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Human Mobility Restrictions and the Spread of the Novel

Coronavirus(2019-nCoV) in China

Abstract

We quantify the causal impact of human mobility restrictions, particularly the lockdown of

Wuhan on January 23, 2020, on the containment and delay of the spread of the Novel Coron-

avirus (2019-nCoV). We employ difference-in-differences (DID) estimations to disentangle the

lockdown effect on human mobility reductions from other confounding effects including panic

effect, virus effect, and the Spring Festival effect. The lockdown of Wuhan reduced inflows to

Wuhan by 76.98%, outflows from Wuhan by 56.31%, and within-Wuhan movements by 55.91%.

We also estimate the dynamic effects of up to 22 lagged population inflows from Wuhan and

other Hubei cities – the epicenter of the 2019-nCoV outbreak – on the destination cities’ new

infection cases. We also provide evidence that the enhanced social distancing policies in the 98

Chinese cities outside Hubei province were effective in reducing the impact of the population

inflows from the epicenter cities in Hubei province on the spread of 2019-nCoV in the desti-

nation cities. We find that in the counterfactual world in which Wuhan were not locked down

on January 23, 2020, the COVID-19 cases would be 105.27% higher in the 347 Chinese cities

outside Hubei province. Our findings are relevant in the global efforts in pandemic containment.

Keywords: Human Mobility, Lockdown, Social Distancing, 2019-nCoV, COVID-19, Disease

Outbreak

JEL Codes: I18, I10.



1 Introduction

Human mobility contributes to the transmission of infectious diseases that pose serious threats to

global health. Indeed, many countries restrict human mobility flows as part of their response plans

(Bajardi et al., 2011; Wang and Taylor, 2016; Adda, 2016; Charu et al., 2017). However, restrictions

on human mobility are controversial not only because of their negative economic impacts, but also

because of the uncertainty about their effectiveness in controlling the epidemic. Even if restricting

human movement could lead to improvements in disease control and reductions in health risks,

it is empirically challenging to quantify the impact of human mobility on the spread of infectious

diseases, and to understand the detailed spatial patterns of how the infectious disease spreads.

Both granular disease occurrence data and human mobility data (Charu et al., 2017) are hard to

obtain; moreover, it is difficult to disentangle the impact of human mobility from other potential

contributing factors (Ferguson et al., 2006; Hollingsworth et al., 2006). We exploit the exogenous

variations in human mobility created by lockdowns of Chinese cities, and utilize high-quality data

sets to study the effectiveness of an unprecedented cordon sanitaire of the epicenter of COVID-19,

and provide a comprehensive analysis on the role of human mobility restrictions in the delaying

and the halting of the spread of the COVID-19 pandemic.1

The fast-moving 2019-nCoV that infected 17.5 million people and claimed 682,612 lives as of

July 31, 2020 is deteriorating into one of the worst global pandemics.2 The virus first appeared in

Wuhan in early December of 2019, spread mainly through person-to-person contact (Chan et al.,

2020), and rapidly reached more than 183 countries as of March 21, 2020.3

However, the nature of the virus and its transmission was not publicly known initially. Even

though the Chinese state media reported the first known death caused by the Novel Coronavirus on

January 11, 2020, it did not register much public attention. On January 14, 2020, the World Health

Organization (WHO) announced that Chinese authorities had seen “no clear evidence of human-to-

human transmission of the Novel Coronavirus.” As the Chinese New Year – which fell on January

25, 2020 – approached, Chinese citizens across the country were still traveling and gathering for

various festive and social activities. In fact, on January 18, 2020, more than 10,000 Wuhan families

gathered for the annual Wuhan Lunar New Year banquet.4 These announcements and events

suggest that no public panic was sparked yet as of that date. On January 19, 2020, the Chinese

National Health Commission convened and sent a team of epidemiologists to Wuhan to investigate

the outbreak of the Novel Coronavirus. On January 20, 2020, Dr. Zhong Nanshan, a renowned

epidemiologist who was leading the investigative team, for the first time publicly confirmed on

1Throughout the paper, we use 2019-nCoV as the official name for the Novel Coronavirus according to the World
Health Organization, and use COVID-19 as the name of the disease caused by 2019-nCoV.

2Source: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
3With a population of over 11 million, Wuhan is the largest city in Hubei, the most populous city in Central

China, and the seventh most populous city in China. The city is also a major transportation hub, with dozens of
railways, roads and expressways passing through and connecting to other major cities, and home to 82 colleges and
more than 1 million college students.

4See Wei, Lingling, and Chao Deng. “China’s Coronavirus Response Is Questioned: ‘Everyone Was Blindly
Optimistic’.” The Wall Street Journal, Dow Jones amp; Company, 24 Jan. 2020, www.wsj.com/articles/china-
contends-with-questions-over-response-to-viral-outbreak-11579825832.
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national TV that the Novel Coronavirus could spread from human to human. This confirmation

caused great panic among the public. The search frequencies in Baidu, the major Chinese search

engine, of COVID-19 related keywords such as “Coronavirus”, “Wuhan”, “Bat”, “SARS”, and

“symptom” (in Chinese) immediately surged (See Figure A6), and the number of people leaving

Wuhan spiked (see Section 3 and Figure A2). On January 23, 2020, the Chinese central government

imposed a lockdown in Wuhan, and within a day also on the other cities in Hubei province, in an

effort to quarantine the epicenter of the outbreak.

The lockdown of 11 million people in Wuhan represents by then the largest quarantine in public

health history, which offers us an opportunity to rigorously examine the effects of the city lockdown

and understand the relationship between human mobility and virus transmission. We should point

out that the Wuhan lockdown, which lasted 76 days, was extremely strict. All air, train and bus

travels into and out of Wuhan were suspended, and all the highway and local road accesses were

blocked except for emergency, medical and supply personnel. Residents were not allowed to leave

their residence, and food supplies were ordered via phone apps and delivered to the doorsteps by

community organizations. The strictness of the lockdown measures was unprecedented.

In this paper, we study four research questions. First, how does the lockdown of Wuhan affect

population movement? Second, how do population flows among Chinese cities, particularly outflows

from Wuhan, affect the virus infections in the destination cities? Third, are social distancing

policies in the destination cities effective in reducing the spread? Fourth, how many infections

were prevented elsewhere in China by the unprecedented Wuhan lockdown? We utilize datasets on

city-pair population migration and the within-city population movements of each city at the daily

level from Baidu Migration, and the city-level daily number of infections from the Chinese Center

for Disease Control and Prevention (CCDC) during a sample period of January 1 to February 29,

2020, covering 22 days before and 38 days after the city lockdown on January 23, 2020, as well as

the matched data from the same lunar calendar period in 2019.

We first employ difference-in-differences (DID) estimation strategies to disentangle the effect

of Wuhan lockdown on human mobility reductions from other confounding effects including panic

effect, virus effect, and the Spring Festival effect. Our estimates show that the Wuhan lockdown

reduced inflow into Wuhan by 76.98%, outflows from Wuhan by 56.31%, and within-Wuhan move-

ments by 55.91%. We find a clear inverted U -shape relationship between the lagged days of the

population inflows from Wuhan or other cities in Hubei and the destination cities’ new COVID-19

cases, with the largest impact from the population inflows from the epicenter about 12 to 14 days

earlier. We provide evidence that imposing enhanced social distancing policies in 98 Chinese cities

outside Hubei Province were effective in reducing the impact of population inflows from the epi-

center cities in Hubei province on the spread of 2019-nCoV virus in the destination cities. Finally,

we estimate that COVID-19 cases would be 105.27% higher in the 347 Chinese cities outside Hubei

province, in the counterfactual world without the Wuhan lockdown.

Our study contributes to a fast-growing literature on 2019-nCoV infection, mostly in the med-

ical and public health fields (Huang et al., 2020; Chan et al., 2020; Liu et al., 2020; WHO, 2003).5

5This study is also related to disaster-induced migration, which has often occurred during drought, flooding,
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Adda (2016) uses a quasi-experimental variation to assess the effectiveness of public health measures

that are aimed at reducing interpersonal contacts, and finds that the effectiveness of the measures

depends on disease characteristics. Our results are also in line with the results of the latest mod-

eling exercises (Chinazzi et al., 2020; Qiu et al., 2020; Chinazzi et al., 2020; Li et al., 2020; Tian

et al., 2020; Jia et al., 2020), which mostly rely on calibrations of various virus-related parameters

such as incubation period and detection rates, and changes in travel flows. Lai et al. (2020) build

a travel network-based susceptible-exposed-infectious-removed (SEIR) model to simulate the out-

break across cities in mainland China. López and Rodó (2020) also use a modified stochastic SEIR

model to explore different post-confinement scenarios in many countries such as Spain, Japan, New

Zealand, and the U.S., and they find that the gradual de-confinement could be the best strategy

to reduce the disease burden. Recent literature also shows that non-pharmaceutical interventions

(NPIs) have a significant effect on reducing the virus reproduction rates in the U.S., U.K, Italy,

Spain, France, Australia, New Zealand, and Singapore. The effectiveness of NPIs in reducing the

estimated number of infections varies substantially across countries, ranging from only 0.8% in the

U.S. to 99.3% in Singapore (Flaxman et al., 2020; Milne and Xie, 2020; Koo et al., 2020; Siedner

et al., 2020).

To the best of our knowledge, this paper is the first to provide a causal interpretation of the

impact of city lockdown on human mobility and the spread of 2019-nCoV, and to clearly disentangle

the lockdown effects from other potential contributing factors such as panic and virus effect, as well

as the seasonal Spring Festival effect. Although our study focuses exclusively on the impact of

human mobility restrictions on the spread of 2019-nCoV virus in China, our estimated results can

have general implications for other countries in their fight against the Novel Coronavirus.

The remainder of the paper is structured as follows. In Section 2, we describe the data sets

and provide descriptive statistics. In Section 3, we use various DID estimations to evaluate the

lockdown effect on population movements. In Section 4, we quantify the impact of lockdown on

the national spread of COVID-19. Section 5 concludes.

2 Data and Descriptive Statistics

Population Migration Data. We obtain inter-city population migration data from Baidu Mi-

gration, a travel map offered by the largest Chinese search engine, Baidu. The data is based on

real-time location records for every smartphone using the company’s mapping app, and thus can

precisely reflect the population movements between cities.6 The Baidu Migration data set covers

120,142 pairs of cities per day for 364 Chinese cities between January 12 and March 12 in 2019,

and between January 1 and February 29 in 2020. Note that, by the lunar calendar, the data covers

the same period of 24 days before and 36 days after the Spring Festivals, respectively for the year

2019 and 2020. The daily inter-city migration data consist of 2,977,899 city-pair observations each

earthquake and other destructive climatic phenomena (Munshi, 2003; Gray and Mueller, 2012; Lu et al., 2012).
6It is important to emphasize here that the mobility data is about the movement of people from one city to

another based on geo-location services of the smartphones; as such a person flowing out of city A to city B is not
necessarily a resident of city A, but he/she must have been to city A before moving to city B.
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year. In addition, Baidu provides the daily within-city mobility data for each city in the sample

period, which is a panel consisting of 21,840 city-day level observations each year.

Specifically, the Baidu Migration data provides three migration intensity indicators: the daily

in-migration index (IMI) of a city, the daily out-migration index (OMI) of a city, and the daily

within-city migration index (WCMI). We convert the three migration indices into the number

of population movements using the actual number of inter-city/within-city population flows in

Shanghai provided by the National Earth System Science Data Center (NESSDC). Appendix B

provides the details of how we convert the Baidu indices into the number of popuplation movements.

Appendix Table A1 presents the summary statistics of the population flows at the city-pair-day

level and city-day level. It shows drastic declines in the average inflows, outflows, and within-city

migration in 2020, compared to the same lunar period in 2019. The plummeting of the migration

statistics due to the Wuhan lockdown is also depicted in Appendix Figure A2.

Outbreak Data. COVID-19 daily case counts are collected from China CDC, which provides

daily updates on confirmed, dead, and recovered COVID-19 cases in each city.7 Forty-one infections

were first confirmed in Wuhan on January 10. We plot the geographic distributions of sample cities

and cases in Appendix Figure A1. Panel B of Appendix Table A1 presents the summary statistics

of COVID-19 data, and Appendix Figure A3 plots the trends of daily statistics of COVID-19

separately for the epicenter city of Wuhan, for other cities in Hubei, and for cities outside of

Hubei.8

We have many reasons for treating the officially reported COVID-19 cases in Wuhan and other

cities of Hubei with caution, and differently from the data of cities outside Hubei. As the epicenter

of COVID-19, the health care systems in Wuhan and other cities in Hubei were overwhelmed by

the sheer number of patients who needed laboratory testing, especially in the early phases of the

virus outbreak. As such, the over-extended medical system in Wuhan and other cities in Hubei

might have caused delays in testing the patients who contracted COVID-19; patients who contracted

COVID-19 might have been self-recovered or died, before being officially tested; and some who were

infected might have been asymptomatic. Also, government officials in the epicenter cities might

have incentives to downplay the severity of the outbreak, at least initially. These considerations

impact how we use the outbreak data in Section 4.

3 The Impact of Wuhan Lockdown on Population Movements

To suppress the spread of 2019-nCoV, the central government of China imposed an unprece-

dented lockdown in Wuhan starting from 10 am of January 23, 2020, and in all but one other

Hubei cities a day later. As of February 29, 2020, 115 cities in 25 provinces issued different levels

7Source: http://2019nCoV.chinacdc.cn/2019-nCoV/
8The spike of confirmed cases observed on February 12 in Hubei Province is, for the most part, the result of a

change in diagnosis classification for which 13,332 clinically (rather than laboratory) confirmed cases were all reported
as new cases on February 12, 2020, even though they might have been clinically diagnosed in the preceding weeks.
Also on February 13, 2020, a new Communist Party Secretary of Hubei started in his position.
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of lockdown policies. Table A2 in the Appendix provides detailed information about the various

forms of population mobility control in different cities.

3.1 Empirical Challenges

There are several confounding factors in our attempt to causally quantify the impact of lockdown

on human mobility, and on the spread of infectious viruses. First, the virus outbreak happens right

before the Spring Festival of the Chinese Lunar New Year (which fell on January 25 in 2020),

which causes the largest annual human migration every year.9 Second, the virus itself, even in the

absence of a mandatory lockdown, may lead to curtailed human movement as people attempt to

avoid the exposure to the virus. We refer to this deterrence effect as the virus effect. Third, for

Wuhan and other nearby cities in Hubei, there is a possible panic effect, in reaction to the virus.10

The panic effect can lead to an increase in the population outflow from the epicenter of the virus

outbreak, and a decrease of the population inflow to the epicenter, particularly Wuhan. The panic

effect is likely to peak when the government officially confirmed on January 20, 2020 that the Novel

Coronavirus can transmit from person-to-person.

3.2 Effects of Various Factors on Inter-City Population Mobility

We first examine the impact of city lockdown on inter-city population mobility, including inflow

and outflow, between a city pair (i, j). To disentangle the contributions of these confounding

factors on human mobility, we exploit many unique sources of variations in the data, and employ

several DID estimation strategies by comparing different treatment and control groups. The DID

specification can be described as follows:

Ln(Flowi,j,t) =α+ β1 · Treat ∗ Before1,t + β2 · Treat ∗ Before2,t

+ β3 · Treat ∗Aftert + µi,j + θt + εi,j,t
(1)

where i, j, and t respectively index the destination city, origination city, and date; the dependent

variable, Ln(Flowi,j,t), is the logarithm of the population flows from city j to city i at date t.

The definition of Treat varies by specific DID designs, and we will be explicit about its definition

below. The city-pair fixed effect µi,j is included to absorb the city-specific and the city-pair specific

heterogeneities that may contaminate the estimation of our interested coefficient β3. We also control

for the date-fixed effect θt to eliminate the time-specific impact, including the Spring Festival travel

effect. The standard errors are clustered at the daily level.

In Eq. (1), we include two pre-lockdown period indicators: Before1,t is a dummy that takes value

1 for the period from January 11 to January 19, 2020 (4 to 11 days before the Wuhan lockdown),

9The migration across China, which officially begins from about two weeks before, and ends about three weeks
after, the Lunar New Year is often referred to as Chunyun (meaning Spring movement). In 2019, approximately
3 billion trips were made during Chunyun, see https://www.cnn.com/travel/article/lunar-new-year-travel-

rush-2019/index.html.
10Keane and Neal (2020) find that both virus transmission and government policies can significantly contribute to

consumers’ panic purchases.
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which can be used to examine the parallel pre-trend assumption in the DID analysis; Before2,t

is a dummy that takes value 1 for the period from January 20 to January 22, 2020, three days

before the unprecedented Wuhan lockdown, but after the official announcement that the virus can

spread from person to person. Before2,t allows us to capture the panic effect. Finally, Aftert is a

dummy that takes value 1 for the sample period after the Wuhan lockdown, between January 23

and February 29, 2020. The omitted benchmark period is from January 1 to January 10, 2020.

3.3 Effects of Various Factors on Within-City Population Mobility

We also estimate the effect of lockdown on the within-city population movement utilizing the

city-level data and a variety of DID specifications:

Ln(WithinCityFlowi,t) =α+ β1 · Treat ∗ Before1,t + β2 · Treat ∗ Before2,t

+ β3 · Treat ∗Aftert + µi + θt + εi,t
(2)

where i and t index the city and date. Ln(WithinCityFlowi,t) is the logarithm of the within-city

population movement for city i at date t. Similar to Eq. (1), Treat will be defined according to the

DID design. Before1,t, Before2,t and Aftert are defined in the same way as in Eq. (1). We include

the city fixed effects µi and date fixed effects θt. The standard errors are clustered at the daily

level.

3.4 Estimation Results

Table 1 reports the results from three sets of regressions specified according to Eq. (1) for inter-

city inflows (Panel A) and outflows (Panel B), and according to Eq. (2) for within-city movement

(Panel C). We implement two models that differ in the estimation sample, and the definition of the

control group.

[Table 1 About Here]

Model 1: Wuhan 2020 vs. Wuhan 2019. In Model 1, we compare the population movements

of Wuhan in 2020 to itself in the same matched lunar calendar period in 2019, during which Wuhan

is free of virus outbreak and lockdown. Thus, the estimation sample in Model 1 is the daily inflows

into and outflows out of Wuhan, as well as the daily within-city movements in Wuhan for years

2019 and 2020.

Under Model 1, Treat takes value 1 if the destination city i (respectively, the origination city

j) is Wuhan and year is 2020 in Panel A (respectively, Panel B). Panel C examines the within-city

mobility, Treat takes value 1 if the year is 2020. The control group is Wuhan 2019. We interpret

the coefficient estimate of Treat ∗ Before2,t as measuring the panic effect of Wuhan 2020 relative

to Wuhan 2019; and the coefficient estimate of Treat ∗Aftert as measuring both the lockdown and

the virus effects. The coefficient estimate of Treat ∗ Before1,t examines whether the parallel trend

6



assumption for DID is satisfied. The possibly time-varying Spring Festival effects and the virus

effects are both absorbed in the day fixed effects.

The estimated coefficients on Treat ∗Aftert remain negative, and economically and statistically

significant in all panels. The estimates suggest that the lockdown of Wuhan, together with the

deterrence effect of the virus (the virus effect), on average reduces the inflow population into,

outflow population from, and within-city movements in Wuhan by 91.94% (= 1 − exp(−2.518)),

72.61% (= 1 − exp(−1.295)), and 84.45% (= 1 − exp(−1.861)), respectively, relative to the same

lunar calendar days in 2019. We also find that the coefficient on Treat ∗ Before2,t is significantly

positive in Panel B and significantly negative in Panel C, suggesting that the official confirmation

of person-to-person spread of COVID-19 creates a panic effect, causing an increase of outflow from

Wuhan of 106.06% (= exp(0.723) − 1), and a decrease of within-city movements in Wuhan of

24.04% (= 1− exp(−0.275)), during the three days after the confirmation of the person-to-person

transmission but before the city lockdown. However, we do not observe a statistically significant

panic effect for the population inflow into Wuhan, suggesting that people in other cities were not yet

sufficiently concerned about the virus outbreak in Wuhan and did not avoid traveling to Wuhan,

even after the official confirmation of the person-to-person transmission. Finally, the coefficient

estimates for Treat ∗ Before1,t are all statistically insignificant, suggesting that the parallel pre-

trend assumption is plausible.

Model 2: Wuhan 2020 vs. Seven Other Lockdown Cities 2020. In Model 1, the coefficient

estimates of Treat ∗Aftert provide an estimate of the sum of the lockdown and the virus effects. In

order to isolate the lockdown effect from the virus deterrence effect, we consider Model 2, where the

estimation sample consists of data of Wuhan and seven other cities that went into partial lockdown

on February 2 and February 4, 2020, 10 to 12 days after the lockdown of Wuhan.11 As we show in

Table A3 in the Appendix, these seven cities are more comparable to Wuhan than other unlocked

cities in terms of the epidemic situation and other economic indicators, and thus provide a more

reasonable control group to partial out the virus effect. In particular, it is much more plausible

than using cities that were never locked down as control cities to assume that the virus deterrence

effect on human mobility in the seven cities is similar to that in Wuhan.

The estimation sample for Model 2 consists of data from Wuhan and the seven cities for the

period between January 1 and February 2, 2020. Note that during this period, none of the seven

control cities were locked down yet, though they soon would be. The definitions for Treat variables

are as follows. In Panel A, Treat takes value 1 if the destination city i is Wuhan; in Panel B, Treat

takes value 1 if the origination city j is Wuhan; in Panel C, Treat takes value 1 if city i is Wuhan.

The control group consists of the seven cities.

We find that the Wuhan lockdown significantly reduces the inflow into, outflow from, and

within-city movements in Wuhan by 76.98% (= 1 − exp(−1.469)), 56.31% (= 1 − exp(−0.828)),

and 55.91% (= 1 − exp(−0.819)), respectively. We interpret these as the pure lockdown effect on

population mobility related to Wuhan.

11These seven cities are summarized in Appendix Table A2.
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Summary. Based on our estimation of Models 1 and 2, Table 2 summarizes our estimates of the

panic effect, the virus effect, and the lockdown effect on inflows into, outflows from, and within-city

population movements in Wuhan.

[Table 2 About Here]

In Table 2, the lockdown effects are directly calculated from the corresponding coefficient es-

timates of Treat ∗ After from Model 2 discussed above; the panic effects are from the coefficient

estimates of Treat ∗ Before2 in Model 1. For the virus effect, we recognize that the coefficient

estimates of Treat ∗ After in Model 1 incorporate both the lockdown and the virus effects. Thus,

we calculate the virus effect on inflows into Wuhan to be exp(−2.518− (−1.469))− 1 = −64.97%,

on the outflows from Wuhan to be exp(−1.295− (−0.828))− 1 = −37.31%, and on the within-city

flow in Wuhan to be exp(−1.861− (−0.819))− 1 = −64.73%.

Because our models assume that the different effects enter exponentially in explaining the flows

- recall the natural log specifications in Eqs. (1) and (2) - when we would like to calculate the

impact of two or more effects on the population flows, we should not simply add the individual

effects. For example, the joint impact of the panic and virus effects on outflows out of Wuhan is

(1 + 106.06%) ∗ (1− 37.31%)− 1 = 29.18%, instead of the simple sum of 106.06% + (−37.31%) =

68.75%.

4 Quantify the Impact of Lockdown on the National Spread of

COVID-19

4.1 Inter-city Flows and the 2019-nCoV Transmission

We now examine the impact of human mobility on the transmission of 2019-nCoV. Considering

that almost all the new COVID-19 cases outside Wuhan were confirmed after the Wuhan lockdown,

while almost all inter-city population flows occurred prior to the Wuhan lockdown (see Appendix

Figures A2 and A3), we investigate the imported infections by looking specifically at the impact of

population inflows from cities in the epicenter, namely, Wuhan and other cities in Hubei province,

on the new cases in the destination cities outside Hubei.

Recognizing that 2019-nCoV has a long incubation period, we estimate a dynamic distributed

lag regression model taking into account that inflows from Wuhan with different lags may have

differential impacts on the current new cases in the destination cities. Most of the medical literature

states that the 2019-nCoV virus has a median incubation period of five days, and some can have

an incubation period of 14 days or more (see, e.g., Lauer et al. (2020)). Luckily, our data allows us

to incorporate the possibility that contact with an infected person from Wuhan or other cities in

Hubei can result in confirmed infections in the destination city for up to 22 days.

The analysis focuses on the daily new confirmed cases in the post-Wuhan lockdown period from

January 23 to February 29, 2020, for cities i that are outside Hubei province. Specifically, we run

8



the following regression:12

Ln(1+NewCasei,t) = α+

22∑
κ=1

β1κ· Ln (Inflowi,WH,t−κ · IWH,t−κ)

+
22∑
κ=1

β2κ · Ln

 ∑
j 6=i,j 6=WH,j∈HB

Inflowi,j,t−κ ·
∑

j 6=i,j 6=WH,j∈HB

Ij,t−κ

+ µi + θt + εit,

(3)

where i indexes the cities outside Hubei, and t ∈ {23, ..., 60} indicates the date.13 κ ∈ {1, ..., 22}
indicates the time lapsed from the inflows from Wuhan or other Hubei cities until the current date

t. Ln(1+NewCasei,t) is the logarithm of the number of new confirmed cases in city i at date t.

Inflowi,WH,t−κ and
∑

j 6=i,j 6=WH,j∈HB Inflowi,j,t−κ are the inflows from Wuhan, and the inflows from

the 16 other cities in Hubei to city i, respectively, κ days prior to the focal date t. IWH,t−κ and∑
j 6=i,j 6=WH,j∈HB Ij,t−κ respectively represent the active infected cases in Wuhan and other cities in

Hubei, κ days prior to the focal date t.14 Therefore, Ln (Inflowi,WH,t−κ · IWH,t−κ) measures the

impact of the infected fraction of the inflows from Wuhan κ days earlier on the new infections in

city i at date t. We control for destination city fixed effects µi and date fixed effects θt.

Remark 1. The role of asymptomatic infected individuals in the transmission of 2019-nCOV virus

is now well understood (Rothe et al., 2020). Our data, unfortunately, does not contain asymp-

tomatic infection cases. However, to the extent that there is a constant ratio of asymptomatic

and symptomatic cases, which seems to be a plausible assumption based on the current literature,

our log-log specification using only the number of symptomatic cases would not be affected by not

including the asymptomatic cases.

Note that in this regression we include only cities outside Hubei Province for two reasons. First,

Wuhan and other cities in Hubei province are the outbreak epicenter, and we are interested in how

population outflows from these cities affect the destination cities’ COVID-19 cases. Second, the

confirmed COVID-19 cases in Wuhan and other cities in Hubei are likely to be inaccurate due to

the reasons aforementioned in Section 2. In contrast, the confirmed cases in other cities are likely

to be accurate, as their numbers are not large enough to overwhelm their local health care system;

and the incentives to under-report are much weaker in cities outside of Hubei.

The estimated coefficients β1κ and β2κ in Eq. (3) respectively represent the impact of the inflows

from Wuhan and other cities in Hubei κ ∈ {1, ..., 22} days ago on the destination cities’ new cases

today. They are respectively plotted in the left and right graphs of Panel A of Figure 1. We also

fit a spline smoothed curve of the estimated effects of the different lags of inflows from Wuhan

and Hubei, which both show a clear inverted U -shape relationship between the lagged days of the

12Our log-log specification is based on the classical susceptible-infectious-removed (SIR) model in epidemiology.
13Date t = 23 indicates the date of January 23, 2020, and t = 60 the date of February 29, 2020.
14Active infected cases stand for the cumulative active infections (total infections - total healed - total death) in

Wuhan at t−κ. Note that the total populations in Wuhan and other cities in Hubei are constants that are absorbed
in α in Eq. (3). Despite the fact that the confirmed cases in cities in Hubei may be under-reported, as we will show
in Section 5, the active cases are still informative about the underlying true infection rates.
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population inflows from Wuhan or other cities in Hubei and the destination cities’ new COVID-19

cases. Interestingly, both graphs show that the largest impact on the newly confirm cases today in

Chinese cities outside Hubei comes from the inflow population from Wuhan or other cities in Hubei

about 12 to 14 days ago. The pattern exhibited in Figure 1 is consistent with the hypothesis that

the incubation period of the 2019-nCoV is up to 12 to 14 days, and also consistent with a shorter

incubation period coupled with secondary infections.

[Figure 1 About Here]

4.2 Effect of Social Distancing on Virus Transmission in Destination Cities

Social distancing at the destination cities is crucial in preventing the possibly asymptomatic

transmission from the source city (Chinazzi et al., 2020) and quantifying the effect of social distanc-

ing on virus transmission is especially relevant in the stage of pre-epidemic community spread. This

section studies the effectiveness of social distancing measures in the destination cities in reducing

and containing the spread of the virus.

As shown in Appendix Table A2, within weeks after the Wuhan and Hubei lockdowns, various

human mobility restrictions were imposed on 98 other Chinese cities outside Hubei. As described

in Table A2, the “lockdowns” in destination cities varied in their degree of strictness, from check-

points at building entrances to establishing quarantine zones, and from public transit shutdowns to

strict limits on the inflows into the city, outflows out of the city, as well as within-city population

movements. We interpret the human mobility restrictions in the destination cities as an enhanced

social distancing policy, because the “lockdown” rules in the destination cities are not as strict as

those implemented in Wuhan.

Specifically, we estimate the following specification that is a modified version of the regression

specification described by Eq. (3):

Ln(1+NewCasei,t) = α+

22∑
κ=1

β1κ· Ln (Inflowi,WH,t−κ · IWH,t−κ) · (1− Lockdowni,t)

+

22∑
κ=1

γ1κ · Ln (Inflowi,WH,t−κ · IWH,t−κ) · Lockdowni,t

+

22∑
κ=1

β2κ· Ln

 ∑
j 6=i,j 6=WH,j∈HB

Inflowi,j,t−κ ·
∑

j 6=i,j 6=WH,j∈HB

Ij,t−κ

 · (1− Lockdowni,t)

+
22∑
κ=1

γ2κ· Ln

 ∑
j 6=i,j 6=WH,j∈HB

Inflowi,j,t−κ ·
∑

j 6=i,j 6=WH,j∈HB

Ij,t−κ

 · Lockdowni,t

+ µi + θt + εit,

(4)

where Lockdowni,t is a dummy that takes value 1 if time t is a date after destination city i’s

“lockdown” date, if at all; and 0, otherwise, where the lockdown dates of the 98 cities outside
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Hubei are listed in Table A2. If city i never implemented any formal lockdown policy, the dummy

is always 0. Therefore, the coefficients, β1κ and β2κ, respectively, measure the impact of the lagged

inflows from Wuhan and other cities in Hubei κ days earlier on the destination cities’ current

new cases before the city’s imposition of its “lockdown,” while γ1κ and γ2κ represent the effect on

destination cities’ current new cases of the inflows from Wuhan and other Hubei cities after the

imposition of the city’s lockdown. If enhanced social distancing that comes from the “lockdown

policies” imposed at the 98 Chinese cities outside Hubei is effective in reducing the spread of the

virus from population flows from the epicenter of the virus, then we expect that γ1κ and γ2κ to be

smaller than β1κ and β2κ, respectively.

We plot the estimated coefficients β1κ and γ1κ (respectively, β2κ and γ2κ) in Panel A (Panel B)

of Appendix Figure A4, and their differences in Panel B of Figure 1 for the lagged effects of inflows

from Wuhan (respectively, 16 non-Wuhan cities in Hubei) on the daily new cases in destination

cities outside Hubei. The estimated lagged effects of inflows from Wuhan and other cities in Hubei

before the destination city’s lockdown, if any, show little change compared to the coefficients in

Panel A of Figure 1; however, the coefficient estimates of lagged inflows after the destination city’s

lockdown policies appear to be statistically insignificant on almost all lags. As shown in Panel B of

Figure 1, the differences between the estimated effects pre and post the destination cities’ lockdown

policies are positive and statistically significant at 10% or lower level for eight (respectively, three)

of the first ten lagged population inflows from Wuhan (respectively, 16 other cities of Hubei).

These results suggest that the enhanced social distancing policies in the destination cities are

effective in reducing the impact of population inflows from the source cities of Wuhan and other

cities in Hubei on the spread of 2019-nCoV virus in the destination cities. This in turn implies

that population inflows from the epicenter contribute to the spread of infection in the destination

cities only before the social distancing measures are applied; it appears that after implementing

their various control measures, cities adopting an enhanced social distancing policies can flatten

the upward trajectory of the virus infections.

4.3 How Many COVID-19 Cases Were Prevented by the Wuhan Lockdown?

We next estimate the counterfactual number of COVID-19 cases that would have occurred in

other cities in the absence of Wuhan lockdown, which would, in turn, require a counterfactual

estimate of the outflows from Wuhan to other Chinese cities, had there been no lockdown of

Wuhan. As shown in Table 2, in the absence of the Wuhan lockdown, the virus effect and panic

effects would have led to a 37.31% decrease and a 106.06% increase in the outflow population from

Wuhan, respectively. Therefore, we would expect the outflows from Wuhan after January 23 to be

Reducton from Virus Effect︷ ︸︸ ︷
(1− 0.3731) ∗

Increase from Panic Effect︷ ︸︸ ︷
(1 + 1.0606) = 1.29 (5)

times the normal outflows from Wuhan to other cities in the counterfactual world.

We use the daily level of outflows from Wuhan to a city in 2019 on the same lunar calendar
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day as a measure of the normal outflow, and multiple the number by 1.29 to obtain the daily

counterfactual inflows from Wuhan to the city, had there been no lockdown of Wuhan from January

23, 2020. Using this estimation method, we find that on average, the estimated counterfactual

outflows from Wuhan to the 347 cities outside Hubei between January 23 and February 29, 2020

would be 2,848,496, 5.99 times the actual population outflow to those cities during the same period,

which is 475,542.15

We denote the counterfactual inflows from j = Wuhan into city i at date s ∈ {23, ..., 60} from

the above calculation as ˜Inflowi,WH,s. We assume that the Wuhan lockdown did not affect the

within-city and inter-city population movements in other cities, as well as the infected cases in

Wuhan. We also assume that all the control measures implemented by other cities after the Wuhan

lockdown remain in place. Thus the parameter estimates of the dynamic lag effects of inflows from

Wuhan and other cities in Hubei, estimated in Eq. (3), remain valid as an epidemiological diffusion

equation that is not affected by human mobility restrictions that result from the Wuhan lockdown;

the lockdown only affected the human flows.

With these considerations in mind, we simulate the counterfactual number of COVID-19 cases,

had there been no Wuhan lockdown, on date t ∈ {23, ..., 60} (i.e., from January 23 to February 29,

2020) in cities i outside Hubei by the following equation:

Ln(1 + ˜NewCasei,t) = α̂+
22∑
κ=1

β̂1κ · Ln
(

˜Inflowi,WH,t−κ · IWH,t−κ

)

+

22∑
κ=1

β2κ · Ln

 ∑
j 6=i,j 6=WH,j∈HB

Inflowi,j,t−κ ·
∑

j 6=i,j 6=WH,j∈HB

Ij,t−κ

+ µ̂i + θ̂t + ˆεi,t,

(6)

where β̂1κ and β̂2κ are coefficient estimates obtained from regressions specified in Eq. (3) and

µ̂i and θ̂t are the estimated city fixed effects and date fixed effects, respectively, from the same

regression. Note that in predicting the counterfactual infections without the Wuhan lockdown, we

use the counterfactual inflows from Wuhan to city i for days after January 23 ˜Inflowi,WH,s discussed

previously.

In Figure 2, we present the counterfactual estimates (in the dotted curve) of COVID-19 cases

had there been no Wuhan lockdown, and the officially reported cases (in the solid curve) for cities

outside Hubei. The gap between the estimated counterfactual number of infection cases and the

officially reported cases on the bottom figure represents the number of COVID-19 cases prevented

by the Wuhan lockdown. As of February 29, 2020, the officially reported number of COVID-19

in the 347 cities outside Hubei province was 12,623, but our counterfactual simulation suggests

that there would have been around 25,911 cases, had there been no Wuhan lockdown. That is,

the COVID-19 cases would be 105.27% higher in 347 cities outside Hubei as of February 29, in

the counterfactual world in which the city of Wuhan were not locked down from January 23, 2020.

15Recall that outflows from Wuhan are not just residents of Wuhan; any travelers who entered Wuhan for whatever
reason and then leave Wuhan would be included in the Wuhan outflows measured by Baidu Migration data.
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Our findings thus suggest that the lockdown of the city of Wuhan from January 23, 2020 played

a crucial role in reducing the imported infections in other Chinese cities and halted the spread of

2019-nCoV virus.

We show that, the daily new infections would gradually decline and stabilize at around 400

cases from February 18 onwards in the counterfactual world. In the short term, the estimated daily

new cases in the counterfactual world would not converge to the real world reported cases. The

results suggest that the social distancing measures implemented elsewhere in China would not work

as well in containing the spread of 2019-nCOV virus unless Wuhan was locked down on January

23, 2020. It also reflects the challenging situations many countries experienced in containing the

spread of virus, where strict lockdowns of the virus epicenters were not imposed early.

[Figure 2 About Here]

We also attempt to estimate the magnitude of the undocumented infection cases in Wuhan and

other cities in Hubei province during the early stages of the epidemic. In Appendix C we present

the methodology and results. We find that there were substantial undocumented infection cases

in the early days of the 2019-nCoV outbreak in Wuhan and other cities of Hubei province, but

over time, the gap between the officially reported cases and our estimated “actual” cases narrowed

significantly.

5 Conclusion

In this paper, we provide valuable causal evidence on the role of human mobility restrictions

on the containment and delay of the spread of contagious viruses, including the 2019-nCoV virus

that is now ravaging the world. We find that the lockdown of Wuhan reduced inflows to Wuhan by

76.98%, outflows from Wuhan by 56.31%, and within-Wuhan movements by 55.91%; we also find a

substantial virus deterrence effect on population mobility. We estimate the dynamic effects of up to

22 lagged population inflows from Wuhan and other Hubei cities, the epicenter of the 2019-nCoV

outbreak, on the destination cities’ new infection cases. We find that the lockdown of Wuhan

significantly reduced the population mobility and that the enhanced social distancing policies in

the destination cities effectively reduce the impact of population inflows from the epicenter cities

in Hubei on the spread of 2019-nCoV. Using counterfactual simulations with these estimates, we

find that the lockdown contributed significantly to reducing the total infections outside Hubei.

Specifically, we find that in the counterfactual world in which the city of Wuhan were not locked

down from January 23, 2020, infections would be 105.27% higher in the 347 Chinese cities outside

Hubei province. Lockdowns of virus epicenters, if they can be identified before the virus widely

spreads, may be an important policy instrument in the fight to contain a fast-moving pandemic.
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Table 1: The Effects of Wuhan Lockdown on Population Movement

Treatment Group Wuhan 2020 Wuhan 2020
Control Group Wuhan 2019 7 Cities 2020
Treatment Effects Lockdown + Virus Lockdown

Model (1) (2)

Panel A. Dep. Variable: ln(Inflow Population)

Treat*Before1 -0.138 0.149
(0.098) (0.151)

Treat*Before2 -0.122 0.239
(0.083) (0.153)

Treat*After -2.518*** -1.469***
(0.212) (0.338)

Observations 26,494 72,094
R-squared 0.803 0.761

Panel B. Dep. Variable: ln(Outflow Population)

Treat*Before1 0.042 0.010
(0.079) (0.071)

Treat*Before2 0.723*** 0.174**
(0.071) (0.071)

Treat*After -1.295*** -0.828***
(0.155) (0.168)

Observations 26,326 71,533
R-squared 0.899 0.901

Panel C. Dep. Variable: ln(Within-city Population Flow)

Treat*Before1 -0.014 -0.015
(0.065) (0.014)

Treat*Before2 -0.275*** -0.096
(0.067) (0.057)

Treat*After -1.861*** -0.819***
(0.093) (0.047)

Observations 120 256
R-squared 0.952 0.938

Fixed City-Pair FE and Daily FE in Panel A and Panel B
Effects City FE and Daily FE in Panel C

Notes: This table reports the results of estimating Equations (1) and (2). The control and treatment groups
for Models 1-2 are described in the text. Fixed effects of city-pair and daily are included in all columns in
Panels A and B, and fixed effects of city and daily are included in all columns in Panel C. standard errors
are clustered at the daily level. *** Significant at the 1 percent level. ** Significant at the 5 percent level.
* Significant at the 10 percent level.
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Table 2: Summarizing the Panic Effect, Virus Effect and Lockdown Effect

on Inter-City and Within-City Population Movements of Wuhan

Effect Infows Outflows Within-City

Panic Effect -11.49% 106.06%*** -24.04%***
Virus Effect -64.97%*** -37.31%*** -64.73%***
Lockdown Effect -76.98%*** -56.31%*** -55.91%***

Notes: These effects are calculated based on the estimates reported in Columns (1) and (2) of Table 1. ***
Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.
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Figure 1: Dynamic Impact of Past Inflow from Wuhan and from Other Cities

in Hubei on Daily New Cases

Panel A: Results of Estimating Equation (3)

Panel B: Results of Estimating Equation (4)

Notes: Panel A plots the dynamic effects of lagged inflows from Wuhan (left) and 16 other cities in Hubei
(right) from estimating Equation (3). Panel B plots the difference between the estimated effects of pre- and
post-destination-lockdown inflows from Wuhan (left figure) and non-Wuhan cities in Hubei (right figure) on
daily new cases in destination cities outside Hubei from estimating Equation (4). We add spline smoothing
fit curves (in red) using the rcspline function and plot the 90% (the vertical gray whiskers) and 95% (the
vertical black whiskers) confidence intervals.
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Figure 2: Counterfactual of Infected Cases Elsewhere in China

Panel A: Daily Cases

Panel B: Cumulative Cases

Notes: This figure plots the counterfactual estimation on the COVID-19 cases in 347 other cities in China if
Wuhan had never been under a government-ordered lockdown (in the dotted curve), and traces the officially
reported COVID-19 cases in cities outside Hubei (in the solid curve). The top figure depicts the model’s
counterfactual prediction and the actual of daily infection cases, and the bottom figure depicts the evolution
of cumulative cases from January 23 to February 29, 2020.
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Appendix A. Supplementary Figures and Tables

Table A1. Descriptive Statistics

Panel A: City-Pair-daily Level Data

Sample Period Jan 12, 2019 - Mar 12 , 2019 Jan 1, 2020 - Feb 29, 2020
Mean S.D Mean S.D

CityPair Intensity 0.011 0.052 0.007 0.044
CityPair Flow Population 997.044 4,722.465 668.792 3,970.201

Panel B: City-daily Level Data

Sample Period Jan 12, 2019 - Mar 12 , 2019 Jan 1, 2020 - Feb 29, 2020
Mean S.D Mean S.D

Outflow Intensity 1.159 1.568 0.717 1.478
Outflow Population 105,287.503 142,443.319 65,126.768 134,310.998
Inflow Intensity 1.159 1.608 0.717 1.058
Inflow Population 105,261.037 146,127.871 65,142.334 96,153.964
WithinCity Flow Intensity 4.472 0.818 3.592 1.493
WithinCity Flow Population 1,492,950.639 1,346,858.619 1,188,276.693 1,223,892.324
# of New Confirmed Cases 0 0 3.721 105.176
# of Total Confirmed Cases 0 0 78.364 1,313.831
# of New Deaths 0 0 0.129 2.960
# of Total Deaths 0 0 2.181 50.409
# of New Heals 0 0 1.792 31.757
# of Total Heals 0 0 17.211 259.659

Notes: This table presents the descriptive statistics of the variables used in this study, with Panel A cor-
responding to the city-pair daily level variables and Panel B corresponding to the city daily level variables.
The sample covers a period between Jan 12 and Mar 12 in 2019, and between Jan 1 and Feb 29 in 2020.
The two periods in 2019 and 2020 cover the same lunar calendar.

A1



Table A2. Various Levels of Prevention and Control Measures in Different Cities

City Province Start Date
Cases as of
Feb 29, 2020

City Province Start Date
Cases as of
Feb 29, 2020

Panel A. Complete Shutdown Panel C. Checkpoints and Quarantine Zones
Wuhan Hubei 2020/1/23 49122 Jiujiang Jiangxi 2020/2/6 118
Huanggang Hubei 2020/1/23 2905 Yichun Jiangxi 2020/2/6 106
Ezhou Hubei 2020/1/23 1391 Zhuhai Guangdong 2020/2/6 98
Xiaogan Hubei 2020/1/24 3518 Suzhou Jiangsu 2020/2/6 87
Jingzhou Hubei 2020/1/24 1579 Ganzhou Jiangxi 2020/2/6 76
Suizhou Hubei 2020/1/24 1307 Maanshan Anhui 2020/2/6 38
Huangshi Hubei 2020/1/24 1014 Pingxiang Jiangxi 2020/2/6 33
Yichang Hubei 2020/1/24 931 Shenyang Liaoning 2020/2/6 28
Jingmen Hubei 2020/1/24 925 Jian Jiangxi 2020/2/6 22
Xianning Hubei 2020/1/24 836 Neijiang Sichuan 2020/2/6 22
Shiyan Hubei 2020/1/24 672 Dalian Liaoning 2020/2/6 19
Xiantao Hubei 2020/1/24 575 Yingtan Jiangxi 2020/2/6 18
Tianmen Hubei 2020/1/24 496 Jinzhou Liaoning 2020/2/6 12
Enshi Hubei 2020/1/24 252 Yibin Sichuan 2020/2/6 12
Qianjiang Hubei 2020/1/24 198 Huludao Liaoning 2020/2/6 12
Shennongjia Hubei 2020/1/24 11 Panjin Liaoning 2020/2/6 11
Xiangyang Hubei 2020/1/28 1175 Dandong Liaoning 2020/2/6 8

Panel B. Partital Shutdown Yaan Sichuan 2020/2/6 7
Wenzhou Zhejiang 2020/2/2 504 Tieling Liaoning 2020/2/6 7
Haerbin Heilongjiang 2020/2/4 198 Chaoyang Liaoning 2020/2/6 6
Hangzhou Zhejiang 2020/2/4 169 Anshun Guizhou 2020/2/6 4
Ningbo Zhejiang 2020/2/4 157 Liaoyang Liaoning 2020/2/6 3
Zhengzhou Henan 2020/2/4 157 Benxi Liaoning 2020/2/6 3
Zhumadian Henan 2020/2/4 139 Fushun Liaoning 2020/2/6 0
Fuzhou Fujian 2020/2/4 72 Shenzhen Guangdong 2020/2/7 417

Panel C. Checkpoints and Quarantine Zones Guangzhou Guangdong 2020/2/7 346
Chongqing Chongqing 2020/1/31 576 Hefei Anhui 2020/2/7 174
Yinchuan Ningxia 2020/1/31 35 Chengdu Sichuan 2020/2/7 143
Wuzhong Ningxia 2020/1/31 28 Tianjin Tianjin 2020/2/7 136
Fangchenggang Guangxi 2020/2/2 19 Tangshan Hebei 2020/2/7 58
Huaian Jiangsu 2020/2/3 66 Lianyungang Jiangsu 2020/2/7 48
Huaibei Anhui 2020/2/3 27 Lanzhou Gansu 2020/2/7 36
Xinyang Henan 2020/2/4 274 Guiyang Guizhou 2020/2/7 36
Nanjing Jiangsu 2020/2/4 93 Suining Sichuan 2020/2/7 17
Xuzhou Jiangsu 2020/2/4 79 Guangyuan Sichuan 2020/2/7 6
Changzhou Jiangsu 2020/2/4 51 Foshan Guangdong 2020/2/8 84
Linyi Shandong 2020/2/4 49 Qinhuangdao Hebei 2020/2/8 10
Nantong Jiangsu 2020/2/4 40 Ziyang Sichuan 2020/2/8 4
Zhenjiang Jiangsu 2020/2/4 12 Dongguan Guangdong 2020/2/9 99
Jingdezhen Jiangxi 2020/2/4 6 Huizhou Guangdong 2020/2/9 62
Jining Shandong 2020/2/5 258 Wuxi Jiangsu 2020/2/9 55
Nanchang Jiangxi 2020/2/5 231 Hanzhong Sanxi 2020/2/9 26
Qingdao Shandong 2020/2/5 60 Mianyang Sichuan 2020/2/9 22
Nanning Guangxi 2020/2/5 55 Deyang Sichuan 2020/2/9 18
Sanya Hainan 2020/2/5 54 Beijing Beijing 2020/2/10 413
Kunming Yunnan 2020/2/5 53 Shanghai Shanghai 2020/2/10 337
Cangzhou Hebei 2020/2/5 48 Baotou Inner Mongolia 2020/2/12 11
Jinan Shandong 2020/2/5 47 Ereduosi Inner Mongolia 2020/2/12 11
Haikou Hainan 2020/2/5 39 Xilinguole Inner Mongolia 2020/2/12 9
Taizhou Jiangsu 2020/2/5 37 Chifeng Inner Mongolia 2020/2/12 9
Taian Shandong 2020/2/5 35 Bayannaoer Inner Mongolia 2020/2/12 8
Shijiazhuang Hebei 2020/2/5 29 Hulunbeier Inner Mongolia 2020/2/12 7
Zaozhuang Shandong 2020/2/5 24 Huhehaote Inner Mongolia 2020/2/12 7
Yangzhou Jiangsu 2020/2/5 23 Tongliao Inner Mongolia 2020/2/12 7
Rizhao Shandong 2020/2/5 16 Wulanchabu Inner Mongolia 2020/2/12 3
Suqian Jiangsu 2020/2/5 13 Wuhai Inner Mongolia 2020/2/12 2
Dongying Shandong 2020/2/5 0 Xingan Inner Mongolia 2020/2/12 1
Xinyu Jiangxi 2020/2/6 130 Alashan Inner Mongolia 2020/2/12 0
Shangrao Jiangxi 2020/2/6 123

Notes: This table summarizes different levels of prevention and control measures across 115 cities. Panel A lists 17 cities with
completed lockdown, which means all public transport and private vehicles are banned in the city, all residential buildings are
locked down, and residents are not allowed to leave the city. 7 Cities in Panel B are under partial lockdown, the majority
of the public transportation has been temporarily shut down, checkpoints have been set up to control the inflow population,
and surveillance and tighter controls in each neighborhood. 91 Cities in Panel C set up checkpoints and quarantine zones, and
public transport maintains normal operation. A2



Table A3. Summary Statistics of Cities with Different Level of Controls

Wuhan 7 Partial Lockdown Cities Other Unlocked Cities
# of Total Cases as of Feb 2, 2020 5,142 101 13
Daily Average Population Inflow (2019 Sample Period) 466,682 294,799 78,006
Daily Average Population Outflow (2019 Sample Period) 420,900 282,995 78,789
Daily Average Within-City Population Flow (2019 Sample Period) 3,270,509 3,305,080 1,316,090
Permanent Population (2019) 9,785,388 8,433,975 3,524,548
GDP (Trillion CNY) (2019) 1,153 811 92

Notes: This table provides summary statistics on the count of total confirmed cases as of February 2, 2020, and on daily average population inflow,
outflow, and within-city flow between January 12 and March 12 in 2019, and on permanent population GDP as of December 2019, for cities with
different level of controls.
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Figure A1. Cities with Control Measures and the Confirmed COVID-19 Cases

Notes: This figure presents the geographic distributions of cities with different levels of control measures
and the number of Confirmed COVID-19 Cases as of Feb 29, 2020. The maps were plotted with ArcGIS
10.2 (ESRI).
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Figure A2. Inter-city and Within-city Population Flows

Notes: Top figures show the inflows into Wuhan, outflows from Wuhan and within-Wuhan flows, for year 2020 (in the solid line) and year 2019 (in
the dashed line), matched by the lunar calendar; and the bottom shows the corresponding figures for the national city averages. The blue vertical
line indicates the date of January 20, 2020 when the health ministry confirmed human-to-human transmission of COVID-19; and the red vertical line
indicates the date of January 23, 2020 when Wuhan was locked down.
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Figure A3. Daily Confirmed Cases and Cumulative Confirmed Cases

Notes: This figure shows the daily confirmed, dead, and healed cases in Wuhan, other cities in Hubei
Province, and cities outside of Hubei Province.
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Figure A4. Dynamic Impacts of Pre and Post Destination City Lockdown

Panel A: Inflows from Wuhan

Panel B: Inflows from non-Wuhan Cities of Hubei

Notes: Panel A plots the dynamic lagged effects of past inflows from Wuhan pre (left figure) and post (right figure) destination cities’ lockdown policy,
if any. Panel B plots the dynamic lagged effects of past inflows from non-Wuhan Cities of Hubei pre (left figure) and post (right figure) destination
cities’ lockdown policy, if any. The coefficient estimates are obtained from estimating Equation (4). We add spline smoothing fit curves (in red) using
the rcspline function and plot the 90% (the vertical gray whiskers) and 95% (the vertical black whiskers) confidence intervals.
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Figure A5. Estimation on the “Actual” Number of Infected Cases in Wuhan and other Cities of Hubei

Panel A: Wuhan

Panel B: 16 other Cities of Hubei

Notes: This figure compares the estimated COVID-19 cases (in the dotted curve) with the officially reported confirmed cases (in the solid curve) in
Wuhan (top) and in 16 non-Wuhan cities in Hubei Province (bottom) from January 23 to February 29 in 2020. The left panel plots the estimated
new COVID cases on each date t from 23 (January 23, 2020) to 60 (February 29, 2020). The right panel plots the estimated cumulative cases each
day.
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Figure A6: Daily Search Frequencies of COVID-19 Related Keywords

Notes: This figure graphs the daily search frequency of COVID-19 related keywords, including “Coronavirus”, “Wuhan”, “Bat”, “SARS”, and
“symptom” (in Chinese). It shows a clear and abrupt spike in the search frequencies on January 20, the day of the public confirmation of human-to-
human transmission of the Novel Coronavirus by Dr. Zhong Nanshan on Chinese national TV.
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Appendix B. The Conversion of Baidu Mobility Indices into Number of Population

Movements

We obtain three migration intensity indicators (the daily in-migration index (IMI) of a city,

the daily out-migration index (OMI) of a city, and the daily within-city migration index (WCMI))

from Baidu Migration for 364 Chinese cities. Baidu Migration16 uses Baidu Maps Location Based

Service (LBS) open platform and Baidu Tianyan to calculate and analyze the LBS data, and

provides visual presentation to show the trajectory and characteristics of the population migration.

Baidu has been the dominant search engine in China because all Google search sites have been

banned in mainland China since 2010.

Specifically, Baidu Migration provides the following information: (1), the top 100 origination

cities (OC) for the population moving into the city and the corresponding percentages of inflow

population that originated from each of the top 100 OC; and (2), the top 100 destination cities

(DC) for the population moving out of the city, together with the corresponding percentages of

the outflow population that go into each of the top DC. In the data, the cumulative percentages

of the inflow population from the top 100 origination cities, and the cumulative percentages of the

outflow population into the top 100 destination cities, reach 97% per city on average, which ensures

that the Baidu Migration data capture near complete inflows and outflows for each of the 364 cities

in the data.

We convert the mobility index unit into the number of population movements by taking the daily

inflow of people into Shanghai by airplanes, trains, buses and cars, the daily within-city trips in

Shanghai by subways, buses and expressways (provided by NESSDC), and the corresponding inflow

index and within-city mobility index in Shanghai (provided by Baidu). Based on the definition of

inter-city mobility indices provided by Baidu, the inter-city indices are comparable both across cities

and time. We first divide the actual number of inflow/outflow population by the inflow/outflow

index in a day to obtain population number per unit of inter-city index. For instance, given that the

actual inflow population of 302,6000 on February 6, 2020 into Shanghai corresponds to the inflow

index of 3.72, the population number per unit inflow index is 302,600/3.72=81344.08 on February

6, 2020. Since the NESSDC provides the actual number of inflow population between February 6

and February 22, 2020, we can then calculate population per unit inflow index for each day of this

period and obtain an average population per inflow index, which equals to 90,848. To convert the

inter-city flow indices into the total inter-city population flows for all cities, we multiply the indices

by 90,848.

To convert the within-city mobility index to actual population flows, we weight the index by

the number of the city’s base population called“regular residents” in 2019 (i.e., people who had

stayed in the city for at least six months during the year). For instance, given that the actual

within-city population flows of 4,339,451 on February 6, 2020 in Shanghai corresponds to the

within-city mobility index of 1.6 and the base population in Shanghai in 2019 is 24,237,800, the per

unit within-city index is (4,339,451/24,237,800)/1.6)*24,237,800=2,712,156. Similarly, we calculate

16Source: http://qianxi.baidu.com/
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the population per within-city mobility index for each day of this period to determine an average

population per within-city flow index, which is 2,182,264. We then convert the within-city mobility

indices into the number of within-city population flows for all cities by multiplying the indices by

2,182,264 and the ratio of a city’s base population in 2019 over Shanghai’s base population in 2019,

24,237,800. For instance, if the within-city mobility index in Wuhan on February 6, 2020 is 0.6 and

Wuhan’s base population in 2019 is 9,785,388, then the actual number of within-city population

flows in Wuhan on February 6, 2020 is 2,182,264*0.6*(9,785,388/24,237,800)=528,620.
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Appendix C. Estimating the “Actual” Number of Infection Cases in Wuhan and

Other Cities in Hubei

Anecdotal evidence suggests the official statistics of COVID-19 cases in Wuhan may have been

under-reported due to the shortages of testing equipment and other medical resources. With the

estimated dynamic effects shown in Figure 1, which is estimated under the plausible assumption

that the reported cases outside Hubei are reliable, we can estimate the “actual”’ number of infection

cases in Wuhan and other cities in Hubei.

To estimate the “actual” number of infections in Wuhan using the estimates from Eq. (3), we

technically need to impute a value for InflowWH,WH,t−κ, that is “inflows from Wuhan to Wuhan.” We

proxy these inflows by the daily within-Wuhan population movement from January 1 to February

29, i.e., by WithinCityFlowWH,t−κ. Similarly, to estimate the “actual” number of infection cases

in other cities in Hubei, we need to replace the inflow from Wuhan to itself by the corresponding

daily within-city-j population movements.

However, we do not have the city fixed effects for cities in Hubei because they were not included

in the estimation sample for Eq. (3). Therefore, we cannot directly predict the “actual” number

of infections in Wuhan and other cities in Hubei using Eq. (6). Instead, we use the estimated

β̂1κ coefficient as a measure of the elasticity of the new cases outside of Hubei at date t with

respect to inflows from Wuhan κ days ago. We then calculate the percentage difference between

the within-Wuhan population flow InflowWH,WH,t−κ and the average inflows from Wuhan to cities

outside Hubei, i.e.,
(∑347

i=1 Inflowi,WH,t−κ

)
/347, together with the average new daily cases outside

of Hubei at date t and β̂1κ, to impute what Wuhan new cases would have been at date t, under the

assumption that the relationship dictating the within-Wuhan population movements and Wuhan’s

“actual” new cases at date t is similar to that estimated for cities outside Hubei in Eq. (3). We

follow the same method to estimate the “actual” number of new infections in 16 other cities of

Hubei.

In Appendix Figure A5, we plot the estimated daily new cases according to the above-described

method using the estimated Eq. (3), as well as the corresponding cumulative cases for Wuhan

(Panel A) and 16 other cities of Hubei (Panel B) for the period of January 23 to February 29, 2020.

We also plotted the corresponding daily and cumulative officially reported (i.e., documented) cases.

We find a persistent gap between the estimated and reported laboratory-confirmed cases in

Wuhan before February 11, 2020, just before the announcement of a new Party Secretary for Hubei

on February 12, 2020. The estimated “actual” number of infection cases is 2.81 times the reported

cases during the first 20 days after the Wuhan lockdown, on average. In particular, we estimate

that on January 23, 2020, the day of the Wuhan lockdown, 38.29% of our estimated infections in

Wuhan were undocumented in the sense that the number of officially reported cases on that day

was only 61.71% of our estimated infection cases. This undocumented-real gap widened over time,

possibly due to the overwhelmed health care system, and peaked at 79.57% on January 26. The

proportion of undocumented infections started to decline gradually, when more medical support

and resources were mobilized across China to support Wuhan. As of February 29, we estimate that
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there were 54,797 total COVID-19 infections in Wuhan, which is 11.55% higher than the official

reported statistics for Wuhan - a total of 49,122 cases. The 11.55% discrepancy can be plausibly

be explained by the unaccounted for self-healing and death that might have occurred during the

early periods of the outbreak between January 23 and early February. Thus, we are led to conclude

that the almost all infection cases in Wuhan were able to be treated over time as the stress on the

health system was relieved, and moreover, the official statistics were mostly accurate, as can be

seen from the left figure on the daily new cases in Panel A in Figure A5.

In the bottom panel of Figure A5, we plot our estimated daily new confirmed cases and total

infection case for 16 cities (other than Wuhan) in Hubei, together with the officially reported series.

We find that in the 16 cities, infections were more seriously under-reported in the first week after

the Wuhan lockdown when our estimated infected cases are 1.87 times the reported cases. Our

estimate reveals a very high rate of undocumented infections on the first day of Wuhan lockdown:

81.02%. The gap narrowed gradually with more medical resources provided and more stringent

control measures implemented in those cities. By the end of our study period on February 29,

2020, the estimated “actual” number of infections is 20,981 cases in 16 other cities in Hubei, which

is 17.97% higher than the officially reported cumulative cases (17,785). The discrepancy between

the estimated and officially reported cumulative cases could at least be partially attributed to the

unaccounted for self-healing and death that might have occurred during the early periods of the

outbreak.

A13


	Introduction
	Data and Descriptive Statistics
	The Impact of Wuhan Lockdown on Population Movements 
	Empirical Challenges
	Effects of Various Factors on Inter-City Population Mobility
	Effects of Various Factors on Within-City Population Mobility
	Estimation Results

	Quantify the Impact of Lockdown on the National Spread of COVID-19 
	Inter-city Flows and the 2019-nCoV Transmission
	Effect of Social Distancing on Virus Transmission in Destination Cities 
	How Many COVID-19 Cases Were Prevented by the Wuhan Lockdown?

	Conclusion

