

RESEARCH QUESTION & MOTIVATION

What is the interaction btw insurance of idiosyncratic shocks (risk sharing) and irrigation?

I argue that this interaction is quantitatively significant. Thus, important from policy perspective in places relying heavily on irrigation, e.g. India (in 2016 8.5% of gov spending on irrigation).

VILLAGE ECONOMY

- N of ex post heterogenous, infinitely lived farmers.
- Crop output of farmer *i*: $y_{i,t} = \phi_t \cdot \theta_{i,t}$.
- Idiosyncratic risk $\theta_{i,t}$ (machine & crop failures, health shocks):
- Can be mitigated through informal insurance.
- Drawn from a Markov chain with moments $E(\theta)$ and $Var(\theta)$.
- Aggregate risk ϕ_t (droughts):
- Can be mitigated by investments into irrigationcapital stock depreciating at rate δ .
- Investments by farmers $\frac{1}{1-s_k}\mathbf{k}_t = \frac{1}{1-s_k}$. $[k_{1,t},\ldots,k_{N,t}]$ are subsidized at rate s_k and excludable. Also provide self-insurance.
- Investments by government ω are financed by resources from outside, non-excludable.
- $-\phi_{t+1}$ is drawn from either of two Markov chains:
- * "Good" one with probability $P\left(\frac{1}{1-s_k}\mathbf{k}_{t+1},\omega\right)$.
- * "Bad" one with prob. $1 P\left(\frac{1}{1-s_k}\mathbf{k}_{t+1},\omega\right)$. * s.t. $E(\phi^G) > E(\phi^B)$ & $Var(\phi^G) < Var(\phi^B)$.

• Co-operation:

- Scope for co-op: 1) insurance against idiosyncratic shocks; 2) co-ordinating and sharing investments into irrigation.
- Subject to limited commitment: in every period & state Value of $coop \geq Value of non - coop$.
- Punishments: if farmers default on assigned risk sharing or irrigation investments, they get permanently excluded from:
 - * risk sharing network (keep self-insurance),
- * irrigation owned by other villagers (keep access to own and government-owned irrigation).

Karol Mazur

karol.mazur@trinity.ox.ac.uk

• By insuring aggregate risk, investments into irrigation may lower demand for risk sharing.

• Access to risk sharing (ostracism, social norms) may be used to elicit better co-operation over irrigation.

ESTIMATION ON ICRISAT PANEL

Indirect inference approach based on 1st wave of ICRISAT (1976-1984), 1st Minor Irrigation Census (MIC) and precipitation data from UDelaware:

- Focus on 3 villages: Aurepalle, Kanzara, Shirapur.
- Match elasticity of consumption w.r.t. idiosyncratic income shocks from Townsend consumption smoothing test.
- Match the variance and persistence of idiosyncratic risk process from Storesletten et al. (2004)decomposition.
- Match variance of average village income and persistence of empirical rainfall process.
- Match returns to irrigation from: $\log(y_{i,t}) = \alpha +$ $\beta_1 1_{v,t}^D + \beta_2 irr_{i,t} + \beta_3 1_{v,t}^D \cdot irr_{i,t} + \beta_4 \cdot X_i + \gamma_t + \beta_4 \cdot X_i + \beta_4 \cdot X_i + \gamma_t + \beta_4 \cdot X_i + \beta_4$ $\epsilon_{i,t}$, where $1_{v,t}^{D}$ is 1 if draught village-year, $irr_{i,t}$ is irrigated share of land.
- Directly from data: depreciation rate, share of gov-owned irrigation and subsidy rate s_k .
- Calibration fit very good (see paper).

Result #2: Reduce Gov Irrig

Counterfactual of reducing the size of gov**owned irrigation** (see paper for other villages):

Combining 1st wave of ICRISAT & 1st MIC with (unused in estimation) 2nd wave of ICRISAT (2001-2004) & 4th MIC, I run the extended consumption smoothing test both on the actual and simulated data: $\log\left(cons_{i,t}\right) = \alpha + \beta_1 \log\left(y_{i,t}\right) + \beta_2 \log\left(y_{i,t}\right) \cdot irr_{v,t} + \beta_3 \log\left(y_{i,t}\right) \cdot irr_{v,t} \cdot gov_{v,t} + \beta_4 \log\left(y_{i,t}\right) \cdot gov_{v,t} + \beta_4 \log\left($

Dep

Con

Co

Removing risk sharing co-op (cf. I+RS vs I): **1.** Reduces efficiency of irrigational investments. 2. Worsens consumption insurance (state-contingen risk sharing transfers vs. simple self-insurance) **3.** Villagers willing to pay btw 2%-10% of consump-

Sharing Risk to Avoid Tragedy: Informal Insurance and Irrigation in Village Economies

Result #1: Model and Estimation Validation

 $\hat{\beta}_i + \gamma_{v,t} + \epsilon_{i,t}$

Estimates								
Dep var: consumption	Data	Model						
incomo	0.31***	0.30***						
mcome	(0.07)	(0.003)						
incomo invigation	-0.57***	-0.29***						
mcome·mgation	(0.17)	(0.02)						
income irrigation generation there	6.70***	1.32***						
meome-migation-government share	(1.94)	(0.12)						
income covernment chare	-0.71	0.12***						
mcome government snare	(0.42)	(0.01)						
Implied effects on consumption elasticity								
Government share 1 st.dev. increase	26%	18%						
Irrigation 1 st.dev. increase	-9%	-12%						

Result #3: Interaction Between Risk Sharing and Irrigation

solve for two counterfactual allocations:

• irrigation only (I): households with self-insurance (no state-contingent risk sharing) and access to both community- and government-owned irrigation,

• risk sharing only (RS): households engage into risk sharing, and have access only to own and government-owned irrigation.

Statistic	Aurepalle			Kanzara			Shirapur				
	I+RS	Ι	\mathbf{RS}	I+RS	Ι	RS	I+RS	Ι	RS (=NC)		
Welfare											
nseq. welfare	1	0.90	0.97	1	0.98	0.96	1	0.93	0.84		
Irrigational Investments and Production											
ean invest. k'	0.05	+87%	-3%	0.02	+34%	-10%	0.08	+42%	-12%		
c. of invest. k'	0.01	+227%	+12%	0.01	+103%	-20%	0.01	+147%	+46%		
n aggr. prod. ϕ	0.87	+1%	-2%	0.87	+1%	-3%	0.88	+1%	-7%		
aggr. prod. ϕ	0.05	-6%	+8%	0.06	-3%	+11%	0.05	-7%	+23%		
Consumption and Risk Sharing											
n consumption	0.44	+1%	-2%	0.44	+1%	-3%	0.43	+1%	-7%		
. consumption	0.02	+181%	+4%	0.02	+57%	+15%	0.02	+184%	+175%		
ons. elasticity	0.38	+156%	+5%	0.35	+185%	+16%	0.32	+159%	+178%		
Transfers	0.25	-100%	-3%	0.18	-100%	-10%	0.27	-100%	-100%		

tion to keep co-op over risk sharing.

Removing irrigation co-op (cf. I+RS vs RS): **1.** Lowers investment (externalities ignored).

2. Worsens risk sharing (consumption elasticity up). **3.** Significantly destabilises co-operation in Shirapur (without irrigation coop, risk sharing is impossible). 4. Villagers willing to pay btw 3%-16% of consump-

tion to keep co-op over irrigation.

Although untargeted in estimation, I find

Signs of regressions closely matched.

Estimates differ btw data and model due o different measurement units of irrigation used.

However, implied economic effects close to each other.

This validates both the modeling assumpions and structural estimation strategy.

ther validation: avg (across 3 villages) ng rate 10%, close to evidence in enzweig and Wolpin (1993).