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Abstract 

Many OECD countries, including the U.S., have adopted research and development (R&D) 
tax credits to encourage innovation, especially for those small and medium enterprises (SMEs) 
that do not have relatively abundant financial resources like their counterparts, the industry 
incumbents.  But countries are different in the design of tax mechanisms. Moreover, studies have 
shown that smaller firms are important job generators and more innovative than larger firms 
(Klette and Kortum, 2004; Michaelidou et al., 2011).  However, both U.S. and OECD data show 
that large firms dominate the R&D investments not only domestically but also globally.  For 
example, the U.S. National Science Foundation reports that more than 80% of manufacturing R&D 
are undertaken by large firms and the OECD Science, Technology and Industry Scoreboard of 
2015 reports that more than 60% of global R&D is done by only 250 companies.  Moreover, 
compared with their large incumbents, SMEs are more vulnerable in the increasing global 
competition environment. Therefore, it is important to investigate whether in the U.S., the R&D 
tax credit stimulates SMEs to invest more in R&D, whether firms in different industries exhibit 
different R&D investment patterns, how the differences relate to the degree of their response to 
the R&D tax credit and the degree of their exposure to import competition. To our knowledge, 
there is no research answering those questions.  This research aims to fill in the gap. Our study 
shows some interesting findings: First, after the newly enacted R&D tax credit in the U.S. in 2009, 
more SMEs are eligible and qualified for R&D tax credits and the value of our R&D inequality 
index declined dramatically after 2009. Second, when examining the index by industry in detail, 
we find that the R&D tax credits can favor either large firms or SMEs depending on the industry 
that we study. Third, our panel regression analysis indicates that import competition can negatively 
affect U.S. innovation but the negative effect can be mitigated as the degree of R&D inequality 
increases. Fourth, the degree of R&D inequality has a statistically positive relationship with U.S. 
innovation measured by U.S. capital stock of R&D assets. However, when measured by U.S 
patents, U.S. innovation has a statistically negative relationship with the degree of R&D inequality. 
That is, lowering R&D inequality can increase U.S. patenting.  
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1. Introduction 
 
OECD countries, instead of giving subsidies, have been increasingly adopting research and 

development (R&D) tax credits to encourage innovation, especially for those small and medium 

enterprises (SMEs) that do not have relatively abundant financial resources like their counterparts, 

the industry incumbents.  Using U.K. data, Dechezlepretre et al. (2016)  find that the R&D tax 

credit increases innovation activities, and that SMEs are more responsive to the tax credit 

(Dechezlepretre et al., 2016). The finding is encouraging  in that some studies have shown that 

smaller firms are important job generators and may be more innovative than larger firms (Klette 

and Kortum, 2004; Michaelidou et al., 2011). Additionally, in the rising digital economy with the 

features of increasing returns to scale and rising cross-border online platforms, a few startups, such 

as Airbnb and Uber, have grown fast to become unicorns4 for key service areas and the cheap 

cloud computing services have lowered the industry entry barriers and minimum operation scale 

for small firms (McAfee and Brynjolfsson, 2017; Varian, 2018). Moreover, countries are different 

in the design of R&D tax mechanisms and the resulting impacts may differ as well.  

Moreover, both the U.S. and OECD data show that large firms dominate R&D investments 

not only domestically but also globally.  For example, the U.S. National Science Foundation (NSF) 

reports that more than 80% of manufacturing R&D are undertaken by large firms and the OECD 

Science, Technology and Industry Scoreboard of 2015 reports that more than 60% of global R&D 

is done by only 250 companies.  Furthermore, compared with their large incumbents, SMEs are 

more vulnerable in the age of globalization (Feinberg, 2016), except those SMEs with a higher 

degree of technological capabilities, which may be less vulnerable from import competition. 

 
4 Unicorns are companies that have reached $1 billion in valuation without tapping the stock markets. 
https://www.usnews.com/news/top-news/articles/2017-12-15/factbox-airbnb-spotify-among-unicorns-likely-to-list-
in-2018 
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Therefore, it is important to investigate whether in the U.S., the R&D tax credit stimulates 

SMEs to invest more in R&D; whether firms in different industries exhibit different R&D 

investment patterns; and how the differences relate to the degree of their response to the R&D tax 

credit and the degree of their exposure to import competition.  To our knowledge, there is no 

research answering those questions.  This research aims to fill the gap. 

To answer the questions, we use data from the world input-output dataset, the Compustat 

dataset, federal and state tax credits, and patent data from the United States Patents and Trademark 

Office (USPTO). The data cover the period of 1996 to 20115. On the measurement of industry-

level import competition by country and/or region, we adopt the Johnson and Noguera (2012)6 

approach to compute the value-added per export ratio. For example, the ratio from China to the 

U.S. will be the degree of import competition from China. We use the world input-output dataset7 

to calculate the industry-level value-added per export ratio. On the measurement of the degree of 

import competition per R&D dollar expenditure, we apply the Autor et al. (2013) method. In 

addition, we define an R&D inequality index to measure the inequality in the R&D tax credit. 

Lastly, we measure the U.S. innovation by two approaches, U.S. capital stock of R&D assets and 

U.S. patents.  

Our study shows some interesting findings: First, after the newly enacted R&D tax credits 

in 2009, more SMEs are eligible and qualified for R&D tax credits and the value of our R&D 

inequality index declined dramatically after 2009. Second, when examining the index by industry 

in detail, we find the tax credit can favor either large companies or SMEs depending on the industry 

that we study. Third, when we use U.S. R&D capital to measure U.S. innovation, our panel 

 
5 The U.S. patent data cover the period of 1988 to 2011.  
6 http://econpapers.repec.org/article/eeeinecon/v_3a86_3ay_3a2012_3ai_3a2_3ap_3a224-236.htm 
 
7 http://www.wiod.org/publications/papers/wiod10.pdf 
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regression analysis indicates that import competition can negatively affects U.S. innovation, but 

the negative effect can be mitigated as the degree of R&D inequality increases. In addition, the 

degree of R&D inequality has a statistically positive relationship with U.S. innovation, a result 

that supports Harberger (1998) sun-rise and sun-set phenomenon – a small or modest set of firms 

can account for 100 percent of productivity growth in an industry.  Fourth, when we use U.S. 

patents to measure U.S. innovation, our panel regression analysis still indicates that import 

competition can negatively affect U.S. innovation, but the negative effect can be mitigated as the 

degree of R&D inequality increases. However, the mitigation effect is not statistically significant. 

In addition, the degree of R&D inequality has a statistically negative relationship with U.S. 

innovation. That is, lowering R&D inequality increases patenting.  

The rest of paper is organized as follows. Section 2 lays out the methodology. Section 3  

specifies the data. Section 4 shows the empirical analysis. Section 5 concludes.  

2. Methodology  

Dechezlepretre et al. (2016) use U.K. data and find that R&D tax credits increase 

innovation activities and SMEs are more responsive to the credits (Dechezlepretre et al., 2016). 

Moreover, studies have shown that smaller firms are important job generators and may be more 

innovative than larger firms (Klette and Kortum, 2004; Michaelidou et al., 2011). Unlike the U.K. 

where a firm’s R&D tax credit is calculated based on total R&D spending, the U.S. designs a 

different R&D tax credit based on a firm’s incremental R&D spending. Therefore, under this kind 

of tax mechanism, we would like to examine whether in the U.S., SMEs are also more responsive 

to the R&D tax credit and whether the degree of responsiveness varies across industries. We design 

a R&D inequality index to measure the relative responsiveness between large firms and SMEs.  
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Moreover, studies in OECD countries show that import competition positively affect 

innovation rates (Bloom et al., 2016) and trade literature has shown that more productive firms can 

be better protected from import competition. Given those findings, we would like to examine 

whether industries with higher degrees of R&D inequality have lower innovation output, which 

implies that these industries are less competitive in the open trade environment.  

 

2.1 The VAX ratio: Measurement of the Degree of Import Competition  

The Derivation of the Value Added Per Export (VAX) Ratio  

In this section, we briefly describe the derivation of the VAX ratio as introduced by 

Johnson and Noguera (2012). Here, we define i as the source country, j as the destination country, 

s as the source industry, s’ as the destination industry, and t as the year. The market clearing 

condition in value terms is:  

𝑦"#(𝑠) =(𝑓"*#(𝑠) +((𝑚"*#(𝑠, 𝑠.)
/.**

 

where yit(s) is the value of total output in industry s of country i, fijt(s) is the value of final goods 

shipped from country i to country j in industry s , and mijt(s, s’) is the value of intermediate goods 

from industry s used in industry s’. Following Johnson and Noguera note, we define the exports 

xijt(s) as the total number of final goods and intermediate goods exported to country j. Then, the 

market clearing condition states that total output is divided between gross exports (sum of xijt(s), 

domestic final use fijt(s) and domestic intermediate use (sum of miit(s, s’)).  

 Stacking the market clearing conditions by country, we have both total output, yit(s) and 

final goods fijt(s) as S x 1 vectors, while the intermediate goods, mijt(s, s’) are an S x S matrix. 

Then, we define Aijt(s, s’) as the proportion of intermediate inputs used in total output where 
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𝐴"*#(𝑠, 𝑠.) ≡
2345(/,/6)
745(/6)

. This allows us to rewrite the market clearing conditions as an S x N matrix 

where:  

𝑦# = 𝐴#𝑦# + 𝑓# 

where 𝐴# = 8
𝐴99# … 𝐴9;#
⋮ ⋱ ⋮

𝐴;9# … 𝐴;;#
>, 𝑦# = 8

𝑦9#
⋮
𝑦;#

>, and 𝑓# = ?
∑ 𝑓9*#*
⋮

∑ 𝑓;*#*

A.  

Next, we solve for the total output and rewrite the total output vector as:  

𝑦# = (𝐼 − 𝐴#)D9𝑓#. 

Define the ratio of total intermediate inputs in country I as the total amount of inputs 

collected from all other industries and countries divided by the total output in country i so that the 

ratio rit(s) is defined as  

𝑟"#(𝑠)=1-∑ ∑ 𝐴*"#(𝑠′, 𝑠)/.* . 

Then we multiply this ratio by the individual elements of the total output vector to obtain 

the measure of value-added trade from country i to country j,  

𝑣𝑎"*#(𝑠) = 	 𝑟"#(𝑠)𝑦"*#(𝑠). 

As Johnson and Noguera (2012) note, the framework above provides details of a circular 

process of production where inputs and outputs are continuously transferred from one country-

industry to another, which implies an infinite number of production stages. Using a two-stage 

sequential production process, Johnson and Noguera (2012) construct values of gross exports and 

value-added exports using the input output tables with the following components:  

�̅�"* = 𝑓"* + 𝐴"*𝑓** + 𝐴"*𝑓*" + ∑ 𝐴"*𝑓*LL , and 

𝑣𝑎MMMM"* = 𝑓"* + 𝐴"*𝑓** + 𝐴""𝑓"* − ∑ 𝐴L"𝑓"* + ∑ 𝐴"L𝑓L*LN",*L . 

 We can then define the approximate VAX ratio as:  
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𝑉𝐴𝑋MMMMMM"* =
QRMMMM34
S̅34

. 

2.2 Methodology for the Measurement of R&D Inequality 

Studies have used different kinds of measurements for firm size, such as the number of 

employees, annual sales, and the value of assets, etc. In the U.S., the Small Business 

Administration (SBA) establishes small business size standards on an industry-by-industry basis,8 

but in general, a small business has fewer than 250 employees, a medium-sized business has fewer 

than 500 employees, a large-sized business has fewer than 1000 employees, and an enterprise is 

considered to be more than 1000.  

To estimate the value of R&D inequality index, we first classify firms into SMEs and large 

firms. We divide sales in four quantiles. We then calculate the mean value of maximum sales in 

each quantile.  Firms with sales less than the mean are classified as SMEs and the rest are large 

firms. The methodology allows us to compare sales quantiles that sufficiently account for sales of 

all firms in the sample by industry. In addition, the cutoff sales levels are similar to those of small 

and medium sized firms, and large firms in current definition of firm sizes by SBA. In order to 

calculate the value of R&D inequality index, we use the sample of firms that meet both eligibility 

and qualification requirements. To receive R&D tax credit, a firm must have qualified research 

expenditures - that establishes eligibility. Furthermore, a firm also must have tax liability to write 

it off through the credit - that establishes qualification.  The R&D inequality index is defined as:  

𝑹𝑫𝑰 = 𝟏 −	
(𝒏𝒖𝒎𝒃𝒆𝒓	𝒐𝒇	𝑺𝑴𝑬𝒔	𝒆𝒍𝒊𝒈𝒊𝒃𝒍𝒆	&	𝒒𝒖𝒂𝒍𝒊𝒇𝒊𝒆𝒅)/(𝒕𝒐𝒕𝒂𝒍	𝒏𝒖𝒎𝒃𝒆𝒓	𝒐𝒇	𝑺𝑴𝑬𝒔)

(𝒏𝒖𝒎𝒃𝒆𝒓	𝒐𝒇𝒍𝒂𝒓𝒈𝒆	𝒇𝒊𝒓𝒎𝒔	𝒆𝒍𝒊𝒈𝒊𝒃𝒍𝒆	&	𝒒𝒖𝒂𝒍𝒊𝒇𝒊𝒆𝒅)/(𝒕𝒐𝒕𝒂𝒍	𝒏𝒖𝒎𝒃𝒆𝒓	𝒐𝒇	𝒍𝒂𝒓𝒈𝒆	𝒇𝒊𝒓𝒎𝒔) 

 
8 According to Section 3 of the Small Business Act of 1953 (15 U.S.C. 632), the Small Business Administrator shall 
ensure that the size standard varies from industry to industry to the extent necessary to reflect the differing 
characteristics of the various industries and consider other factors deemed to be relevant by the Administrator. The 
Small Business Jobs Act of 2010 follows this definition.  
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Note that RDI ratio below zero implies that SMEs have a higher percentage of eligibility 

and qualification for R&D tax credit than large firms. If the ratio is higher than 0, the situation is 

the opposite, and SMEs have a smaller percentage of eligibility and qualification for R&D tax 

credit than large firms. If the RDI ratio is equal to zero, there is no inequality. Therefore, the 

increase in the value of the index indicates that the R&D tax credit increasingly favors large firms. 

2.3 Methodology for the Matching of Patent Data  

Because our empirical model will relate a measure of innovation to the industry level 

measures of import competition, R&D inequality and firm-level characteristics from Compustat, 

we first follow the methodology developed by Autor et al. (2017) to web-match organization 

names in the USPTO database with firm names in the Compustat. This methodology allows 

obtaining counts of patents filed by each matched firm in a given year corresponding to SIC 

(NAICS) primary industry of the firm as given in Compustat. After merging the USPTO data with 

Compustat, we still had 687 not matched firms. We developed an additional algorithm to mine the 

patent data from https://patents.justia.com to further improve the matching rate. This refined 

methodology allows us to reduce the number of unmatched firms using Autor et al. (2017) 

methodology by 22%. Furthermore, to control for the possibility that trends in patenting can vary 

both by industry and technology, we use the cross-walk between patent classes and SIC-4 industry 

codes (Hall, Jaffe, and Trajtenberg (2001)) to categorize patents into six main technology fields 

based on their primary technology class: Chemical; Computers and Communications; Drugs and 

Medical; Electrical and Electronics; Mechanical; and Others. This classification allows calculating 

the fraction of patents filed by each matched firm in a given year in each of these six categories. 

Finally, following the broad industry classification in Autor et.al (2014), we categorize each firm’s 

SIC-4 code into 13 sectors such that the identification is based on the time variation of a firm’s 
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primary industry in the growth of the degree of import competition per R&D dollar expenditure, 

R&D inequality, and patenting.  

3. Data  

3.1 Data Sources 

There are four main data sources: world input-output dataset, Compustat dataset, federal 

and state tax credits data, and USPTO patent data.  

3.1.1 World input-output dataset – industry-level degree of import competition 

On the measurement of industry-level import competition, we adopt the Johnson and 

Noguera (2012)9 approach by computing the value-added per export ratio. For example, the ratio 

from China to the U.S. will be the degree of import competition from China. We use the world 

input-output dataset10 to calculate the industry-level value-added per export ratio from the rest of 

the world. 

3.1.2 Compustat 

We collect a sample of all listed firms on the Compustat Industrial North America between 

1996 and 2012. Our year range covers at least three years before Alternative Simplified Credit 

(ASC) went into effect and three years thereafter in order to set up difference-in-difference type 

regression analysis.11 Compustat data is notoriously difficult to be directly used in the estimation 

due to inconsistent coverage, missing data for some firms, and duplicate data for others. After 

cleaning data from duplicates; selecting firms with reported R&D expenditure in at least one year 

in our sample; and dropping the highest and lowest 1 percent of the observations for each firm-

 
9 http://econpapers.repec.org/article/eeeinecon/v_3a86_3ay_3a2012_3ai_3a2_3ap_3a224-236.htm 
 
10 http://www.wiod.org/publications/papers/wiod10.pdf 
11 Under IRS provision, ASC is allowed to carry back three years.  
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year to remove the effects of outliers, our sample is an unbalanced panel that consists of 11,882 

firm-year observations representing 3,007 firms. 

In order to determine whether a firm is “eligible” and “qualified” to receive an R&D tax 

credit, we need to obtain the value for Qualified Research Expenditure (QRE). QRE is available 

from the Internal Revenue Service (IRS) Statistics of Income database, which we do not have 

access for. For a firm to be “eligible” to receive an R&D tax credit, its QRE in a given year must 

be greater than a base year spending amount. We use formula (1) established by Congress after 

1989 to calculate the base spending amount for each year 𝑡 in our sample period.  

𝐵𝑎𝑠𝑒# = 𝑚𝑎𝑥 pq8
1
4(𝑆𝑎𝑙𝑒𝑠#DL

v

#w9

> × 𝑚𝑖𝑛 {0.16,
∑ 𝑆𝑎𝑙𝑒𝑠*��9�
*w����

∑ 𝑄𝑅𝐸*��9�
*w����

�� , 0.50 × 𝑄𝑅𝐸#�																				(1) 

In formula (1) 	𝑆𝑎𝑙𝑒𝑠  represents value of total sales for each firm-year reported in 

Compustat. Following the related literature, we assume that QRE equals 50% of the reported 

R&D expense. As discussed by Gupta et al. (2011), to be “qualified”, a firm must not only be 

eligible, but also have a sufficient tax liability, against which it can use the credit. We use Gupta’s 

et al. (2011) conditions to determine whether a firm is “qualified” to receive an R&D tax credit.  

Based on the described criteria for eligibility and qualification for R&D tax credit, we find 

that in our sample of the total of 11,882 firm-years 8,746 (73.7%) are eligible for any R&D tax 

credit; and among the eligible 8,746 firm-years, 5,502 (62.9 %) are qualified for any R&D tax 

credit.  

3.1.3 Federal and state R&D tax credits  

In order to conduct our calculation for the user cost of R&D capital, we collect data of state 

R&D tax credit rate.  Since Minnesota became the first state to enact a R&D tax incentive in 1981, 

nearly all states have enacted some kind of incentive for R&D investments.  They also have 
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modified, expanded the incentive, and sometimes repealed and sunset it.  Most states offer some 

version of R&D tax credit to supplement the federal R&D tax credit incentive except the District 

of Columbia and six states:  Alabama, Arkansas, Hawaii, Nevada, Wyoming, and Missouri, whose 

R&D tax credit sunset in 2005.  In most cases the state credit is generally patterned after the Federal 

R&D tax credit in that it uses the same definitions such as qualified research expenses (QRE), base 

amount, and is incremental and nonrefundable in nature.  For example, a majority of states use the 

federal definition of qualified research expense from the Internal Revenue Code, Section 41, with 

a modification to include only expenses incurred within the state.   

We survey the specifics of the R&D tax credits of the 50 states and the District of 

Columbia.  The information for each state has been gathered primarily from the websites of state 

governments and from state tax codes.  For some states with no sufficient online information, we 

have initiated phone and email conversations with state officials for the data collection.  Attempts 

and great efforts have been made to verify the information for each state, especially those of R&D 

tax credit differing from the typical QRE model.  By direct communication with state tax and/or 

economic development officials, we correct a number of mistakes of the lists of state R&D tax 

credit currently available in this arena.  For example, after consulting New York state officials, we 

realize that R&D tax credit of New York City has been widely used in relevant research and replace 

it by the correct New York state R&D tax credit.  In very few cases, we make references to other 

reports.  The R&D tax credit references we collected reflect the current practice of each state at 

the time of this paper.  

However, states’ tax credit mechanisms vary greatly in their design.  Our understanding of 

this mechanism across states would be limited if the attention is only paid to the tax credit rate.  In 

very few states, R&D credit is non-incremental in nature, for example in Kentucky.  A few states 
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allow taxpayers to claim some percentage of their federal credit, for example, in Nebraska.  A 

number of states offer small businesses R&D tax credit with higher percentage of the research 

expense, such as Connecticut and North Carolina.  Some states make some portion of their credit 

refundable, like Iowa.  A few states choose to depart from the typical QRE model of business tax 

incentives.  Different from most states’ R&D tax incentive, Mississippi offers a US $1000 tax 

credit per employee hired by R&D companies from corporate income tax for the first five years.  

Sales tax exemptions are another type of incentive departing from the typical QRE model.  

Tennessee extends tax credits to machinery, apparatus and equipment, etc. if it is purchased 

primarily for the purpose of R&D investments.  Complicated as this R&D tax credit mechanism 

gets, we carefully select state R&D tax credit rate, including the effective rate, lower bracket rate, 

and higher bracket rate for the calculation of the user cost of R&D capital.  

Also for the purpose of calculating the user cost of R&D capital, we select and compile 

state corporate income tax rates for the period of 2006 to 2015 from the data base of the Tax 

Foundation.  Since many states have multiple statutory tax rates and the stepwise increase of which 

depends on corporate income, we follow the way of data selection in Wilson (2009) where he used 

the top marginal tax rate.  In doing so, we collect state corporate income tax rate of the highest 

bracket from 2006 to 2014 and compile it with the state corporate income tax rates of the highest 

bracket of 2015 to complete the calculation of the user cost of R&D capital. 

3.1.4 U.S. Patent Data  
Our data cover the sample of organizations that filed for the utility patents between 1988 

and 2011. The sample period coincides with the introduction of the Alternative Simplified Tax 

Credit (ASC) in 2009. This sample contains over 3 million filed applications that are distinguished 

by the kind of the filing (whether it is initial filing or re-examination), grant dates, technology 
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classes and citation count for each patent.12 As discussed in detail by Autor et al. (2017), although 

patent data contains a wealth of information, it is notoriously difficult to use for empirical analysis. 

First, for competitive non-disclosure reasons, the unit of observation in the patent data is an 

organization, not a firm. Organization can be any entity including individual filings, universities, 

research institution etc. Second, each patent application is characterized by technology class, 

which does not directly map into an industry under either NAICS or SIC classification. 

Accordingly, it is unclear ex-ante whether an invention to be patented falls in the same primary 

industry as the filing organization. For example, if a pharmaceutical firm developed and filed a 

patent application for a computer automation system to fill the bottles with pills, this patent will 

be assigned to Class 703 (Data Processing: Structural Design Modeling, Simulation, and 

Emulation). The information of technology class in patent may not be able to tell us the industry 

sector that the inventor belong to.  

Table 1 presents the match rates between firms in Compustat and organizations that applied 

for patents by the broad industry classification as respective patent counts. Our overall match rate 

for the entire sample is 92% on average, although among firms in Textile and Apparel this rate 

drops to only 48%. Given the fact that most firms in our sample are in Chemicals, Petroleum and 

Rubber sectors, we feel confident with our patent matching approach. Further decomposing our 

sample into pre and post ASC sub-samples, we find consistently high match rates with patent 

applications and firms. Note that most patents were filed in pre-ASC period.   

	

	

 
12 USPTO technology classes can be found at 
https://www.uspto.gov/web/patents/classification/selectnumwithtitle.htm 
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 Table 1:  Summary of Patent Applications to Firm Matching by Sector 

Sectors 

 Pre-ASC Post-ASC Entire Sample 
Underlying 

Patents 
Counts (1988 -2009) (2009-2011) (1988-2011) 

 Match 
Share  

Patent 
Counts 

Match 
Share  

Patent 
Counts 

Match 
Share 

Patent 
Counts 

Chem., Petrol, 
Rubber 

30,461 
97.80% 33,558 98.30% 8,238 97.9% 41,796 

Computers, 
Electronics 

64,540 
100% 951 . 0 100.0% 951 

Machinery, 
Equipment  

20,902 
100% 20,057 100% 342 100.0% 20,400 

Transportation  1,353 100% 14,302 100% 4,109 100.0% 18,441 
Paper, Print 1,439 80.8% 4,368 78.8% 794 80.2% 5,162 
Metal, Metal 
Products 

7,398 
100% 1,014 100% 305 100.0% 1,319 

Food, Tobacco 655 100% 959 100% 293 100.0% 1,252 
Clay, Stone, 
Glass 

10,280 
98.4% 701 97.1% 287 98.1% 988 

Wood, Furniture 414 100% 1,803 100% 587 100.0% 2,390 
Textile, Apparel, 
Leather  

5215 
50.4% 207 33.30% 35 48.3% 242 

Non-
Manufacturing  

 
. 0 . 0 . 0 
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3.2 R&D Tax Credits in Key Countries  

Business R&D is a vital input to innovation, which is an increasingly important factor in 

the competitiveness of firms and of countries as well as the main driver of long-term growth in 

productivity and higher standards of living.  Because the possible spillover effects, firms may not 

be able to capture the full benefits of their R&D investments and hence may opt for an under-

investment level. To provide a remedy for this market failure, various governments are trying to 

address the issue of financial constraints for business R&D.  The oldest and more widely used 

solution is property rights, such as patents, trademarks, copyrights, but they cannot entirely 

compensate for the lack of incentive to invest in R&D because the enforcement these property 

rights are often not strong enough to defend the returns on R&D investments. 

A second solution is to increase the private return to R&D by reducing its costs.  It has two 

approaches: direct government subsidy and tax incentive.  Direct government subsidies to business 

innovation in the form of competitive grants or subsidized or guaranteed loans remain important.  

It represents the bulk of public financial support to basic, science research, and others in all OECD 

countries.  It is also the preferred instrument of policies to promote R&D in certain sectors, for 

example technological arenas.  Nevertheless, the use of indirect schemes such as tax credits has 

tended to increase.  Fiscal measures to promote R&D and innovation, specifically R&D tax credit, 

are now being widely discussed in many OECD countries due to its unique advantages over 

subsidies.  

The R&D tax credit allows less interference in the market so that decision makers in the 

private sector keeps their autonomy in devising R&D strategies to react to the market signals.  The 

R&D tax incentive provides more readily predictable and more stable than subsidies or grants that 

require periodical review and appropriations.  Moreover, the tax incentive requires less layers of 
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bureaucracy and less detailed specifications for receiving subsidies or grants.  Upon the advantages 

of R&D tax credits, many countries seek to promote R&D investment in the economy by granting 

this kind of preferential tax treatment to eligible R&D expenditures incurred by firms.  Over the 

last decade, several OECD countries have increased their reliance on R&D tax incentives. In 2016, 

29 of the 35 OECD countries provide R&D tax incentives. We next take a look at trends in actual 

R&D tax incentives, in particular SME innovation incentives in some countries.    

Countries differ in the extent to which they rely on tax measures to support R&D, and those 

that do, design tax relief measures in substantially different ways.  Some countries implement 

R&D tax credits, which allow firms to deduct a certain percentage of their R&D expenditures from 

their tax liabilities, as in Canada, France, Japan, and the United States.  Others employ tax 

concession, which permit firms to deduct eligible R&D expenditures against their taxable income.  

Belgium, for example, allows taxpayers to deduct 80% of their qualifying patent income from their 

taxable income.  Each of these approaches reduces the effective cost of conducting R&D aiming 

to increases its supply.  

Many OECD countries have introduced two main types of tax incentives for R&D: volume-

based and incremental-based tax incentives.  The United States has opted for incremental-based 

mechanism, providing an incentive proportional to the increase in R&D outlays in a given year 

compared to the average real volume of spending during a reference period.  Most countries (such 

as Australia, Canada, the United Kingdom, etc.) utilize the volume-based tax incentives, which is 

proportional to the volume of R&D performed.  A few countries use both approaches – Japan 

offers a combination of an incremental formula and volume-based tax credits.   

Despite the difference in the R&D tax incentive mechanisms, they give various solutions 

to the same problem:  How to ensure that companies that have no tax liabilities, particularly those 
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with temporarily loss-making in a cyclical downturn, or newly established firms, are not excluded 

from the benefits of the tax incentive (or reduction) scheme.  The most widely used solution is to 

allow tax-credits to be carried forward (for instance, Australia, Austria, Canada,  

France, the United Kingdom, and the United States) or to be refunded (for example, Austria, 

Canada, France, and the United States).13  If a country does not offer tax incentives to R&D (i.e. 

Germany), would the firms located in this country operate and compete at a disadvantage?  There 

is no straightforward answer to this question.  The impact of R&D tax incentives on firms’ 

competitiveness cannot be isolated from that of the other components in the national systems of 

government support to R&D and innovation, including the tax-system as a whole.  

Among those countries with R&D tax credits, tax incentive mechanisms differ from one 

country to another in many of their details, including: the definition of a minimum volume of 

eligible R&D expenditures (for example, all costs of “Research and Experimental Development,” 

in the United States); the ceiling (fixed amount of percentage) imposed on tax benefits; whether a 

two-tier system exists, involving both central /federal and regional/provincial/state tax incentives, 

as in the United States, Canada or in China; whether they give differential treatment according to 

firm-size, region or technology.  

After the pioneer works of Schumpeter highlighted the importance of SMEs in innovation, 

his hypothesis regarding SMEs has been revisited in many contributions to the literature, and the 

contribution of corporate R&D within SMEs discussed heatedly.  In 2007, a group of experts 

advising the Commission on the European Industrial Research and Innovation Monitoring System 

(EIRIMS) highlighted the need to investigate corporate R&D in SMEs, as a preliminary step for 

tailoring research and innovation policies specifically addressed to European SMEs.   

 
13 Another solution, adopted by the Netherlands is to apply the tax-rebate not to the tax on profit but to that on wages. 
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Within this context, many OECD countries have moved to implement preferential R&D 

tax incentives for SMEs.  In Australia, a refundable tax credit of 45% of eligible R&D expenditure 

is available for SMEs (i.e., companies with gross receipts of less than AUD 20M that are not 

controlled by exempt entities) comparing 40% tax credit for all other eligible entities.  France 

allows SMEs to request an immediate refund of unutilized credits when the credit is not utilized 

within the three-year period while large taxpayer is entitled to a refund in three years.  In the United 

Kingdom, SMEs qualify for the following expenditure-based tax incentives at 230% while large 

companies qualify for 30% of its eligible R&D costs.  Unused tax credits are refundable only for 

SMEs.  Japan’s SMEs qualify for R&D tax credit at 12% of the total R&D expenditure, yet large 

companies at 8-10% of the total R&D expenditure.   

Table 2: R&D Tax Credits in Key Countries 

 Tax incentive Type of 
instrument 

Eligible expenditures Rates Refundable Carry-
over 

Thresholds/Ceiling 

Australia Tax credit Volume-based Current, depreciation SME: 45% 
Others: 40% 

SME: Yes 
Others: No 

Indefinite Threshold: SMEs with 
gross receipts of less than 
AUD 20M that are not 
controlled (>50%) by 
exempt entities  
Ceiling: AUD100M 

Austria Tax credit Volume-based Current and capital 14%(12% until 2017) Yes Yes, 
indefinite 

Ceiling: €1M for 
subcontracted R&D 
expenses.  

Belgium Increased investment 
deduction or tax 
credit for R&D 

Volume-based Qualifiying fixed assets 
(including patents, 
machinery and 
equipment, buildings, 
etc.) 
 

13.5% as a one-off 
deduction or 20.5% 
spread over the 
depreciation period 
of the fixed asset. 

No Yes, 
indefinite 

No 

Deduction for 
innovation income 
(replaced Patent 
Income Deduction) 

Volume-based 85% deduction (PID: 
80%) 

N.A. N.A. No 

Wage withholding 
tax exemption 

Volume-based Labor 80% Redeemable 
against payroll/ 
related taxes 

N/A Ceiling: Wage withholding 
tax liability 

Canada Scientific research 
and experimental 
development tax 
credit 

Volume-based Current/Capital 35% of the first $3M 
and 15% on any 
excess amount for 
Canadian-controlled 
private corporation. 
15% of all qualified 
expenses for other 
Canadian entities. 

Yes 20 Threshold: $3M 

France Tax credit Volume-based Current and 
depreciation 

30% of the first 
€100M 
5% for qualified RD 
expense exceeding 
€100M 

SME: 
Immediate 
Large 
companies: 3 

3 Ceiling: Subcontracted 
R&D fees limited to €10M; 
qualifying contract research 
limited to €2M where the 
taxpayer and the 
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subcontractor are related 
entities. 

Germany No R&D tax incentives.  Only R&D loans and R&D grants. SMEs receive additional support than large companies. For example, the Central Innovation 
Program for SMEs primarily target at SMEs.  

United 
Kingdom 
 
 
 

Corporate tax credit 
for R&D (Tax 
allowance) 

Volume-based Current, intangibles SME: 230% on R&D 
expenses incurred 
from 4/1/2015 
 
Large companies: 
30% of its eligible 
R&D costs 

Yes (SME 
only) 

Yes, 
indefinite 

SME: €7.5M per project. 
Large companies: No 
ceiling 
 

R&D Expenditure 
Credit of 2013 (Tax 
credit) 

Volume-based 11% (large 
companies only) 

 No ceiling 

United States 
(Federal 
R&D tax 
credit) 

Regular research 
credit 
 

 
 
 
 
 
 
Incremental 

 
 
 
 
 
 
Current 

20% Yes Yes Base amount. 

20% Yes Base amount. 

Start-up credit 
calculation 14%, 

6% if no R&D in past 
3 years 

Yes Base amount. 
Alternative 
simplified credit 

China Tax allowance Volume-based Current and 
depreciation (the 
reduction of enterprise 
tax only available to 
companies granted High 
and New Technology 
Enterprise status) 

150% reduction for 
qualified RD 
expense, in addition 
to the reduced 15% 
enterprise tax rate 

No 5 Ceiling: subcontracted RD 
limited to 80% of eligible 
costs 

Japan Volume-based R&D 
tax credit 
 

Volume-based Current SME: 12% for total 
R&D expenditure 
Large companies: 8-
10% for total R&D 
expenditure 

No No Ceiling: Limited to 25% of 
the company’s national 
corporation tax liability 
before the credit is applied, 
for both SMEs and large 
companies. 

Tax credit for special 
R&D cost 
 

Current 30% for joint R&D 
with a university or 
public research 
institution; 
20% for R&D with 
other non-public 
entities 

No No Ceiling: Limited to 5% of 
the company’s national 
corporation tax liability 
before the credit is applied. 

Incremental tax credit 
 

Incremental Current 5-30% when the 
current period R&D 
expense exceeds (i) 
the annual average of 
the R&D expense for 
the three preceding 
fiscal years and (ii) 
the highest annual 
R&D expenditure for 
the previous two 
fiscal years.  
Alternatively,when 
the current period 
R&D expense 
exceeds 10% of the 
average annual sales 
for the four preceding 
fiscal years, the 
company is eligible 
for a credit 
calculation using a 
formula. 14 

No No Ceiling: Limited to 10% of 
the company’s national 
corporation tax liability 
before the credit is applied. 

 
14 The formula: R&D expenditure less (average annual sales for the four prior years *10%) multiplied by R&D ratio 
reduced by 10%, multiplied by 20%.  The R&D ratio is the amount of current year R&D expenses divided by 
average annual sales for the four preceding fiscal years.  
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4. Empirical Analysis 
 
In this section, we first plot a few descriptive graphs which enhance our understanding on 

the distribution of firms eligible and qualified for R&D tax credit by industry and by state. Then, 

we conduct the panel analysis to examine the relationship between import competition, inequality 

in R&D tax credit, and U.S. innovation. U.S. innovation will be measured by two approaches, U.S. 

R&D capital and U.S. patents. 

4.1 Distribution of Firms Eligible and Qualified to R&D Tax Credit by Industry 

Figure 1 plots the histogram for the mean ratio of percentage of SMEs eligible and qualified 

to R&D tax credit to the percentage of large firms eligible and qualified to R&D tax credit all years 

by industry. If the ratio is above or below 1, it suggests that there exists inequality in R&D tax 

credits between SMEs and large firms. If the ratio is higher than 1, the increase in ratio indicates 

that the inequality favors SMEs. If the ratio is less than 1, the increase in ratio indicates the 

inequality favors large firms. From Figure 1, we have several interesting observations: First, the 

retail trade and the broadcasting industries have the highest ratio, 2, and the inequality favors 

SMEs. This is very interesting in that in the rising digital economy, a lot of small businesses with 

asset light and heavy digitized business model have entered the sectors in past decade. Second, 

R&D intensive industries in general have ratios below 1, and the inequality favors large firms. The 

degree of difference varies by industry: Professional, Scientific, and Technical Industry (coded as 

NAICS 541) has the lowest ratio than other R&D intensive industries during our sample period. 

This sector contains a lot of firms in the biotech industries. In addition, other R&D intensive 

industries have ratios less than 1, and the ratios are in the range of .5 to .7, an index that indicates 

the inequality favors large firms. Note that the R&D investment scale has been growing in the past 

few decades based on U.S. official statistics data (Li and Hall, 2018). These industries include 
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NAICS 325 (Chemicals and Pharmaceutical Industry), NAICS 334 (Computer and Electronic 

Industry), R&D intensive industries in NAICS 335 (Electrical Equipment Industry), NAICS 336 

(Transportation and Motor Industry), NAICS 517 (Telecommunication and Video Entertainment 

Services Industry), and NAICS 518 (Data Processing, Hosting, and Related Services). Third, 

Figure 1 indicates that the inequality in R&D tax credit may either favor SMEs or large firms 

depending on the industry that we study. This indicates that unlike the U.K., U.S. R&D tax credits 

may not have bias toward either SMEs or large firms overall. 

Figure 1: Distribution of Firms Eligible and Qualified to R&D Tax Credit by Industry 

 
 

Figure 2 shows the historic histogram of average R&D inequality index for the 

economy as a whole from 2007 to 2011. As shown in the graph, after 2009, there is a dramatic 

drop in terms of the value of R&D inequality index. This is consistent with what we see in the 

data:  After the U.S. Congress enacted Alternative Simplified Credit (ASC) in 2009, firms that 

originally cannot substantiate its claim for the regular R&D credit (RRC) can elect for an 
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alternative calculation method.  As shown in the data, more SMEs are now eligible and 

qualified for under ASC.  

Figure 2: R&D Inequality Index – 2007 to 2011 
 

 

4.2 Geographical Distribution of Firms Eligible and Qualified for R&D Tax Credit  

Figures 3(A)-(B) show the geographical distribution of SMEs eligible and qualified to  

R&D tax credit and that of large firms eligible and qualified to R&D tax credit in the United States. 

The states with the higher density of SMEs eligible and qualified to R&D tax credit are similar to 

the states with higher density of large firms eligible and qualified to R&D tax credit with only few 

exceptions. We note that that the states with highest or the 2nd highest densities of firms eligible 

and qualified to R&D tax credit are normally higher technology intensive in terms of the number 

of technology jobs.15  

 
15 https://www.bloomberg.com/news/photo-essays/2010-12-07/u-dot-s-dot-cities-with-the-most-tech-jobs 
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Figure 3: The Geographical Distribution of SMEs and Large Firms in the U.S. 

 

4.3 Geographical Distribution of Inequality in R&D Tax Credit Ratio 

Figure 4 shows the R&D inequality ratio (RDI) by state in 2010. Recall, when RDI ratio is 

greater than zero, the inequality favors large firms. Accordingly, the darker areas on the map, most 

in the mid-west and the south, imply relatively higher R&D inequality among firms within states. 

Note that technology intensive states show different degrees of inequality in R&D tax credit 

depending on the composition of the industries in each state.  

Figure 4: R&D Inequality Ratio in the United States in 2010 
 

 
4.4 Panel Analysis: Import Competition, Firm Size Distribution in R&D Tax Credit, and 

U.S. Innovation Measured by R&D Capital  

After calculating firms eligible and qualified to R&D tax credit in the U.S., we find that 

the percentage of SMEs eligible and qualified for R&D tax credit is smaller than that of large 

0.73 − 1.00
0.67 − 0.73
0.50 − 0.67
0.35 − 0.50
-0.21 − 0.35
No data

Source: Authors' Estimation
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firms. Therefore, we are interested in understanding how the distribution in R&D tax credit relates 

to U.S. innovation and how the relationship interacts with import competition. As mentioned in 

Section 3, we define the R&D inequality index to measure the relative degree of large firms to 

SMEs in terms of the eligibility and qualification to R&D tax credit. In addition, we measure 

innovation by R&D capital stock (Dechezlepretre et al., 2016). Following Hall (1999) and Hall et 

al. (2005), we use the perpetual-inventory method with depreciation rate of 15% to calculate R&D 

capital stock for U.S. firms in the Computstat dataset. As to the measurement of the degree of 

import competition, we use VAX ratio (See Section 2).  

To ensure the exogenous variation in our measure of innovation, we instrument R&D 

capital stock at the firm level using tax-induced changes to the user cost of R&D capital. We obtain 

the user cost of R&D capital for our sample using the methodology adopted in Belenkiy, Li and 

Xu (2016). Furthermore, to capture the degree of R&D exposure to import competition, we define 

the measurement of the degree of import competition for R&D following Autor et al. (2013) in 

Equation (1). At the industry level j: 

∆𝐼𝐶𝑅*# =(
𝑅𝐷*#
𝑅𝐷�#

𝑉𝐴𝑋*#
�

																																																																																																																	(1) 

We define the R&D inequality index as 𝑅𝐷𝐼*#. With the industry-level measurement of 

RDI and the degree of import competition, we estimate the impact of R&D inequality on U.S. 

innovation in Equation (2). 

𝑅𝐷𝑆𝑡𝑜𝑐𝑘"*#

= 𝛽� + 𝛽9𝐼𝑃𝑅*#D9 + 𝛽�𝑅𝐷𝐼*#D9 + 𝛽�𝐼𝐶𝑅*#D9 × 𝑅𝐷𝐼*#D9 + 𝐹𝑖𝑟𝑚𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠"*#D9 + 𝜁" + 𝜉*#

+ 𝜀"*#																																																																																																																																														(2) 
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In the specification (2) 𝐹𝑖𝑟𝑚𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 are the firm controls, including firm age and asset value. 

The interaction term between the degree of ICR and RDI captures the isolation effect of R&D from 

import competition with the respect to the degree of R&D inequality. The firm fixed effects 𝜁" 

absorb all time-invariant determinants of innovation at the firm level. The industry-year fixed 

effects 𝜉*# ensure that the model is identified from comparing firms with different eligibility and 

qualification for R&D tax credits within the same industry-year.   

Table 3 shows our preliminary findings. In the following panel regression analysis, we use 

data from 2007 to 2011 to examine the relationship between import competition, R&D inequality, 

and U.S. innovation. 
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Table 3: Import Competition, R&D Inequality, and U.S. Innovation 

 
Variables  [1] [2] [3] 
Import Competition (ICR) -0.001 -0.025* -0.202 

 (0.112) (0.014) (0.136) 
R&D Inequality (RDI) 0.001 0.034* 0.066 

 (0.061) (0.021) (0.161) 
ICR X RDI 0.057*** 0.039* 0.217 

 (0.021) (0.023) (0.175) 
Assets  -0.007 0.422*** 

  (0.008) (0.095) 
Age  0.004** 0.013 
    (0.001) (0.017) 
Fixed Effects    
Industry Yes No No 
Year Yes No No 
Firm No Yes Yes 
Industry X Year No Yes Yes 
Observations 48 774 1706 
R-Squared 0.999 0.999 0.804 
Notes: ***1%; **5%; *10%    
Dependent variables for [1] and [2] R&D capital (in logs) [3] TFP  
Robust standard errors clustered on (industry and year) pairs are in parenthesis  

 

Table 3 shows the analysis of the industry R&D panel regression in the industry level on 

equation (1) and the analysis at the firm-level sample on equations (2) and (3). The dependent 

variables of equations (1) and (2) are the log of predicted industry-level R&D capital. The 

predicted R&D capital is estimated using perpetual-inventory method with the constant 

depreciation rate of 15%, a traditional assumption. We have estimated R&D expenditures using 

user cost of R&D capital as an instrument. The dependent variable of equation (3) is TFP level. 

After controlling fixed effects on industry and time, in equation (1), we find that import 

competition have a negative relationship with U.S. innovation, but the relationship is not 

statistically significant. On the contrary, R&D inequality has a positive relationship with U.S. 
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innovation, but the relationship is also not statistically significant. However, the interaction term 

between import competition and R&D inequality has a statistically positive relationship with U.S. 

innovation.  This suggests that the negative relationship between import competition and U.S. 

innovation can be mitigated when the industries have higher degree of R&D inequality.  

After controlling fixed effects on firm and industry, equation (2) indicates that import 

competition has a statistically negative relationship with U.S. innovation. This finding is consistent 

with the fining in Autor et al. (2017) for the U.S., even though our measure of import competition 

differs from theirs. However, this finding is different from the finding in Bloom et al. (2015) where 

they find import competition has statistically positive impacts on the innovation of some OECD 

developed countries with different R&D tax mechanisms. In addition, R&D inequality has a 

statistically positive relationship with U.S. innovation. This suggests that as relatively more large 

firms eligible and qualified for R&D tax credit, it will have a positive relationship with U.S. 

innovation. This may be consistent with findings by Harberger (1998) that as shown in his famous 

sunrise –sunset diagrams that across industries, a small or modest fraction of firms accounting for 

100 percent of the productivity growth of an industry. Furthermore, it is also consistent with 

findings in other OECD studies that R&D tax credits have a positive relationship with a country’s 

innovation (Bloom, 2002; Dechezlepretre, 2016) Moreover, the interaction term between R&D 

inequality and import competition has a statistically positive relationship with U.S. innovation. 

This suggests that import competition can negatively affect U.S. innovation, but the negative effect 

can be mitigated as the degree of R&D inequality increases. This is consistent with studies that 

compared with SMEs, large firms can better compete with import competition (Feinberg, 2008).  

Although firm age has a positive impact on innovation, the magnitude is much smaller. This 

indicates that it takes time for firms to accumulate knowledge stocks. In equation (3), the 
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regression signs of each variable are the same, yet the only variable, total assets, has a statistically 

significant effect.  Since our analysis covers the period of 2007-2011, a period that the economy 

has experienced a lot of technological advances, there may be a significant lag problem, and TFP 

cannot show those advances (Bryjolfsson et al., 2017; Elnasri and Fox, 2015).  

4.5 Panel Analysis: Import Competition, Firm Size Distribution in R&D Tax Credits, and 

U.S. Innovation Measured by U.S. Patents 

In this section, we consider U.S. patenting as an alternative way to measure innovation of 

U.S. firms. Although a lot of innovations such as process innovations may not be patented and 

firms have been increasingly kept some innovations as trade secrets, patents can still provide a 

useful and supplementary measure of innovation. We modify our empirical strategy to estimate 

the impacts of import competition and R&D inequality on U.S. innovation. Following Autor et al. 

(2017), we measure the growth rate in patenting activity (∆𝑃) for each firm 𝑖 in industry 𝑗 in year 

𝑡 in averaged first differences as shown in expression (3).  

 

∆𝑃"*# 	= 100 ×
�𝑃"*#� − 𝑃"*#��

0.5 ∗ �𝑃"*#� + 𝑃"*#��
																																																																																								(3) 

Using the expression in (3) as our dependent variable, our empirical specification is given in (4). 

∆𝑃"*# = 𝛼# + 𝛽9𝐼𝑃𝑅*# + 𝛽�𝑅𝐷𝐼*# + 𝛽�𝐼𝑃𝑅*# × 𝑅𝐷𝐼*# + 𝛾𝐹"*# + 𝜃𝑆*# + 𝜖"*#																			(4) 

In the specification (4) measures of import competition (𝐼𝑃𝑅) and R&D inequality (𝑅𝐷𝐼) are as 

previously defined; 𝐹"*# is a vector of firm-specific characteristics such as number of employees, 

sales, share of R&D expenditures in sales and assets; 𝑆*# is a vector of industry-specific controls 

such as industry fixed effects, and share of firm’s patents that fall into each of the six major patent 

technology classes.  
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We estimate the specification (4) using OLS and consider potential confounding issues that 

may prevent causal interpretation of our results. As noted by Autor et al. (2017), the causal 

estimation of (4) may be confounded for several reasons. First, observed changes in the import 

penetration ratio may in part reflect domestic shocks to U.S. industries, which in turn have impact 

on both U.S. import demand and innovative activity. Second, variation across industry 

characteristics, such as industry factor intensity and earnings, could all drive systematic differences 

across firms and industries in the potential for successful innovation. The first issue does not 

present a concern for us since we construct the measure of R&D import competition using VAX. 

To address the second concern, we add a rich set of firm-level controls such as employment, sales, 

and capital assets; and industry level controls such as 11 manufacturing sectors that are listed in 

Table 3 to control for industry and technology intensity. Finally, to absorb changes in patenting 

that are driven by diverging trends across technology classes, we control for the technology mix 

of firm patents using fraction firm’s patents that fall in each of the six major technology classes.  

 As shown in Table 1, the distribution of patents by industries is highly non-uniform in our 

sample. For example, there were almost 42,000 patents filed by firms in Chemicals, and only 242 

patents in Textiles. To account for this variation and to capture overall scale of innovative 

activities, we weight observations by patent count average (PAW). The patent count average is 

calculated as number of patents in a firm, averaged over patents at the start and end of a period. 

Patent counts may provide an imperfect indication of the significance of innovation (Trajtenberg, 

1990), since only small fraction of patents lead to major innovations and very few really matter 

for a firm performance. Accordingly, we also use citation weight (CW) calculated as a sum of all 

subsequent citations to each firm’s start-of-period and end-of-period patents.  
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Table 4 shows the estimation results. For every speciation we find that import competition 

has statistically negative effect on the growth rate in patents. Depending on the specification the 

elasticity of patent growth rate with the respect to import competition ranges between -0.9 to -1.4. 

These estimates imply that all else equal increase in R&D import competition reduces the growth 

of rate of patents by as much as 1.4%. Interestingly, this elasticity estimate is larger when we weigh 

the observations by citations. This suggests that import competition has a greater effect on higher 

impact innovations. These results are consistent with our earlier findings when the innovation is 

measured with R&D capital, and the related findings by Autor et. al (2017). 

  Next, we turn to R&D inequality. Contrary to the result when the innovation is measured 

by R&D capital, the increase in R&D inequality has statistically negative effect on patent growth 

rate. The elasticity estimate is fairly consistent across all specifications and implies that 1 percent 

increase in R&D inequality decreases patenting growth by 0.04%. The result implies that while 

larger firms eligible for R&D tax credit increased their R&D capital, the increased investments in 

R&D did not translate into increased patenting. Consistent to previous result when we use R&D 

capital to measure innovation, the negative effect of import competition is mitigated by increase 

in R&D inequality. This may due to the fact that larger firms are better insulated in patenting 

propensity but this effect is not statistically significant.  

Lastly, in specifications [5] and [6] we added a control for post financial crisis of 2007-

2008 beginning in 2009. We find that once the recovery began, there has been significant and 

positive effect on patenting growth. However, as U.S. became relatively more attractive for 

international investment, import competition exacerbated negative effect on patenting growth and 

R&D inequality. There is also a significant positive mitigating effect for larger firms patenting 

propensity post financial crisis recovery. 
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Table 4 - Import Competition, R&D Inequality, and Patenting  
Variables [1] [2] [3] [4] [5] [6] 
  PW PW CW CW PW CW 

Import Competition (ICR) -0.871** -1.082*** -0.985*** -1.204*** -1.203*** -1.374*** 
 (0.238) (0.347) (0.365) (0.346) (0.366) (0.369) 

R&D Inequality (RDI) -0.043** -0.043** -0.038** -0.039** -0.039* -0.035** 

 (0.018) (0.020) (0.018) (0.017) (0.020) (0.017) 
ICR X RDI 0.182 0.207 0.257 0.332 0.083 0.225 

 (0.340) (0.353) (0.410) (0.402) (0.360) (0.411) 
Post Financial Crisis (Post)     0.093** 0.111** 

     (0.044) (0.047) 
POST X ICR     -1.540** -1.427* 

     (0.686) (0.760) 
POST X RDI     -0.104 -0.101 

     (0.090) (0.086) 
POST X ICR X RDI      2.528** 2.425** 

     (0.970) (1.170) 
Firm Controls       
Employees (in logs) 0.012 -0.008 0.026 -0.002 0.006 0.023 

 (0.028) (0.027) (0.036) (0.034) (0.028) (0.038) 
Assets (in logs) -0.024 -0.049** -0.023 -0.041** -0.052** -0.044** 

 (0.019) (0.020) (0.018) (0.020) (0.021) (0.019) 
Sales (in logs) 0.011 0.042* -0.002 0.031 0.033 0.013 

 (0.023) (0.024) (0.034) (0.032) (0.022) (0.033) 
       

Industry Controls       
11 Manufacturing Sectors Yes Yes Yes Yes Yes Yes 
Patent Technology Classes No Yes No Yes Yes Yes 

       
Observations  2,104 1,926 1,908 1,837 1,926 1,837 
Notes: Dependent variable in each specification is the averaged between first and last period first  
difference in patent counts by firm; Each specification is weighted either by patent counts (PW) or 
citation total (CW); Standard errors are in parenthesis and clustered on 4-digit SIC industries.  
 p ≤ 0.10, * p ≤ 0.05, ** p ≤ 0.01 
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Until now we have measured R&D inequality between large firms and SME’s using quantile of 

sales to define them. However, it is likely that R&D activity is not directly proportional to firm 

sales. In fact, in our sample the correlation between firm sales and counts of filed patents is only 

0.5. To consider the differences in R&D inequality using patents directly, we define patent 

inequality (PI): 

 𝑷𝑰 = 𝟏 −	 (𝒏𝒖𝒎𝒃𝒆𝒓	𝒐𝒇	𝒑𝒂𝒕𝒆𝒏𝒕𝒔	𝒃𝒚		𝑺𝑴𝑬𝒔	𝒆𝒍𝒊𝒈𝒊𝒃𝒍𝒆	&	𝒒𝒖𝒂𝒍𝒊𝒇𝒊𝒆𝒅)/(𝒕𝒐𝒕𝒂𝒍	𝒏𝒖𝒎𝒃𝒆𝒓	𝒐𝒇	𝑺𝑴𝑬𝒔)
(𝒏𝒖𝒎𝒃𝒆𝒓	𝒐𝒇	𝒑𝒂𝒕𝒆𝒎𝒕𝒔	𝒃𝒚	𝒍𝒂𝒓𝒈𝒆	𝒇𝒊𝒓𝒎𝒔	𝒆𝒍𝒊𝒈𝒊𝒃𝒍𝒆	&	𝒒𝒖𝒂𝒍𝒊𝒇𝒊𝒆𝒅)/(𝒕𝒐𝒕𝒂𝒍	𝒏𝒖𝒎𝒃𝒆𝒓	𝒐𝒇	𝒍𝒂𝒓𝒈𝒆	𝒇𝒊𝒓𝒎𝒔)

 

Similar to our original index (RDI) the value of patent inequality index greater than one indicates 

that R&D tax credit policy benefits patenting propensity of small firms. Conversely, the indicator 

less than one indicates that R&D tax credit policy benefits patenting propensity of large firms. 

Table 5 shows the estimation results obtained by replacing RDI index with PI index in the 

specification (4). 

Table 5- Import Competition and Patent Inequality  
Variables [1] [2] [3] [4] [5] [6] 
  PW PW CW CW PW CW 

Import Competition (ICR) -0.939** -1.080*** -1.070*** -1.180*** -1.074** -1.274*** 

 (0.312) (0.283) (0.333) (0.262) (0.420) (0.439) 
Patent Inequality (PI) -0.052* -0.056** -0.066* -0.070** -0.058* -0.065* 

 (0.034) (0.033) (0.034) (0.035) (0.038) (0.040) 
ICR X PI 0.323 0.207 0.521 0.413 0.131 0.349 

 (0.594)) (0.353) (0.601) (0.568) (0.664) (0.677) 
Post Financial Crisis (Post)     -0.063 -0.047 

     (0.080) (0.080) 
POST X ICR     0.015 0.086 

     (0.306) (0.351) 
POST X PI     -0.013 -0.090 

     (0.066) (0.078) 
POST X ICR X PI      1.160 1.650 

     (0.961) (1.142) 
Firm Controls       
Employees (in logs) 0.01 -0.008 0.021 -0.007 0.006 0.017 

 (0.023) (0.027) (0.036) (0.028) (0.026) (0.023) 
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Assets (in logs) -0.021 -0.049** -0.017 -0.034** -0.052** -0.038* 

 (0.017) (0.020) (0.018) (0.023) (0.021) (0.021) 
Sales (in logs) 0.013 0.041* -0.003 0.030 0.033* 0.012 

 (0.60) (0.023) (0.027) (0.026) (0.022) (0.025) 
       

Industry Controls       
11 Manufacturing Sectors Yes   Yes    Yes Yes Yes Yes 
Patent Technology Classes No   Yes     No Yes Yes Yes 

       
Observations  2,079 1,903 1,885 1,815 1,903 1,815 
Notes: Dependent variable in each specification is the averaged between first and last period first  
difference in patent counts by firm; Each specification is weighted either by patent counts (PW) or 
citation total (CW); Standard errors are in parenthesis and clustered on 4-digit SIC industries.  
 p ≤ 0.10, * p ≤ 0.05, ** p ≤ 0.01 

 

 

5. Conclusion  

Studies in OECD countries have shown that R&D tax credits have positive impacts on firm 

innovation, and that SMEs are more responsive to the credits. However, countries are different in 

the mechanism design of R&D tax credits. Unlike OECD countries that use the total R&D 

investment as the assessment for the R&D tax credit, the U.S. assesses the qualified R&D 

investments in incremental amounts. In this paper, we find that the U.S. R&D tax mechanism is 

less favorable to SMEs, but the inequality in the R&D tax credit has been declining after the U.S. 

Congress enacted ASC policy. Moreover, in the rise of globalization, we find that import 

competition has a negative relationship with U.S. innovation, but the negative effect can be 

mitigated as the degree of R&D inequality increases. Fourth, the degree of R&D inequality has a 

statistically positive relationship with U.S. innovation measured by U.S. R&D capital. However, 

when measured by U.S patents, U.S. innovation has a statistically negative relationship with the 

degree of R&D inequality. That is, lowering R&D inequality can increase U.S. patenting.  
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