower price dispersion. Prediction 2 does not produce this result directly, but
this is intuitive. What matters is how high incomes are relative to prices. When prices
are high relative to incomes, waiting costs are relatively lower, so sellers wait longer, but
prices are more stable. When house prices are low relative to incomes, sellers’ holding
costs are higher relative to house prices, so sellers sell faster and at less stable prices.

5 Robustness checks and alternative explanations

In this section, we conduct a number of robustness checks. In Subsection 5.1, we discuss
concerns about how we measure price dispersion and time-on-market, and we show
that our results are robust to a number of other ways to measure both variables. In
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Subsection 5.2, we discuss alternative explanations for our findings, and argue that they
have difficulty explaining all the stylized facts we document in Section 4.

5.1 Measurement concerns

Alternative measurement strategies. In Appendix D.1, we consider three different ways
to estimate price dispersion: a pure repeat-sales specification for prices, a pure hedonic
specification, and a nonparametric adjustment for time-between-sales and the number of
times a house is sold. Appendix D.2 discusses the relationship of our methodology with
other papers in the literature on idiosyncratic house price dispersion, and shows that our
measures of price dispersion are largely in line with the literature. In Appendix D.3, we
consider time-on-market measures from Zillow and Realtor.com. In all cases, results are
qualitatively unchanged.

Other factors which affect price dispersion. Specification (14) is designed to capture
price dispersion generated by search frictions, taking out as much as possible of price
variation which is generated by house characteristics. Since specification (14) includes
both house fixed effects and time-varying effects of observable characteristics, (14) can
absorb both observed and unobserved characteristics of houses which have time-invariant
effects on prices, and observable characteristics with time-varying effects on prices.

There are two kinds of house characteristic effects on prices which (14) cannot capture.
First, our data only allow us to observe characteristics at a single point in time, so speci-
fication (14) cannot capture price changes caused by time-varying house characteristics.
For example, we cannot account for the effects of house renovations or improvements on
prices. Second, while specification (14) absorbs time-invariant effects of unobservables into
the house fixed effects, γi, (14) cannot account for time-varying effects of unobservable
characteristics. For example, if some houses have better construction quality than others,
and the effect of construction quality on prices changes over time, this would be attributed
to the error term in (14).

We believe that both effects are likely to be quantitatively small. First, Giacoletti (2017)
observes data on remodeling expenditures for houses in California. Accounting for these
expenditures has a relatively small effect on estimated price dispersion: comparing Figure
E.vi to Figure 2 in Giacoletti (2017), accounting for remodelling decreases the estimated
standard deviation of returns by only around 2% of house prices.

Second, in Appendix D.1, we show that the fc (xi, t) term only slightly decreases our
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estimated residuals, implying that time variation in the market value of observable house
characteristics plays a relatively small role in our data. The features we include in xi are
the main variables used in most hedonic regressions, so time variation in the market value
of unobservables is likely to play a similarly small role. Thus, we believe that both issues
are unlikely to have quantitatively large effects on our estimates of standard errors.

A broader issue is that, even if one believes that our error estimation using (14) in fact
captures price dispersion generated by search frictions, our model is not the only model
possible of search frictions. Other kinds of frictions also exist: for example, heterogeneity
in realtor quality, or asymmetric information, and other forces could also influence price
dispersion. We discuss various other theories of market frictions in Subsection 5.2, and
argue that these alternative theories have difficulty explaining the stylized facts that we
document.

5.2 Alternative explanations

5.2.1 Liquidity demand

Asymmetric information and adverse selection. The Nash bargaining model that we use
implicitly assumes that agents have perfect information. In practice, the seller could be
more informed about the quality of her house than the buyer. A number of papers argue
this (Kurlat and Stroebel (2015), Stroebel (2016)). This could affect time-on-market and
price dispersion.

Qualitatively, however, asymmetric information and adverse selection should create
both delays in trade, and increased price dispersion. Thus, if liquidity differences across
high- and low-income counties is largely driven by differences in the degree of adverse
selection, time-on-market and price dispersion should co-move positively, which is not
consistent with our stylized facts.

House heterogeneity. Another explanation for the positive association between income
and price dispersion is that high-income counties could have more a more heterogeneous
housing stock. Local housing markets could be thinner, since each house is slightly
different, causing price dispersion to be higher. Within our model, there are two ways
to rationalize this relationship: first, the effective buyer mass, MB, could be lower when
houses are more heterogeneous, since any individual house has less interested buyers.
Second, the variance of buyer values, σε, could be larger, if buyers have more specific
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preferences over different house characteristics.

However, our comparative statics show that, within our model, both of these parameter
changes would increase time-on-market as well as price dispersion. Intuitively, decreasing
MB lowers the number of buyers, so sellers have to wait longer. Increasing the variance of
buyer values increases sellers’ returns from waiting longer, causing sellers to optimally
wait longer. Thus, neither force can explain the fact that higher income, controlling for
prices, correlates with lower time-on-market.

Higher-income households could live in more heterogeneous houses. This could
explain the positive correlation between income and price dispersion. However, if houses
are more heterogeneous, we would also expect time-on-market to be higher: in contrast,
we find that high-income areas, controlling for prices, have lower time-on-market. Thus,
house heterogeneity alone cannot explain the cross-Sectional relationship that we observe
between income, time-on-market, and price dispersion.

Intuitively, the reason our stylized facts are hard to explain with other factors is that
most forces tend to move time-on-market and price dispersion in the same direction.
There is a robust negative relationship, once we analyze variation in prices and income.
In our model, we explain this as follows: variation in preferences creates a negative
relationship between price dispersion and time-on-market, as sellers rationally trade off
“dollar liquidity” for more “time liquidity” as their value of time increases. We are not
aware of any other theory which can produce this observed negative relationship.

5.2.2 Liquidity supply

Sophistication and cycles. A number of papers argue that, during housing booms, the
fraction of unsophisticated market participants – agents who are irrational, uninformed,
or inexperienced – tends to increase during housing booms, and that these agents tend to
achieve worse outcomes than more sophisticated participants. For example, a number of
papers argue that housing booms involve increasing dispersion in market participants’
beliefs (Glaeser and Nathanson (2017), Nathanson and Zwick (2018)), and an increase in
the market share of short-term speculators (Bayer et al. (2011), DeFusco, Nathanson and
Zwick (2017)). Another strand of literature shows that more informed market participants,
such as realtors and local buyers, are better able to time their trades, and thus achieve
higher returns on average (Kurlat and Stroebel (2015), Chinco and Mayer (2015)). Finally,
Gilbukh and Goldsmith-Pinkham (2019) shows that more experienced realtors sell houses
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faster, and that the share of inexperienced realtors tends to increase during housing
booms.

Based on this literature, one might expect one or both measures of housing market
liquidity to worsen during booms, as markets are increasingly dominated by unsophis-
ticated agents. Our results show that exactly the opposite occurs: both time-on-market
and price dispersion decreased during the boom, and the decrease is larger in counties
with larger volume and price movements. Our explanation for this fact is that, in boom
periods, the increase in market tightness means that the supply of liquidity is greater,
allowing agents to do better on both dimensions. The increased in unsophisticated agents’
activity may still play a role, but it seems to be overwhelmed by the increase in liquidity
supply in the data.

We note that all of our statements about liquidity deal with price dispersion, not about
the level of prices. Average prices can depart from fundamentals while maintaining high
levels of liquidity – in particular, for bubble goods such as money, liquidity can be very
high while prices are very disconnected from fundamentals. Our contribution is to show
that, while booms may well involve irrationality and departure from fundamentals, booms
also improve liquidity and stabilize relative prices.

Other liquidity models. Ours is not the only model which predicts that thicker
markets should have lower price dispersion; this prediction follows from much of the
literature on search frictions. In particular, the idea that price dispersion and time-on-
market are lower in booms, when volumes and prices are higher, seems not to rely strongly
on assumptions about perfect rationality. While we are not aware of any papers which
have made this point, boundedly rational things, such as using “comparable sales” or
benchmarking to past returns, could also produce faster sales and lower price dispersion
in tighter markets. For example, if someone just sells based on returns of her neighboring
house, there would be more comparables in thicker markets. Thus, our results should not
be interpreted as proving that market participants are rational on average: only that price
dispersion and time-on-market are lower in hot markets.

6 Calibration

In this section, we calibrate our model to data to estimate the menu of prices and time-
on-markets that sellers with different holding costs face. Time is measured in years. We
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calibrate the model to average US-level data in 2016.

Externally calibrated parameters. We set the yearly discount rate r = 0.052, so that
the annual discount factor is 0.95. We assume symmetric bargaining power, so θ = 0.5;
this is also used by, for example, Anenberg and Bayer (2015) and Arefeva (2019). We
choose the matching function elasticity φ to 0.84, based on Genesove and Han (2012),
who estimate this elasticity using the National Association of Realtors survey data, which
captures both buyer and seller time-on-market. This estimate is also used by Anenberg
and Bayer (2015). Since we do not observe buyer time-on-market, we cannot separately
identify the matching efficiency parameter α and the inflow of buyers ηB, so we normalize
the match efficiency parameter to α = 1.

Moment matching. The remaining parameters in our model are the rate at which
matched homeowners become sellers λM, the buyer entry rate ηB, the parameters of seller
holding cost distribution, c̄,∆c, and the parameters of the buyer match value distribution
ε0,σε. First, we choose λM,ηB, c̄, ε0,σε to match target moments from our data, and from
the literature. The three moments that we calculate from our data are the sales-weighted
sample averages of average house price (Zillow’s ZHVI) and average time-on-market
(Zillow), and the turnover rate – total house sales as a fraction of the total housing stock
(Corelogic deed and tax). Moments we use from the literature are the average number of
houses that buyers visit before buying, from Genesove and Han (2012), and the dispersion
in buyers’ values for houses, from Anundsen, Larsen and Sommervoll (2019). Table 4
shows the values of empirical moments that we target. Next, we choose ∆c to match
the empirical relationship between time on market and price dispersion. We perturb ηB
around the equilibrium to generate a grid of model-implied price dispersions and time on
markets. Then, we calibrate ∆c such that the model-implied relationship between price
dispersion and time on market matches the empirical coefficient. We describe our moment
matching procedure in detail in Appendix E.1.

6.1 Parameter estimates

Table 4 shows the parameter values that we estimate. We estimate that match quality ε
has a lower bound of $557 monthly, or $6,689 annually, and a standard deviation of $299
monthly, or $3,593 annually. While these seem somewhat low, buyers see many houses
before buying, so the average value of ε among successful buyers is higher.

We find that sellers’ values are uniformly distributed on [c̄+∆c, c̄−∆c], with the mean
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c̄ equal to $6,137 per month, and the range parameter ∆c equal to $3,262.

6.2 Results

Quantifying liquidity discounts. Using our estimated model, we can estimate “liquidity
discounts”: how much faster impatient sellers sell their houses relative to patient sellers,
and how much lower impatient sellers’ prices are as a result. To show this, figure 7 shows
the “menu” of time-on-market and average prices attained by sellers with different values.

Sellers with 75th percentile value of holding cost c spend on average 3.05 months
on the market, and attain expected sale prices of $270,302. Sellers with 25th percentile
holding cost spend 1.95 months, and attain expected sale prices of $254,850. That is, 75th
percentile sellers take 1.10 more months to sell, and achieve $15,452 higher prices – in
percentage terms, 5.88% higher prices. Dividing these, the implied effect of spending an
extra month on the market is 5.33% higher prices.

Comparison to literature. Are these results consistent with previous studies? To check
this, we survey the literature on the price vs time-on-market tradeoff. We survey two sets
of papers: a set of papers which discuss various factors that affect the tradeoff between
price and time-on-market, which we call “Non-foreclosure”, and then a literature on
foreclosure discounts. We present the results in Table 5. The foreclosure discounts can be
interpreted simply as the percentage price difference between a foreclosed house, relative
to a comparable non-foreclosed house.

To compare the results across papers, we attempt to convert all the papers’ estimates
of liquidity discounts into a percentage gain in prices of spending an extra month on the
market. Essentially, we divide price effects by time-on-market effects. Details on how we
arrive at these numbers are described in Appendix E.3.

We observe that the range of estimates of 1-month price effects is somewhat large, but
most estimates fall within the range 1.9% to around 11%. Hence, our one-month effect, of
5.33%, is well within the range of these estimates.

We note that we do not use the liquidity discount as a target moment, in our estimation.
Liquidity discounts essentially depend on the distribution of sellers’ holding costs, which
we estimate using aggregate-level estimates of buyer value heterogeneity, prices, volume,
time-on-market, as well as the estimated correlation between price dispersion and time-
on-market.
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Table 4: Moment and parameter values

Moment Value Parameter Value
Price 266.72 λM 0.052

LogSD 16.51% ε0 0.5574
TOM (Months) 2.554 σε 0.2994

Turnover rate 0.051 ηB 0.05124
Num. visits 9.960 c̄ 6.137

PD-TOM Corr 0.596 ∆c 3.262

Notes. Target moments and estimated parameter values. ε0,σε, c̄,∆c are reported in
thousands of US dollars per month. Turnover rate and λM are yearly turnover and
separation rates respectively, and ηB is a fraction of the unit mass of houses per year.

I-buyer premia. How much would an i-buyer be able to gain, in our model? We can
measure how much an agent with low holding costs would attain.

Suppose an i-buyer has annual holding costs of $20,000, or monthly holding costs of
$1,666. For reference, the lowest-cost seller in our calibration has cost of $34,000 per year.
We find that this i-buyer would hold the house for an average of 5.94 months, and sell for
an average price of $293,226, or 16.4% higher than average prices.

Similarly, if an I-buyer had annual holding costs of $10,000, the I-buyer would take
approximately 5.94 months to sell, and would sell for an average of $293,226, or 16.4%
higher than average prices. These numbers are close to, for example, the findings in
Buchak et al. (2020).

This illustrates a strength of our model. It is fairly simple and tractable, and it is able
to both match macro quantities for time-on-market, price dispersion, and the estimated
relationship between the two; as well as produce estimates of micro quantities – liquidity
discounts – which are in line with estimates from the literature.

7 Conclusion

In this paper, we have constructed a search-and-bargaining model, designed to illustrate
how the tradeoffs that individual sellers face between time-on-market and prices determine
aggregate liquidity measures of time-on-market and price dispersion. We showed that
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Figure 7: Liquidity discounts

Notes. The left panel shows the average price and time-on-market achieved by sellers with
different holding utilities c. The red stars represent, from left to right, the 25th, 50th, and
75th percentiles of seller holding utilities.

Table 5: Liquidity discounts in the literature

Paper Type 1-month effect
Genesove and Mayer (1997) Non-foreclosure 11.02%
Genesove and Mayer (2001) Non-foreclosure 1.92%-24%
Levitt and Syverson (2008) Non-foreclosure 11.68%
Hendel, Nevo and Ortalo-Magné (2009) Non-foreclosure 4.50%
Guren (2018) Non-foreclosure 2.46%-6.15%
Buchak et al. (2020) Non-foreclosure 1.92%-4.46%
Pennington-Cross (2006) Foreclosure 22%
Clauretie and Daneshvary (2009) Foreclosure 10%
Campbell, Giglio and Pathak (2011) Foreclosure 27%
Harding, Rosenblatt and Yao (2012) Foreclosure 5%
Zhou et al. (2015) Foreclosure 11%-26%

Notes. Estimates of 1-month price effects and foreclosure discounts from the literature. For
the non-foreclosure lines, the estimates correspond to how much prices would increase
if time-on-market increased by a month. The foreclosure discount estimates compare
foreclosusure prices or returns, to prices on comparable houses which were not foreclosed
on. Further details of how we calculated these are described in Appendix E.3.
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these measures can be thought of as equilibrium outcomes within a supply-demand system
for liquidity: supply and demand shifters drive the outcomes to co-move differentially.
These predictions are supported in the data. Moreover, calibrated to the data, the model
can simultaneously match the macro-relationship between aggregate time-on-market and
price dispersion, and estimates of liquidity discounts faced by individual sellers at the
micro-level in the housing microstructure literature.

There are a number of directions for further research. One is to analyze the effects of
different market mechanisms on idiosyncratic price dispersion. We use Nash bargaining as
a simple reduced-form model of price-setting. In practice, price-setting mechanisms differ
somewhat in different housing markets: most houses are sold via bilateral bargaining
based on a posted list price,7 but in some markets explicit auctions are used.8 A natural
extension of our results is to analyze whether different trading mechanisms are associated
with higher or lower levels of time-on-market and idiosyncratic price dispersion.

Another question is how the composition of housing market participants influences
aggregate liquidity measures. A number of papers show that different classes of partici-
pants in housing markets achieve different prices and average returns. Housing markets
may be more efficient, and thus idiosyncratic price dispersion may be lower if participants
are more sophisticated. For example, Chinco and Mayer (2015) shows that out-of-town
second-home buyers achieve lower capital gains than local buyers, Myers (2004), Ihlanfeldt
and Mayock (2009), and Bayer, Ferreira and Ross (2016) study racial price gaps in the
housing market, and Goldsmith-Pinkham and Shue (2019) that men attain higher returns
in housing markets than women. Bayer et al. (2011) and Giacoletti and Westrupp (2017)
study the effects of house flippers, and Gilbukh and Goldsmith-Pinkham (2019) study the
performance of experienced versus inexperienced realtors.

7See Han and Strange (2016) for a discussion of the role of house list prices. Guren (2018) analyzes the
relationship between house list prices and sale prices, arguing that sellers face strategic complementarities
in adjusting list prices.

8Han and Strange (2014) analyzes time-series and cross-sectional trends in the prevalence of auctions.
Arefeva (2019) constructs a dynamic search model which suggests that auctions amplify house price
volatility.
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Appendix

A Supplementary material for section 2

A.1 Stationary equilibrium conditions

A.1.1 Bellman equations

Given the buyer match rate λB, trade cutoffs ε∗ (c), the equilibrium distribution of seller
values Feq (c), and the seller value function VS (c), the equilibrium value of buyers, VB,
must satisfy:

rVB = λB

ˆ ˆ
ε>ε∗(c)

[(1 − θ) (VM (ε) − VB − VS (c))]dG (ε)dFeq (c) (19)

In words, expression (19) can be interpreted as follows. At rate λB, the buyer is matched
to a seller with type randomly drawn from Feq (·), and the buyer draws match quality ε
from G (·). If the buyer’s match quality draw, ε, is higher than the seller’s match quality
cutoff, ε∗ (c), trade occurs, and the buyer receives a share (1 − θ) of the bilateral match
surplus.

Similarly, given the seller match rate λS, trade cutoffs ε∗ (c), and the buyer value VB,
the seller value function VS (c) satisfies:

rVS (c) = v+ λS

ˆ
ε>ε∗(c)

θ (VM (ε) − VB − VS (c))dG (ε) (20)

In words, expression (20) states that a seller of type c receives flow value −c from their
house while they are waiting for buyers. At rate λS, the seller meets a buyer with match
value ε randomly drawn from G (·). If ε > ε∗ (c), trade occurs, and the seller receives a
share θ of the bilateral match surplus.

The expected value VM of matched owners is determined by the Bellman equation:

rVM (ε) = ε+ λM

(ˆ
VS (c)dF (c) − VM (ε)

)
(21)

In words, expression (21) states that matched owners get flow value ε while matched to
their house and receive separation shocks at rate λM, at which point they become sellers
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and attain the expectation of the seller value function VS (c) over the seller holding cost
distribution F (c).

Finally, the marginal entering buyer must have 0 expected value. Hence, buyers enter
if the sum of their utility from entering the city, ξ, and their expected value from being an
active homebuyer, VB, is positive:

ξ∗ + VB > 0 (22)

A.1.2 Flow equality conditions

First, consider flow equality for sellers. In equilibrium, the rate at which matched
homeowners receive separation shocks and become sellers of type c is:

(1 −MS) λMf (c) (23)

In words, this is the product of the total mass of matched homeowners, 1−MS; the rate at
which shocks homeowners receive separation shocks, λM; and the density f (c) of entering
sellers with value c.9 The equilibrium rate at which sellers of type c sell their houses and
leave the market is:

MSfeq (c) λS (1 −G (ε∗ (c))) (24)

In words, this is the product of the mass of sellers, MS; the density of values among sellers
in equilibrium, feq (c); the rate at which sellers are matched to buyers in equilibrium, λS;
and the probability that the match utility draw ε exceeds the trade cutoff ε∗ (c) for a seller
of type c, which is 1−G (ε∗ (c)). In stationary equilibrium, expressions (23) and (24) must
be equal.

Flow equality for individual seller types implies that the total rate at which matched
homeowners become sellers is equal to the total rate at which sellers sell and exit; that is,
integrating (23) and (24) over c, we have:

(1 −MS) λM =

ˆ
v
λSMS (1 −G (ε∗ (c))) feq (c)dv (25)

Moreover, since each successful sale turns a buyer into a matched homeowner, the RHS of
(25) is also equal to the rate at which buyers turn into matched homeowners.

9Since the distribution F (c) of holding costs does not depend on matched homeowners’ match utility ε,
we do not need to explicitly integrate over the distribution Geq (ε) in expression (23).
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Second, inflows and outflows for matched homeowners with match utility ε must
be equal. Matched homeowners’ separation rate λM does not depend on their match
utility ε, so the distribution of match utilities among matched homeowners is equal to the
distribution of match utilities among successful home buyers, which is:

Geq (ε) =

´
c λSMS

[´ ε
ε̃=ε0

1 (ε̃ > ε∗ (c))dG (ε̃)
]
dFeq (c)´

c λSMS (1 −G (ε∗ (c)))dFeq (c)

In words, the numerator is the flow rate at which a seller of value c successfully trades
with a buyer with match utility below ε, integrated over the equilibrium distribution
feq (c) of holding costs c among sellers. The denominator is the RHS of (25), the total flow
rate at which buyers become matched homeowners.

Finally, the rate at which buyers enter the market must be equal to all other flow rates.
If all buyers with value above some cutoff ξ∗ enter, the inflow rate of buyers is equal to:

ηB (1 − Fξ (ξ
∗))

Hence, we must have:
(1 −MS) λM = ηB (1 − Fξ (ξ

∗))

Substituting for the cutoff ξ∗ using (22), this simplifies to:

(1 −MS) λM = ηB (1 − Fξ (−VB)) (26)

A.2 Proof of Claim 1

A.2.1 Price dispersion

From (2), prices are:

P (ε, c) = θ (VM (ε) − VB − VS (c)) + VS (c) (27)

We wish to take the variance of expression (27) with respect to the joint distribution of
holding costs c and match utilities ε within the set of pairs of buyers and sellers that
match and trade in any given moment; call this joint distribution Ftr (c, ε).

First, let Ftr (c) be the marginal distribution of seller holding costs c, among the
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stationary mass of seller types that trade in any given time period. By flow equality in
expression (8) of proposition 1, the marginal distribution of c among sellers who trade
and exit the market at any moment must be the same as the distribution of c among
sellers that enter the platform; thus, we simply have:

Ftr (c) = F (c) (28)

Thus, to characterize Ftr (c, ε), we need only characterize

Ftr (ε | c)

for all c; that is, the distributions of buyer match utilities, conditional on trade occurring
and conditional on a given seller holding cost c. Each time a seller of holding cost c meets
a buyer, a random match quality ε ∼ G (·) is drawn; trade occurs if ε > ε∗ (c). Thus,

Ftr (ε | c) = G (ε | ε > ε∗ (c)) (29)

that is, the conditional distribution of match qualities ε, conditional on a seller having
holding cost c and trade occurring, is simply the distribution of ε conditional on it being
above the trade cutoff ε∗ (c).

Having characterized Ftr (c, ε), we can now take the variance of expression (27) for
prices. Applying the law of iterated expectations, price variance can be written as:

Var (P (ε, c)) = Ec∼Ftr(c)
[
Varε∼Ftr(ε|c) (P (ε, c) | c)

]
+Varc∼Ftr(c)

(
Eε∼Ftr(ε|c) [P (ε, c) | c]

)
(30)

Substituting (28) and (29), we can write this as:

Var (P (ε, c)) = Ec∼F(c)
[
Varε∼G(ε|ε>ε∗(c)) (P (ε, c) | c)

]
+Varc∼F(c)

(
Eε∼G(ε|ε>ε∗(c)) [P (ε, c) | c]

)
(31)

First, we characterize the left term on the RHS of (30). Conditional on c, the only random
term in P (ε, c) conditional on c is the buyer’s match utility ε; thus, substituting expression
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(44) for P (ε, c) and ignoring constant terms, we have:

Varε∼G(ε|ε>ε∗(c)) (P (ε, c) | c) =
(

θ

r+ λM

)2

Varε∼G(ε|ε>ε∗(c)) (ε)

In words,
Varε∼G(ε|ε>ε∗(c)) (ε)

is the variance of an exponential random variable ε, conditional on ε being above some
cutoff ε∗ (c), which is greater than its lower bound ε0. This conditional distribution has
variance equal to the unconditional variance of ε, σ2

ε, for any cutoff ε∗ (c); thus, we have:

Varε∼G(ε|ε>ε∗(c)) (P (ε, c) | c) =
(

θ

r+ λM

)2

σ2
ε (32)

Since expression (32) is independent of c, we also have:

Ec∼F(c)

[
Varε∼G(ε|ε>ε∗(c)) (P (ε, c) | c)

]
=

(
θ

r+ λM

)2

σ2
ε (33)

Now we move to the right term in expression (30). Substituting expression (44) for
prices, we have:

Varc∼F(c)

(
Eε∼G(ε|ε>ε∗(c)) [P (ε, c) | c]

)
=

Varc∼F(c)

(
Eε∼G(ε|ε>ε∗(c))

[
VS (c) + θ

(
ε− ε∗ (c)

r+ λM

) ∣∣∣ c]) (34)

Rearranging, and moving VS (c) out of the conditional expectation, this is equal to:

Varc∼F(c)

(
VS (c) +

θ

r+ λM
Eε∼G(ε|ε>ε∗(c)) [ε− ε

∗ (c) | c]

)
(35)

Since we have assumed G (·) is exponential, and ε∗ (c) > ε0, the term:

Eε∼Ftr(ε|c) [ε− ε
∗ (c) | c]

is equal to σε, the standard deviation of ε. It is thus constant with respect to ε∗ (c) and
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thus c, and can be ignored when calculating the variance in (35). Hence,

Varc∼F(c)

(
Eε∼G(ε|ε>ε∗(c)) [P (ε, c) | c]

)
= Varc∼F(c) (VS (c)) (36)

Substituting (33) and (36) into (31), we have

Var (P (ε, c)) = Varc∼F(·) (VS (c)) +
(

θ

r+ λM

)2

σ2
ε (37)

Now, taking the expectation of prices from (44) below, we have:

E [P (ε, c)] = E [VS (c)] +
θσε

r+ λM
(38)

Using (37) and (38), we get (11).

A.2.2 Time-on-market

Time-on-market for type c is the inverse of λS (1 −G (ε∗ (c))), which is the product of
the equilibrium rate at which sellers meet buyers, λS, and the fraction of meetings for a
seller of type c that result in trade, (1 −G (ε∗ (c))). Average time on market, (12), is the
expectation of this.

A.3 Expressions for VM (ε) , ε∗ (c) ,P (ε, c)

To begin with, we analytically characterize VM (ε). From expression (21), we have:

rVM (ε) = ε+ λM

(ˆ
VS (c)dF (c) − VM (ε)

)
Solving for VM (ε), we have:

VM (ε) =
ε

r+ λM
+

λM
r+ λM

ˆ
VS (c)dF (c) (39)

Using expression (39), we can also characterize the trade cutoff function ε∗ (c). Trade
occurs if:

VM (ε) > VB + VS (c)
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=⇒ λM
r+ λM

ˆ
VS (c)dF (c) +

ε

r+ λM
> VB + VS (c) (40)

Since we have assumed that ε∗ (c) is greater than ε0, the lower bound of G(·), we can treat
expression (40) as an equality. Solving for ε∗ (c), we have:

ε∗ (c) = (r+ λM) [VB + VS (c)] − λM

ˆ
VS (c)dF (c) (41)

Using (39) and (41) we can also characterize equilibrium prices. From (2), we have:

P (ε, c) = VS (c) + θ (VM (ε) − VB − VS (c))

Substituting for VM (ε) using (39), we have:

P (ε, c) = VS (c) + θ
(

ε

r+ λM
+

λM
r+ λM

ˆ
VS (c)dF (c) − VB − VS (c)

)
(42)

Now, we can write (41) as:

λM
r+ λM

ˆ
VS (c)dF (c) − VB − VS (c) = −

ε∗ (c)

r+ λM
(43)

Hence, substituting (43) into (42), we get:

P (ε, c) = VS (c) + θ
(
ε− ε∗ (c)

r+ λM

)
(44)

A.4 Proof of Claim 2

From expression (4) in proposition 1, the seller value function VS (c) is:

rVS (c) = −c+ λS

ˆ
ε>ε∗(c)

θ (VM (ε) − VB − VS (c))dG (ε)

Differentiating with respect to c, using the Leibniz rule, we have:

rV ′S (c) = −1 − λSθ
(
VM (ε∗ (c)) − VB − VS (c)

)
g (ε∗ (c))

dε∗ (c)

dc
+

λS

ˆ
θ
(
−V ′S (c)

)
1 (ε > ε∗ (c))dG (ε) (45)
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By definition of ε∗ (c) in (6):

VM (ε∗ (c)) − VB − VS (c) = 0

so the middle term is 0. Hence, (45) becomes:

rV ′S (c) = −1 + λSθ
(
−V ′S (c)

)
(1 −G (ε∗ (c)))

Solving for V ′S (c), we have:

V ′S (c) =
−1

r+ λSθ (1 −G (ε∗ (c)))
(46)

Substituting expression (12) for TOM (c) in the denominator of (46), we have:

V ′S (c) =
−1

r+ θ
TOM(c)

Rearranging, we have (13).

A.5 Derivation of model quantities

In this Appendix, we derive expressions for average prices, time-on-market, and price
dispersion, which are plotted in Figure 1. The average transaction price conditional on
trade is:

ˆ ˆ
P (ε, c) dG (ε | ε > ε∗ (c)) dF (c)

This is the expectation of the price function P (ε, c) over the joint distribution of ε, c among
successfully trading buyers and sellers.

Average time-on-market, over the distribution of realized sales, is:

ˆ
TOMS (c) dF (c)

This is simply the average of time on market for a seller of holding cost c over the
distribution of holding costs F (c); note that we showed in (28) above that the distribution
of holding costs among trading sellers is simply Ftr (c) = F (c).
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From Claim 1, equilibrium price variance as:

Varc∼F(·) (VS (c)) +

(
θ

r+ λM

)2

σ2
ε

A.6 Heterogeneous buyer urgency

We can extend the main model to accomodate persistent buyer heterogeneity. Suppose
that buyers have some persistent type u ∼ H (u), drawn at the point that buyers enter
the market. Unmatched buyers receive flow utility u per unit time they are waiting to
purchase their houses. Transaction prices become a function of sellers’ holding cost c,
buyers’ urgency u, and buyers’ match utility ε:

P (c,u, ε) = VS (c) + θ (VM (ε) − VB (u) − VS (c)) (47)

Thus, the match quality cutoff condition becomes:

VM (ε∗ (c,u)) = VB (u) + VS (c)

Analogous to the main text, for our theoretical results, we will need to assume that

ε∗ (c,u) > ε0 ∀c,u

Buyers’ and sellers’ value functions become, respectively:

rVB (u) = u+ λB

ˆ
c

ˆ
ε>ε∗(c,u)

[(1 − θ) (VM (ε) − VB (u) − VS (c))]dG (ε)dFeq (c)

rVS (c) = −c+ λS

ˆ
u

ˆ
ε>ε∗(c,u)

[θ (VM (ε) − VB (u) − VS (c))]dG (ε)dHeq (u) (48)

The flow equality conditions for sellers and matched owners must now integrate over the
equilibrium distribution Heq (u) of buyer urgencies:

(1 −MS) λMf (c) = λSMSfeq (c)

ˆ
u
[1 −G (ε∗ (c,u))]dHeq (u)

Geq (ε) =

´
u

´
c λSMS

[´ ε
ε̃=ε0

1 (ε̃ > ε∗ (c,u))dG (ε̃)
]
dFeq (c)dHeq (u)´

u

´
c λSMS (1 −G (ε∗ (c,u)))dFeq (c)dHeq (u)
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Moreover, there is an additional flow equality constraint requiring inflows and outflows
of all buyer types to be equal:

ηBh (u) = λBMBheq (u)

ˆ
c
[1 −G (ε∗ (c,u))]dFeq (c)

Somewhat surprisingly, despite these changes to stationary equilibrium conditions, claims
1 and 2 continue to hold. To prove claim 1, note that, when buyers have heterogeneous
values, the matched owner value function is unchanged:

VM (ε) =
ε

r+ λM
+

λM
r+ λM

ˆ
c
VS (c)dF (c) (49)

The derivations in Appendix A.3 thus imply that:

P (c,u, ε) = VS (c) + θ
(
ε− ε∗ (c,u)
r+ λM

)
(50)

Now, similar to (30), we take the variance of prices, applying the law of iterated expecta-
tions with respect to c and u, to get:

Var (P (c,u, ε)) = Ec,u∼Ftr(c,u)
[
Varε∼Gtr(ε|c,u) (P (c,u, ε) | c,u)

]
+

Varc,u∼Ftr(c,u)

(
Eε∼Gtr(ε|c,u) [P (c,u, ε) | c,u]

)
(51)

Where, analogously to expression (30), Ftr (c,u) is the joint distribution of c and u among
trading buyers and sellers, and Ftr (ε | c,u) is the conditional distribution of ε given c,u
among trading buyers and sellers. Analogously to the argument to Appendix A.2, we
have:

Ftr (ε | c,u) = G (ε | ε > ε∗ (c,u))

The joint distribution Ftr (c,u) is more complicated to characterize; however, by flow
equality, the marginal distributions of Ftr (c,u) must be equal to the distributions of
entering buyer and seller types, F (c) and H (u). This implies that the following steps in
Appendix A.2 go through essentially unchanged. Going through the steps, for the top
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term of (51), we have:

Varε∼G(ε|ε>ε∗(c,u)) (P (c,u, ε) | c,u) =(
θ

r+ λM

)2

Varε∼G(ε|ε>ε∗(c,u)) (ε) =

(
θ

r+ λM

)2

σ2
ε

For the bottom term, substituting expression (50) for prices, we have:

Varc,u∼Ftr(c,u)

(
Eε∼G(ε|ε>ε∗(c,u)) [P (c,u, ε) | c,u]

)
= Varc,u∼Ftr(c,u)

(
Eε∼G(ε|ε>ε∗(c,u))

[
VS (c) + θ

(
ε− ε∗ (c,u)
r+ λM

)
| c,u

])

= Varc,u∼Ftr(c,u)

(
VS (c) +

θ

r+ λM
Eε∼G(ε|ε>ε∗(c,u)) [ε− ε

∗ (c,u) | c,u]
)

(52)

Again, the left term of (52),

Eε∼G(ε|ε>ε∗(c,u)) [ε− ε
∗ (c,u) | c,u]

is equal to σε, which is independent of c,u, so we can ignore it in the variance calculation;
(52) thus simplifies to

Varc,u∼Ftr(c,u) (VS (c))

which is independent of u, so this simplifies further to the variance with respect to the
marginal distribution of c, that is,

Varc∼F(c) (VS (c))

This proves (11). The proof of (12) is identical to the baseline model. Finally, differentiating
(48), we have:

rV ′S (c) = 1 + λSθ

ˆ
u

ˆ
ε>ε∗(c,u)

(
−V ′S (c)

)
1 (ε > ε∗ (c,u))dG (ε)dHeq (u) (53)

The total match rate facing a seller of type c is the inverse of time-on-market, so we have:

TOM (c) =
1

λS
´
u

´
ε>ε∗(c,u) 1 (ε > ε∗ (c,u))dG (ε)dHeq (u)

(54)
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Combining (53) and (54), we have:

V ′S (c) =
1

r+ θ
TOM(c)

=
TOM (c)

rTOM (c) + θ

proving claim 2.

B Supplementary material for section 3

B.1 CoreLogic tax, deed, and MLS data

Our data on house sales comes from the CoreLogic deed dataset, which is derived from
county government records of house transactions. Corelogic records the price and date of
each sale, and housing units are uniquely identified, within a FIPS county code, by an
Assessor Parcel Number (APN), which is assigned to each plot of land by tax assessors.
Our data on house characteristics comes from the CoreLogic tax assessment data for the
fiscal year 2016-2017, which contains, for each APN, its latitude, longitude, year built,
square footage, and numbers of bedrooms and bathrooms, as of 2016-2017. We merge the
tax data to the CoreLogic deed data by APN and FIPS county code.

We clean the datasets using a number of steps. First, we use only arms-length new
construction or resales of single-family residences, which are not foreclosures, which
have non-missing sale price, date, APN, and county FIPS code in the CoreLogic deed
data, and which have non-missing year built and square footage in the CoreLogic tax
data. As mentioned in the main text, we use only data from 2000 onwards, as we find
that CoreLogic’s data quality is quite low prior to around 2000. Even after throwing
out pre-2000 data, we find that some counties have very low total sales for early years,
suggesting that some data is missing. To address this, we filter out all county-years for
which the total number of sales we observe is below 20% of average annual sales over all
county-years in our sample.

We use the dataset that results from these cleaning steps to measure monthly sales
by county. This subsample is, however, unsuitable for estimating price dispersion, and
we apply a few additional cleaning steps for the subsample we use to estimate price
dispersion regressions in Subsection 3.2.

First, our measurement of price dispersion uses a repeat-sales specification, so we can
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only use houses that were sold multiple times. Moreover, we wish to filter for “house
flips”, as well as instances where reported sale price seems anomalous. If a house is ever
sold twice within a year, we drop all observations of the house. Most of these kinds of
transactions appear to be either flips, which are known to be a peculiar segment of the
real estate market (Bayer et al. (2011), Giacoletti and Westrupp (2017)), or duplication bugs
in the data, where a single transaction is recorded twice or more. To filter for potentially
anomalous prices, similarly to Landvoigt, Piazzesi and Schneider (2015) and Giacoletti
(2017), if we ever observe a property whose annualized appreciation or depreciation is
above 50% for any given pair of sales, we drop all observations of the property. We also
drop houses with prices that seem like significant outliers: if a house is ever sold at a
price which is more than 50% times higher or lower than the median house price in the
same county-year, we drop all observations of the house from our dataset.

Second, specification (14) involves a fairly large number of parameters: house and
county-month fixed effects, as well as many parameters in the fz (xi, t) polynomial term.
We thus require a fairly large number of house sales in order to precisely estimate (14);
thus we filter to counties with at least 1000 house sales remaining, and with at least 10
sales per month on average, after applying the filtering steps described above.

Appendix Table A1 shows characteristics of the counties in our estimation sample,
compared to the universe of counties in the 2012-2016 ACS 5-year sample. Our dataset
constitutes approximately 14.8% of all counties. Counties in our sample are larger and
denser than average, so our sample constitutes around 61.8% of the total US population. In
terms of demographics, the average income is somewhat higher than average for counties
in our sample, but our sample are quite representative in terms of age, race, and the
fraction of the population that is married.

We measure time on market using CoreLogic MLS dataset that contains data on indi-
vidual house listings. Housing units are uniquely identified, within a FIPS county code,
by an Assessor Parcel Number (APN). We only use listings of single-family residences that
eventually were sold with non-missing original listing and closing dates and non-missing
FIPS county code. We define time on market as the difference between closing date and
original listing date. We drop listings with time on market longer than 900 days, and
winsorize listings with time on market longer than 550 days. We then use listing-level
time on market to compute county-year-month and county-year average time on market.
We require county-year-month triplets to have at least 10 listings, and county-year pairs to
have at least 50 listings. Otherwise we record county-year-month or county-year average
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Table A1: Characteristics of counties in our dataset

Sample mean All counties mean
Population 417,315 100,027
Pop / Sq mile 984 290
Housing units 170,127 42,120
Avg income $77,974 $61,995
% Age 18-35 22.4% 20.7%
% Married 49.9% 51.3%
% Black 11.0% 9.00%
Total counties 477 3,220
Total pop (1000’s) 199,059 322,088

Notes. Characteristics of counties in primary estimation sample, compared to all counties
in ACS 2012-2016 5-year sample.

time on market as missing.

B.2 ACS

We use demographic information about counties from the ACS. For our cross-Sectional
regressions, we use the ACS 5-year sample spanning the years 2012-2016. For our panel
regressions, we use ACS 1-year samples spanning the years 2006-2017. We accessed the
data using Social Explorer, a commercial provider of pre-aggregated ACS data. The
demographic and housing stock characteristics we use are total population, population
growth rate, total number of housing units, log average income, unemployment rate
(calculated as one minus the fraction of population which is employed, divided by the
fraction of the population in the labor force), the vacancy rate (calculated as the fraction
of all surveyed houses which are vacant), the fraction of population aged 18-35 and 35-64,
and the fractions of the population which are black, married, high school graduates, and
college graduates.

B.3 Other time-on-market data sources

We use two other sources for time-on-market. First, we use Zillow Research data on
time-on-market, which is available at the county-month level from 2010-2018. Second,
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we use Realtor.com time-on-market, which is available at the county-month level from
2012-2018.

B.4 County-year and county-year-month data construction

To construct the county-year dataset, we first aggregate the estimated errors ε̂it from
specification (14) to the county-year level. We then get average prices, sales, and time-on-
market by aggregating Corelogic data. The price line in the year plots, Figures 5 and 6, is
the Zillow ZHVI. Results are qualitatively very similar if we instead use the Corelogic
price index, or a price index which we construct using the Corelogic data.

To construct the monthly dataset, used in Figures 3 and 4, we aggregate total house
sales from Corelogic and estimated errors ε̂it from specification (14) to the county month
level, for all months within 2010-2018. We also take average time-on-market from the
Corelogic MLS data, for the same sample period. For monthly prices, we do not use Zillow
or Corelogic’s house price indices, as both are seasonally adjusted; instead, we estimate a
price index at the county-month level by regressing log house prices on county-month
and house fixed effects, and taking the exponent of the county fixed effects as our price
index. We normalize the index so it is equal to 1 in January 2010 for all counties.

B.5 Yearly and seasonal data construction

To construct the dataset used in Figures 5 and 6, we first filter to counties which we observe
every year from 2000-2016; this leaves us with 361 counties, comprising approximately 38.8
million home sales. To construct the LogSD line in Figures 5 and 6, we average ε̂2

it over all
observations within a given county-year, then take the square root of the resultant average.
The time-on-market line represents the sales-weighted average of time-on-market across
county-months in a given year, and the price line represents the sales-weighted average
of the Zillow Home Value Index for single-family residences across county-months in a
given year.

To construct the seasonal dataset, we filter to the years 2010-2016, as we only observe
time-on-market for these years. This leaves us with 262 counties, comprising approx-
imately 13.8 million home sales over this time period. We first collapse the data to
year-month level. To collapse, we take the sum over sales in all counties, the mean over
all ε̂2

it terms that we estimate, and the sales-weighted average of time-on-market. For the
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price line, we take the monthly FHFA house price index for the entire US, also for the
time horizon 2010-2016. The Zillow ZHVI is seasonally adjusted, hence is not appropriate
for studying seasonal variation in prices.

Since all four variables – prices, price dispersion, sales, and time-on-market – have
low-frequency trends over time, we filter out these trends by regressing the collapsed
year-month dataset outcomes on a third-order polynomial in year-month, subtracting
away the predicted values, and adding back the mean. We then average the filtered series
over years to the calendar month level, index each series to its January level, and plot the
resultant series in Figures 3 and 4.

B.6 Implementation of specification (14)

When we estimate specification (14), it is computationally infeasible to estimate a fully
interacted polynomial in all house characteristics for fc (xi, t), so we use an additive
functional form for:

fc (xi, t) = glatlongc (t, lati, longi) + gsqftc (t, sqfti) + gyrbuiltc (t,yrbuilti)+

gbedroomsc (t,bedroomsi) + gbathroomsc (t,bathroomsi) (55)

The functions glatlongc , gsqftc , and g
yrbuilt
c are fully-interacted third-order polynomials

in their constituent components, and the functions gbedroomsc and gbathroomsc interact
dummies for a given house having 1, 2, 3 or more bedrooms and 1, 2, 3 or more bathrooms
respectively with third-order polynomials in time.

Additivity in specification (55) rules out many interaction effects between charac-
teristics. Older or larger houses can appreciate faster or slower than newer or smaller
houses. However, houses which are both large and old are constrained to appreciate at a
rate which is the sum of the “old house” and “large house” effects on prices. The only
interaction term we include is the glatlongc (t, lati, longi) function, which interacts latitude
and longitude. This is important because it is implausible that latitude and longitude
have additive effects on prices; effectively, this specification allows house prices to vary
smoothly as a function of a house’s geographic location over time.

Given this functional form for fc (xi, t), specification (14) is a standard fixed effects
regression, and we estimate specification (14) using OLS separately for each county in our
sample. Once we have estimated specification (14), we estimate squared residuals ε̂2

it for
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each house sale as:
ε̂2
it =

Nc

Nc −Kc
(pit − p̂it)

2 (56)

where Nc is the number of house sales in county c, and Kc is the number of parameters
estimated from specification (14). The term Nc

Nc−Kc
is a degrees-of-freedom correction,

which causes variance estimates to be unbiased at the county level; this is important to
include because most houses are sold relatively few times, so the number of parameters
Kc is nontrivially large relative to the number of house sales Nc in our dataset.

More formally, assuming homoskedasticity within counties, σ2
it = σ

2
c, the degrees-of-

freedom correction in expression (56) causes the expectation of ε̂2
it to be equal to the true

variance, σ2
c. We thus apply the homoskedastic variance adjustment term here, as we

are not aware of any computationally tractable way to implement a degrees-of-freedom
correction in the general heteroskedastic case. However, in Appendix D.1, we further
adjust the estimated residuals ε̂it to account for the number of times a house is sold and
the average time-between-sales, and show that our results are robust to this adjustment.

C Supplementary material for section 4

C.1 Panel regressions

Table A2 shows county-year panel regressions of logSD and TOM on various liquidity
supply measures. This largely confirms findings from table 2 in the main text. Columns 1
and 5 show that vacancy rates are positively correlated with logSD and TOM. Columns 2
and 6 show that population growth is populated with both liquidity measures. Columns
4 and 7 show that the coefficients are unchanged if both variables are included together.
Finally, column 3 shows that time-on-market is also positively correlated with logSD in
the panel specification.

Table A3 shows results from regressing logSD and TOM on income and prices. The
results are mostly analogous to 3: price increases predict decreases in logSD, and income
increases predict increases in logSD. Price increases predict increases in TOM, but the
coefficient of TOM on income is not significant.
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D Supplementary material for section 5

D.1 Price dispersion robustness checks

In this appendix, we show that our main results are robust to using three alternative
methods for estimating price dispersion.

Pure repeat sales specification: First, we omit the polynomial fc (xi, t) term from (14),
estimating residuals using the specification:

pit = γi + ηct + εit (57)

This corresponds to a pure repeat-sales specification for log prices.

Pure hedonic specification: Second, we omit house fixed effects from (14), estimating
residuals using the following specification:

pit = ηct + fc (xi, t) + εit (58)

Adjusting for time-between-sales and times sold: Specification (14) implies that
idiosyncratic price variance does not depend on the holding period. Also, when estimating
(14), ε̂2

it will tend to be larger for houses which are sold more times, because the house
fixed effect γi is estimated more precisely.

Let tbsi be the average time-between-sales for house i, and let salesi be the total
number of times we see house i being sold. Figure A1 plots a kernel regression fit of our
estimated residuals, |ε̂it|, against tbsi, separately for salesi equal to 2, 3 and 4, for houses
with tbsi between the 1st and 99th percentiles for each value of salesi. We see that the
estimated logSD, |ε̂it|, is on average higher when salesi and tbsi are larger.

To ensure that these measurement issues are not driving our results, we attempt to
purge ε̂2

it of any variation which can be explained by tbsi and salesi. First, we filter to
houses sold at most four times over the whole sample period, with estimated values of ε̂2

it

below 0.25. We then run the following regression, separately for each county:

ε̂2
it = gc (salesi, tbsi) + ζit (59)

Where, gc (salesi, tbsi) interacts a vector of salesi dummies with a fifth-order polynomial
in tbsi. The residual ζ̂it from this regression can be interpreted as the component of the
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house’s price variance which is not explainable by salesi and tbsi. We then add back the
mean of ε̂2

it within county c:

ε̂2
TBSadj,it = ζ̂it + Ec

[
ε̂2
it

]
(60)

ε̂2
TBSadj,it can be interpreted as the baseline estimates, ε̂2

it, nonparametrically purged of
all variation which is explainable by a smooth function of salesi and tbsi. We use these
estimates in the regressions of table A7.

Qualitative results: The top row of figure A2 compares residuals from the pure repeat-
sales and pure hedonic specifications, (57) and (58) respectively, to our baseline residuals.
The top left panel shows that the difference between repeat-sales residual estimates and
the estimates from our baseline specification are quantitatively quite small, implying that
the polynomial term fc (xi, t) plays a relatively small role in fitting prices.

The top right panel of figure A2 shows that residual estimates from the pure hedonic
specification are substantially higher than from our baseline specification, implying
that house fixed effects are very important for accurately fitting prices. Note that we
have included a degrees-of-freedom correction in all specifications, so this bias is not
mechanically caused by estimating a larger number of parameters. Practically, the top
row of figure A2 implies that idiosyncratic price dispersion can be estimated fairly well
simply by taking the average residuals from a repeat-sales regression. We do not show
time-between-sales adjusted residuals, because they are on average equal to residuals
from the baseline specification, due to (60).

The bottom row of figure A2 shows how the different estimates of price dispersion
behave seasonally and over the business cycle. All four measures are seasonal, with
changes of similar magnitudes. Over the business cycle, the baseline, repeat-sales, and
TBS-adjusted estimates behave very similarly. The hedonic estimate behaves somewhat
differently, but is also noticeably countercyclical.

Our regression results are robust to all three different ways of measuring price disper-
sion. Table A4 collects specifications using logSD as the dependent variable from Tables
2 and 3 in the main text. In addition, in column 6, we include all dependent variables
in a combined specification, and in column 7 we add state fixed effects. The signs of
all coefficients in both specifications are the same as those in the main text, and most
variables are significant.

In Tables A5, A6, and A7, we estimate all specifications in Table A4, using each of
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Figure A1: Effect of salesi and tbsi on ε̂2
it

Notes. Predictions from kernel regressions of ε̂2
it on tbsi, separately for each value of

salesi.

the three alternative estimates of price dispersion. Most results are qualitatively and
quantitatively similar to those from the baseline specification. Across all specifications,
prices, time-on-market, vacancy rates, and population growth rates are correlated with
price dispersion significantly and in the expected directions.

D.2 Comparison of price dispersion estimates to literature

A number of other papers have attempted to measure idiosyncratic house price dispersion.
Giacoletti (2017) uses the same Corelogic data that we use to measure idiosyncratic price
dispersion in the metropolitan areas of San Francisco, San Deigo, and Los Angeles. Unlike
our specification (14), Sagi (2015) and Giacoletti use returns, rather than individual house
sales, as the primary unit of analysis.10 Using returns, rather than sales, as the unit of
analysis is more appropriate to the extent that the difference between an individual house’s
price and the county index follows a random walk. However, Sagi (2015) and Giacoletti
show that the random walk assumption is rejected in the data; idiosyncratic variance does

10There are a number of other differences between Giacoletti’s methodology and ours. First, Giacoletti
measures returns with respect to Zillow’s home value index, rather than adding county-month fixed effects
as we do in this paper. Second, Giacoletti does not allow returns to flexibly vary over time as a function of
house characteristics – characteristics are allowed to affect returns, but not in a time-dependent manner.
Third, Giacoletti incorporates data on remodeling expenses in measuring price dispersion, which we do not
do in this paper.
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Figure A2: Effect of salesi and tbsi on ε̂2
it

Notes. The top left plot shows repeat-sales residuals, from (57), against the baseline
residual estimates, and the top right plot shows residuals from the hedonic specification
(58). We aggregate residuals to the county level from 2012-2016.
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scale with holding periods, but much more slowly than under a random walk model. A
related paper is Carrillo, Doerner and Larson (2019), which finds that excess returns of
individual houses over market averages are mean-reverting in subsequent transactions.

The results of these papers thus support the use of our specification (14) to measure
price dispersion. Specification (14) goes further, assuming that idiosyncratic variance
has no relationship with holding period; this is violated in the data, but we relax this in
appendix D.1. The benefit of our measurement strategy is that, since we can measure
errors at the level of individual house sales, rather than pairs of purchases and sales, our
estimates of idiosyncratic price dispersion can be flexibly aggregated cross-sectionally
and over time. This is necessary for us to produce our stylized facts, which we believe are
new to the literature: that idiosyncratic price dispersion is countercyclical, seasonal, and
correlated with time-on-market and other measures of market tightness. These results
build on and complement Giacoletti (2017), who shows that contractions to mortgage
credit availability at the zipcode level are associated with increased idiosyncratic variance,
and Landvoigt, Piazzesi and Schneider (2015), who show that idiosyncratic variance
increased in San Diego following the 2008 housing bust.

Peng and Thibodeau (2017) uses a purely hedonic specification to measure price
dispersion, analyzing the relationship between idiosyncratic price dispersion and various
other variables in the cross-section of zipcodes. To address the possibility that the hedonic
model determining prices changes over time, Peng and Thibodeau (2017) runs separate
hedonic regressions for different time periods. We address this issue through the hedonic
fc (xi, t) term in specification (14), which effectively allows the hedonic coefficients on
different characteristics to change continuously over time. In appendix D.1, we measure
price dispersion using a purely hedonic specification for log prices, similar to Peng and
Thibodeau (2017); this does not substantially change our results.

Two other papers which measure idiosyncratic price dispersion are Anenberg and
Bayer (2015) and Landvoigt, Piazzesi and Schneider (2015). Anenberg and Bayer (2015), as
an input moment for estimating their structural model, estimate the idiosyncratic volatility
of house prices using a repeat-sales specification with zipcode-month and house fixed
effects, without allowing characteristics to affect prices over time. Landvoigt, Piazzesi
and Schneider (2015) estimates idiosyncratic price dispersion assuming that the only
characteristic that affects mean returns is a house’s previous sale price. Our specification
(14) does not nest that of Landvoigt, Piazzesi and Schneider (2015), since we do not
include previous sale prices in specification (14); however, to the extent that the factors
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which affect prices are summarized by our house characteristics xt, our specification will
also be able to capture these trends.

Quantitatively, Giacoletti (2017), using data from 1989 to 2013, finds that the standard
deviation of idiosyncratic component of returns is approximately 9.6%-11.8% in San Diego,
13.9%-16.5% in Los Angeles, and 13.7-17.6% in San Francisco. Landvoigt, Piazzesi and
Schneider (2015) finds a similar SD of 8.8%-13.8% for San Diego over the time horizon
1999-2007. In our sample, over the time period 2000-2017, we estimate return standard
deviations of 15.7% for San Diego, 16.8% for Los Angeles, and 19.1% for San Francisco.11

Our estimates are thus roughly in line with the estimates from Giacoletti (2017) and
Landvoigt, Piazzesi and Schneider (2015), preserving the ordering of idiosyncratic price
dispersion between the three regions, although our estimates are somewhat higher than
theirs. Moreover, similar to our findings, Landvoigt, Piazzesi and Schneider (2015) finds
that price dispersion increased during the 2008 housing bust, though their sample does
not include the subsequent recovery. Thus, our paper, Giacoletti (2017), and Landvoigt,
Piazzesi and Schneider (2015) arrive at similar estimates using different methodologies,
datasets, time horizons, and geographic definitions, suggesting that the stylized facts we
document are fairly robust to different measurement strategies.

D.3 Time-on-market robustness checks

For robustness, we repeat our main analyses using two different data sources for time-on-
market: Realtor.com time-on-market, which is available at the county-month level from
2012 to 2017, and Zillow Research time-on-market, which is available from 2010 to 2018.

In the top two panels of Figure A3, we aggregate both time-on-market sources to the
county level, using data within the interval 2012-2016, and show how they correlate with
Corelogic time-on-market across counties. Realtor.com time-on-market is somewhat lower
than Corelogic, and Zillow time-on-market is somewhat higher, but all three measures are
very positively correlated.

The bottom row of Figure A3 shows how Zillow and Realtor.com time-on-market
behave seasonally and over the business cycle. All three data sources display seasonality,

11To calculate these quantities, we take sales-weighted averages of σ̂2
c for all counties within the San

Diego-Carlsbad-San Marcos, San Francisco-Oakland-Fremont, and Los Angeles-Long Beach-Anaheim
CBSAs. We then multiply σ̂c by a factor of

√
2, to convert standard deviations of prices at each sale to

standard deviations of returns, which can then be compared directly to the estimates in Giacoletti (2017)
and Landvoigt, Piazzesi and Schneider (2015).
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although the patterns and magnitudes are somewhat different for the Realtor.com data.
While the Zillow and Realtor.com data do not go very far back in time, all data sources
display a decrease in time-on-market from around 2010 onwards.

Table A8 collects specifications using TOM as the dependent variable from Tables 2
and 3 in the main text. In column 5, we include all dependent variables in a combined
specification, and in column 6 we add state fixed effects. The signs of all coefficients
in both specifications are the same as those in the main text, and most variables are
significant.

In Tables A9 and A10, we repeat the regressions of Table A8 using Zillow and Real-
tor.com time-on-market respectively as dependent variables. Most results are qualitatively
unchanged.

E Supplementary material for section 6

E.1 Moment matching

The free parameters in our model are λM,ηB, c̄,∆c, ε0,σ2
ε. We match these parameters to

data moments using an inner-outer loop procedure. In the outer loop, we match ∆c, and
in the inner loop we solve for all other parameters conditional on ∆c. In the inner loop,
for any guess for ∆c, we choose other parameters to exactly match five data moments. In
the outer loop, we generate a model-implied relationship between time-on-market and
price dispersion using a procedure described in Subsection E.1.2, and we choose ∆c to
match the model-implied TOM-PD relationship to the data. Computational details of how
we solve the model for a given choice of parameters are described in Appendix E.1.3.

E.1.1 Inner loop

Given any value of ∆c, we choose λM,ηB, c̄, ε0,σ2
ε to match the average values of five

moments. Three of the target moments come from a sample of counties in 2016.

We target two moments from other papers in the literature. The first is the average
number of houses that buyers visit before buying, which Genesove and Han (2012) find
to be 9.96, in the US. The second is the dispersion in buyer values for houses, from
Anundsen, Larsen and Sommervoll (2019). Using data on Norwegian residential real
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Figure A3: TOM robustness

Notes. The top left panel plots Realtor.com time-on-market against Corelogic time-on-
market, and the top right panel plots Zillow time-on-market against corelogic. Each data
point is a county, and time-on-market is in months. The bottom left panel shows seasonal
variation in each time-on-market measure, where each measure is indexed to 1 in January.
The bottom right panel shows time-on-market over the business cycle. Realtor.com and
Zillow time-on-market are indexed so that they are equal to Corelogic time-on-market, in
the first year that we observe them.
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estate auctions,12 Table 1 of Anundsen, Larsen and Sommervoll (2019) reports a variety of
summary statistics about bid-ask, bid-appraisal, and bid-sell spreads. We target the lowest
spread in Table 1, the difference between the opening bid price and the ask price, which
is 6.45% of house prices on average. This will tend to produce conservative estimates of
buyer value-induced price variance.

We match buyer-induced price variance in the model by requiring the square root of
buyer match utility-induced price variance to equal 6.45% of house prices; that is, we will
choose σε such that:

1
E (P (c, ε))

√(
θ

r+ λM

)2

σ2
ε = 0.0645

While the mapping between moments and parameters is complex, roughly speaking,
the input parameters determine the output moments as follows. The lower bound, ε0,
and dispersion, σ2

ε, of buyer utilities jointly determine the level of buyer-induced price
dispersion and the overall level of house prices. The mean of seller holding utilities, c̄,
and the lower bound, ε0, affect average gains-from-trade and thus move prices and the
average number of house visits by buyers before purchasing. The entry rate ηB of buyers
determines market tightness, which determines average time-on-market. The separation
rate λM is tightly linked to the turnover rate.

Since buyer- and seller-induced price variance do not add up to total price variance,
there is a residual term. This could be driven by a number of factors: such as unobserved
house-level heterogeneity or renovations, or realtor bargaining frictions. Using our
estimates, we can do a simple accounting of roughly how much of total price dispersion,
under our estimates, is attributable to preferences. That is, we can decompose total logSD
in the data into components attributable to buyer values, seller values, and residuals:

(0.165)2 ≈
Varc∼F(·) (VS (c))

(E (P (c, ε)))2︸ ︷︷ ︸
Seller holding value

+
1

(E (P (c, ε)))2

(
θ

r+ λM

)2

σ2
ε︸ ︷︷ ︸

Buyer match value

+σ2
residual (61)

In our baseline model estimates, the seller holding value component has a standard
deviation of 3.52% of prices, the buyer component is 6.45% of house prices, and the
unobserved heterogeneity component is 14.77% of house prices. In terms of variance
fractions, 4.5% of total logSD is attributable to seller values, 15.3% to buyer values, and

12We use these data because we are unaware of publically available bid data on housing auctions in the
US.
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80.2% to unobserved heterogeneity. Thus, in our baseline calibration, preferences can
account for a nontrivial component of total idiosyncratic dispersion, but a large fraction is
attributed to residual factors.

E.1.2 Outer loop

In the data, we have several ways to measure the relationship between price dispersion and
time-on-market. The coefficient is relatively similar in the panel, seasonal and time-series
regression specifications. For our calibration, we use the panel regression coefficient.

To most closely match the data, holding fixed λM, c̄,∆c, ε0,σ2
ε, we perturb ηB to simu-

late model implied grids of dollar price dispersion and time-on-market. We divide dollar
price dispersion by the average price at the initial set of parameters λM,ηB, c̄,∆c, ε0,σ2

ε to
obtain percentage price dispersion. We then regress simulated percentage price dispersion
from our model on simulated time-on-market, to generate a model-predicted regression
coefficient. We choose ∆c to match this model-predicted TOM-logSD relationship to the
county panel coefficient.

E.1.3 Computation

Computationally, we solve the model by varyingMB rather than ηB; this is computationally
simpler, and for any equilibrium in terms of MB, we can back out an ηB which implements
this equilibrium, through (10). Given a vector of parameters r,α,φ, θ, λM,MB, c̄,∆c, ε0,σ2

ε

we solve the model by iteratively solving the Bellman equations and flow equality condi-
tions until convergence. Given guesses for feq (c) ,MS, we calculate λS and λB, and then
numerically solve (3), (4), (5) for VS (c) ,VM (ε) ,VB, ε∗ (c). Given guesses for the trade
cutoff ε∗ (c), we can then use (8) to solve for feq (c). We iterate these equations, updating
in a penalized matter; if the result of one iteration on MS implies some new value M̃S, for
the next iteration, we update MS to:

(1 − t)MS + tM̃S

For small enough t, the iteration converges. While we were not able to prove that
the model admits a unique solution, in our simulations, the model reached the same
equilibrium point from many different starting values.
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E.2 Log price variance approximation

In our data, idiosyncratic price variance corresponds to the residual from a regression in
which the dependent variable is the log sale price; hence, the residual can be interpreted
as the variance of log prices. In the model, the variance of prices is computationally
easy to calculate, using the analytical result of claim 1, but the variance of log prices is
more complex. For computational simplicity, in generating the variance of log prices in
the model, we use the following linear approximation, based on the Taylor expansion of
log (P) around its mean P̄:

Var (log (P)) ≈ Var
(

log
(
P̄
)
+
P− P̄

P̄

)
= Var

(
P− P̄

P̄

)
=

1
P̄2Var (P)

Hence, we generate the variance of prices as the variance of model-generated prices,
divided by the squared mean of model-generated prices, where we calculate the variance
of model-generated prices using expression (11) of Claim 1.

E.3 Literature estimates of liquidity discounts

A number of papers in the literature have documented various factors which affect
sale prices and time-on-market, through a channel which is plausibly related to seller
patience. For each of these papers, we calculate the implied 1-month effects, essentially by
dividing the estimated price effects by estimated time-on-market effects. We describe our
calculation methodology for each row of Table 5 below. We divide the papers into two
groups: papers which estimate foreclosure discounts, and those which estimate “liquidity
discounts” driven by factors other than foreclosure. The reason for this is that foreclosure
discount estimates are systematically higher than liquidity discounts.

Liquidity discounts

• Genesove and Mayer (1997), using data from Boston, MA from 1990-1992, analyzes
the relationship between owners’ equity position, time-on-market, and prices. Intu-
itively, owners who have higher home equity set higher list prices, take longer to
sell, and achieve higher sale prices. They find that a homeowner with loan-to-value
1 sells for 4.3% higher than a homeowner with loan-to-value 0.8, and remains on
market 15% longer. Assuming average time-on-market is 2.6 months, the estimated
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1-month effect is:
4.3%

(0.15) (2.6)
= 11.02%

• Genesove and Mayer (2001), using data from condos in Boston, MA from 1990-1997,
analyze the behavior of sellers subject to different amounts of nominal losses, due to
the time they purchased their houses. Sellers subject to nominal losses set higher
list prices, sell more slowly, and sell for higher prices. They find that sellers pass
through around 3-18% of nominal losses; hence, with a 10% higher nominal loss,
sellers set asking prices between 0.3% and 1.8% higher. Time-on-market is around
3-6% higher. In our data, average time-on-market is around 2.6 months. We can
calculate an upper bound on the 1-month effect by taking the upper estimate of the
price effect, and the lower estimate of the time-on-market effect, of a 10% nominal
loss:

1.8%
(0.03) (2.6)

= 24%

As a lower estimate, we can plug in the lower estimate of the price effect and the
upper estimate of the time-on-market effect:

0.3%
(0.06) (2.6)

= 1.92%

• Levitt and Syverson (2008), using data from Cook County, IL from 1992-2002, analyze
sales of realtor-owned houses. They find that realtors tend to sell more slowly, but
for higher prices: realtors spend around 9.5 extra days on market, and sell for 3.7%
higher prices. The estimated 1-month effect is:

3.7(9.5
30

) = 11.68%

Note that this estimate assumes that all realtors do is set higher list prices. Realtors
are likely to have a better selling technology – for example, they may be more
effective at finding buyers. In this case, this is likely to be an overestimate of the
1-month effect.

• Hendel, Nevo and Ortalo-Magné (2009) analyze FSBO transactions, using data
spanning 1998-2005 in Wisconsin, WI. They find that FSBO sales take around 20 days
longer to sell, and sell at the same price, but without sellers’ realtor commissions. If
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we assume realtor commissions are 3%, this gives an estimated 1-month effect of:

3(20
30

) = 4.5%

There are clearly other differences between FSBO sales and MLS sales, but this
corresponds to the 1-month discount if we simply think of FSBO sales as a slower,
but higher-price way to sell a house.

• Guren (2018) uses data from Los Angeles, San Diego, and San Francisco, from
1988-2013. Similar to Genesove and Mayer (1997), Guren uses price appreciation
since purchase as an instrument for sellers’ marginal utility for cash, and thus sellers’
urgency. While Guren emphasizes the curvature of demand, we can use the slope of
demand to estimate the 1-month price effect, using the IV estimates in his Figure 2.
In this figure, a relative markup change of 4% – that is, from -0.02 to 0.02 – changes
the 13-week sale probability of a house from 0.5 to 0.4. Assuming that house sales
follow a Poisson process, and assuming 4 weeks in a month, the sale probabilities
map to expected time-on-markets of 6.5 months and 8.125 months, respectively.
Assuming list prices pass through perfectly to sale prices, this gives a lower estimate
of the 1-month effect of:

4
8.125 − 6.5

= 2.46%

We note that the estimated time-on-markets, using this method, are much higher
than our estimate of 2.6 months. If we instead assume time-on-market increases by
25%, using a base of 2.6 months, we can calculate an upper estimate of the 1-month
effect as:

4(8.125
6.5 − 1

)
(2.6)

= 6.15%

Another caveat to note is that our assumption that list prices pass through perfectly
to sale prices is likely an overestimate. In support of this assumption, however,
in appendix D.1, Guren writes that "the modal house sells at its list price" in his
sample.

• Buchak et al. (2020) analyze I-buyers, using data from Phoenix, Las Vegas, Dallas,
Orlando, and Gwinnet Atlanta, from 2013-2018. They find that I-buyers purchase
houses at at around 3.6% lower prices. In addition, we found that Zillow charges
the standard 6% realtor commission, as well as around 1.4-8% extra fees, depending
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on the region in question. Thus, combining the price discount and the explicit fee, a
buyer is effectively paying around 5-11.6% more than they would pay if they used a
realtor, in order to sell instantly. Assuming time-on-market is 2.6 months, we can
calculate upper and lower estimates on the implied 1-month effect as:

5
2.6

= 1.92%,
11.6
2.6

= 4.46%

Foreclosure discounts

• Pennington-Cross (2006), using confidential data, finds foreclosure discounts or
around 22% of house prices.

• Clauretie and Daneshvary (2009), using data from Las Vegas from 2004-2007, find
foreclosure discounts averaging around 10%.

• Campbell, Giglio and Pathak (2011), using data from Massachusetts from 1987-2009,
find foreclosure discounts of around 27%. Note that Campbell, Giglio and Pathak
also analyze discounts from “forced sales”, driven by deaths or bankruptcies of
sellers, but which are not foreclosures. These discounts are much smaller, at 3-7%.
This is in the range of the 1-month effects from our model and other papers, but the
paper does not report the average time-on-market difference between forced sales
and normal sales, so we cannot calculate a 1-month effect.

• Harding, Rosenblatt and Yao (2012), using data from 13 MSAs from 1990-2008, calcu-
late foreclosure discounts using a “holding period returns” methodology. Figure 2 of
Harding, Rosenblatt and Yao (2012) shows that that, while returns are very high for
foreclosures held for 1 year, foreclosed houses held for 2-4 years only make around
5% excess returns on average. The estimates vary somewhat across specifications,
but tend to be lower than other papers in the literature.

• Zhou et al. (2015), using data from 16 CBSAs from 2000-2012, finds foreclosure
discounts ranging from around 11% (Los Angeles) to 26% (Chicago). The average
across CBSAs is around 15%. There is also substantial time-series variation in the
estimates.
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