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Abstract

We propose a novel link between credit markets and uncertainty shocks. Empirically, we

estimate time-varying uncertainty about credit in the U.S. and decompose it into a “pure”

(independent) second-moment shock versus a second-moment change that is correlated

with a first-moment shock. We show that a pure second-moment shock has almost no

effect in expansions, but generates a significant decline across measures of real activity in

recessions. To build intuition, we feed our estimated uncertainty process into a flexible-price

real business cycle model with collateral constraints. A shock to credit uncertainty triggers

a precautionary response that interacts with the collateral constraint to generate a sizable

and simultaneous decline in output, consumption, investment, real wages, and hours. This

interaction is a novel feature and generates the simultaneous decline in these variables that

previous work on uncertainty shocks without credit constraints has been unable to produce

in a flexible price environment.
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1 Introduction

The aftermath of the ‘Great Recession’ witnessed a surge of interest in examining the

importance of uncertainty in generating business cycle fluctuations, with an early and

important contribution by Bloom (2009). More recently, the COVID-19 pandemic trig-

gered financial market uncertainty - both through changes in measures such as the VIX

or uncertainty about access to credit.1 Concurrently, the role of credit markets in shap-

ing business cycle dynamics has gained traction with many authors documenting a link

between credit build up in periods of expansion and the subsequent crash in recessions;

e.g., Jordà, Schularick, and Taylor (2013), Mian and Sufi (2018). Our article proposes

a novel description of the link between credit markets and uncertainty shocks. We ex-

ploit the dynamics of credit expansion and contraction to explicitly pin down the role

of uncertainty shocks in credit markets to quantify how a change in the second moment

transmits into the real economy.

We begin by presenting a new stylized fact that stems from the time-variation in

the volatility of credit expansions and contractions. These changes are interpreted as

time-variations in credit-uncertainty and a stochastic volatility model is estimated to

document that time-varying uncertainty in credit dynamics is a robust empirical feature.

Our approach to estimating the stochastic volatility model is based on recent advances in

Bayesian methodology for state space models. In particular, we use the correlated version

of pseudo marginal Metropolis-Hasting (PMMH) proposed by Deligiannidis et al. (2018)

that is more efficient in comparison existing methods. We incorporate the empirically

identified uncertainty in credit dynamics in a flexible price real business cycle model

with a collateral constraint on firm borrowing. In a parsimonious environment, we show

that unforeseen changes in credit-uncertainty interacts with the borrowing constraint

distortion to generate significant changes in real activity. This interaction between credit

constraints and precautionary motives is a novel feature that helps forge a direct link

between the source and manifestation of uncertainty in the real economy.

The article makes several important contributions. First, we present a new styl-

ized fact that quantifies credit-uncertainty over the business cycle. We document time-

variation in the volatility of credit-growth and credit availability as a robust empirical

feature that is consistently observed across different measures of credit aggregates.

Second, we fit a time series model of these shocks and quantify their effects on macroe-

1The role of credit market uncertainty in the face of the COVID-19 pandemic has been explicitly
addressed in speeches by policy makers across financial institutions across countries. Statements is-
sued by: Board of Governors of the Federal Reserve System: https://www.federalreserve.gov/

newsevents/pressreleases/bcreg20200323a.htm, Reserve Bank of Australia: https://www.rba.

gov.au/speeches/2020/sp-gov-2020-03-19.html, Reserve Bank of India: https://www.rbi.org.

in/Scripts/bs_viewcontent.aspx?Id=3847.
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conomic variables. This is done by separating the identified shock into two components –

one that captures the ‘pure’ effect of a change in the second moment that is independent

of changes in the first moment, and the other capturing a change in the second moment

that is correlated with a shock to the first moment. To quantify the impact of shocks to

credit-uncertainty, the extracted shocks are used to construct impulse responses using the

local projections method (Jordà, 2005). Impulse responses are constructed for two sce-

narios: one in a linear model with no distinction between recessions and expansions; the

other in a state-dependent version of local projections that allows for differences between

recessions and expansions.

For both the linear and state-dependent local projections, we find that the effects of

‘pure’ shocks to credit-uncertainty are contractionary; in recessions, the effects are signif-

icantly larger and with almost no effects in expansions. We show that a shock to credit-

uncertainty can generate a slowdown across a broad measure of real activity. During

downturns, a one-standard deviation increase in credit-uncertainty triggers a sharp and

significant decline in auto-sales, durable goods consumption, and investment. Household

leverage declines and the credit spreads increase sharply as well. More broadly, aggregate

consumption and GDP contracts; the unemployment rate shows a significant increase a

few periods after the shock hits and non-durable consumption declines. To take a deeper

look at the response of unemployment we also examine the response of total employed

and find a significant decline on impact that lasts several quarters. If the uncertainty

shock embeds first moment implications, these effects are even larger. An important

takeaway from our results is that shocks to credit-uncertainty in good times does not

impede the pace of real activity. During busts, however, a shock to the second moment

can exacerbate the depth as well as the duration of a recession. We therefore empirically

establish this asymmetry in the way the uncertainty shock propagates in the economy.

To build intuition, the estimated uncertainty process is fed to a flexible price real busi-

ness cycle model with collateral constraints. We show that when the collateral constraint

binds, an increase in credit-uncertainty leads to a simultaneous decline in consumption,

investment, output, real wages, and hours worked. Using properties of the pruned third-

order solution we isolate the precautionary response from the endogenous transmission

operating through the higher order interaction terms. In the model, the shock transmits

itself by increasing the wedge between labor demand and labor supply. Although labor

supply increases through the initial precautionary response of households to the shock,

the increase in the wedge operating through the collateral constraint on firm borrowing

is strong enough to generate a contraction in labor demand leading to decline in hours

and real wages in equilibrium. Thus, even in the absence of other distortions and shocks,

an uncertainty shock in our proposed framework can generate a sizable and simultaneous
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impact on macroeconomic variables consistent with the stylized facts characterizing the

transmission of aggregate uncertainty to the real economy. This is our third main result.

We also consider an extension with hand-to-mouth consumers with no access to sav-

ing mechanisms that dilutes the precautionary savings response by households. Despite

this feature, we find that changes in credit-uncertainty generates a sizeable decline in

macroeconomic variables with a disproportionately larger consumption decline for the

hand-to-mouth agents.

Related Literature: The first group of studies connected to our paper examine the

role of uncertainty in generating business cycle fluctuations. Bloom (2009), Fernández-

Villaverde, Guerrón-Quintana, Rubio-Ramı́rez, and Uribe (2011), Fernández-Villaverde,

Guerrón-Quintana, Kuester, and Rubio-Ramı́rez (2015), Leduc and Liu (2016), Basu and

Bundick (2017), Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2018), Berger,

Dew-Becker, and Giglio (2020) and, Fernández-Villaverde and Guerrón-Quintana (forth-

coming) among others, motivate the role of shocks to the second moment as a driver of

business cycles.2 Uncertainty in these papers stems from the time-varying volatility in

exogenous shocks to aggregate productivity, aggregate demand, fiscal policy, borrowing

costs or from a realized volatility perspective. One of the challenges in the theoretical

literature examining the effects of uncertainty has been to generate a sizable impact and

simultaneous decline in key macro variables (output, hours, consumption and invest-

ment). Our approach to modeling uncertainty and its interaction with the real economy

thus overcomes the quantitative irrelevance result of time-variation in uncertainty in RBC

models that has been described in Fernández-Villaverde and Guerrón-Quintana (forth-

coming), and is better able to explain the simultaneous decline in these variables than

existing models of uncertainty shocks.

Our work is also related to studies that examine the role of financial conditions

in transmitting uncertainty shocks. Caldara, Fuentes-Albero, Gilchrist, and Zakraǰsek

(2016) use a sequential identification technique, and Alessandri and Mumtaz (2019) dis-

tinguish between regimes of financial-stress and financial-calm to explore the role of fi-

nancial conditions in the transmission of uncertainty. They find that, while uncertainty

shocks by themselves can generate business cycle fluctuations, the severity of the impact

increases significantly when uncertainty shocks interact with financial conditions. Lud-

vigson, Ma, and Ng (forthcoming) and Caggiano, Castelnuovo, Delrio, and Kima (2020)

using shock-based restrictions find that sharply higher macroeconomic uncertainty in

recessions is often an endogenous response to output shocks, while uncertainty about

financial markets is a likely source of output fluctuations. Instead of imposing identifying

2See Fernández-Villaverde and Guerrón-Quintana (forthcoming), for a detailed review on the litera-
ture on uncertainty shocks and business cycle research.
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restrictions, and regime dependencies, we construct our measure of uncertainty shocks,

from the time-variation in the volatility of credit expansions and contractions, and we

show that changes in credit uncertainty can generate a sharp slowdown across a broad

measure of real activity in recessions with almost no effects in expansions.

A third related strand of the literature examines the differences between financial

and nonfinancial recessions. The importance of credit growth in shaping business cycles

has been studied in detail by Jordà, Schularick, and Taylor (2013) who show that the

patterns of credit growth can predict the type of recovery with periods of high credit

growth being followed by recessions that are deeper and longer. When the real effects

of shocks to credit-uncertainty are analyzed, we find that these shocks (independent of

changes in the first moment) can exacerbate the depth and duration of a recession by

amplifying the slowdown. Our article presents a potential explanation for the heightened

depth and duration of recessions following a credit buildup.

Our article is also related to the studies that examine the importance of financial fac-

tors during the Great Recession. Jermann and Quadrini (2012) for instance examine the

role played by the dynamics of the firms’ financing decisions; Christiano, Eichenbaum,

and Trabandt (2015) examine the importance of a financial wedge distorting the intertem-

poral Euler equation for capital accumulation, Christiano, Motto, and Rostagno (2014)

and Arellano, Bai, and Kehoe (2019) examine the role of changes in the idiosyncratic

productivity of firms.3 Alfaro, Bloom, and Lin (2019) suggest that the size of the finance

uncertainty multiplier is significant and plays an important role in the transmission of

uncertainty shocks. Our work provides a complementary view to the role of financial

factors by isolating a shock to credit-uncertainty. We quantify the independent effects of

a change in the second moment vis-à-vis a change the in the first moment and show that

shocks to credit-uncertainty by itself can generate a significant slowdown across a broad

measure of real activity.

In terms of technique and approach to modeling uncertainty, our paper is re-

lated to Fernández-Villaverde, Guerrón-Quintana, Rubio-Ramı́rez, and Uribe (2011)

and Fernández-Villaverde, Guerrón-Quintana, Kuester, and Rubio-Ramı́rez (2015). Like

these papers we use sequential Monte Carlo methods; however, one advantage of our

method is that the implementation is more efficient. The remainder of the paper is orga-

nized as follows. Section 2 describes the data, modeling and estimation techniques used

to uncover time-variation in credit uncertainty. Section 3 discusses the results of the

estimation. Section 4 empirically quantifies the real effects of the extracted uncertainty

shocks. Section 5 presents a theoretical model to outline the transmission mechanism.

3See Gertler and Gilchrist (2018) for a detailed survey on studies examining the role of financial
factors during the Great Recession.
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Section 6 presents a robustness check of our results. Section 7 concludes.

2 Testing the existence of stochastic volatility

Figure 1: Total credit extended to the nonfinancial sectors. Shaded areas indicate NBER
recessions.

2.1 Data

To examine the presence of time variation in credit-uncertainty we begin by looking

at the dynamics of the quarterly change in the growth rate of total credit extended to

the private nonfinancial sector in the U.S.. The ‘private nonfinancial sector’ includes

nonfinancial corporations (both private-owned and public-owned), households and non-

profit institutions serving households as defined in the System of National Accounts 2008.

The series are at quarterly frequency and capture the outstanding amount of credit at

market value at the end of the reference quarter. In terms of financial instruments, credit

covers loans and debt securities.4 The estimation sample extends from 1979 Q1 to 2018

Q4; this series is denoted as yt. Figure 1 plots the quarterly growth rate of credit available

to the nonfinancial sector. We start our analysis with this broad measure of credit and

use this definition when discussing the results in sections 3, 4 and 5. Section 6.3 carries

out robustness checks accounting for different measures of credit aggregates and shows

that the estimates characterizing credit uncertainty is a robust empirical feature across

these different measures.

4For more details see credit data on BIS statistics repository. The series source code is
Q:US:P:A:M:USD:A.
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2.2 Empirical Model

Time variation in credit-uncertainty is isolated by considering a stochastic volatility

(SV) model for yt allowing for correlation between shocks to the level and the standard

deviation of credit-growth (leverage effect), with observation equation

yt = φyyt−1 + exp (ht/2) εt, εt ∼ N (0, 1) , t = 1, 2, ..., T ; (1)

εt is a standard normal random variable. The important feature of the model is that the

log-volatility ht is not constant, but follows the AR(1) process,

ht+1 = µh + φh (ht − µh) + τηt+1, ηt+1 ∼ N (0, 1) , t ≥ 1; (2)

(
εt

ηt+1

)
∼ N

((
0

0

)
,

(
1 ρ

ρ 1

))
; (3)

ηt is normally distributed with mean zero and unit variance. The parameters µh and

τ control the degree of mean volatility and stochastic volatility in yt, respectively. The

process {yt} is hit by both εt and ηt; the innovation εt to the observation yt changes the

level of yt; the innovation ηt to the volatility of yt affects the standard deviation of εt.

When estimating the model, the data is demeaned. The parameter ρ controls the strength

of the dependence between εt and ηt – the size of the “leverage effect” of the level shock εt

on the volatility shock ηt. Uncertainty shocks in this environment are therefore captured

by ηt (the disturbance of the latent volatility process). The shock ηt in Equation (2) can

be re-written as

ηt+1 = ρεt +
√

1− ρ2η∗t+1 (4)

with η∗t+1 ∼ N (0, 1) and η∗t+1⊥εt. The standard SV model corresponds to ρ = 0. The

innovation ηt captures the total effects of uncertainty shocks after taking into account

the change in the first moment of credit growth rate and the disturbance η∗t captures the

pure (independent) effects of a change in the second moment.

2.3 Bayesian Estimation

For Bayesian inference, the joint posterior distribution of θ and h1:T is

p (θ, h1:T |y1:T ) =
p (h1:T , y1:T |θ) p (θ)

p (y1:T )
; (5)
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p (h1:T , y1:T |θ) = p (h1|θ) p (y1|h1, θ) p (h2|h1, y1, θ) p (y2|h2, y1, θ) (6)

T∏
t=3

p (ht|ht−1, yt−1, yt−2, θ) p (yt|ht, yt−1, θ) ;

p (θ) is the prior density for θ; and

p (y1:T ) =

∫
Θ

p (y1:T |h1:T , θ) p (h1:T |θ) p (θ) dh1:Tdθ, (7)

is the marginal likelihood. The vector of model parameters for the univariate SV model

with leverage is {µh, φy, φh, τ , ρ}.
The likelihood function for the univariate SV model is computationally intractable

because it is a high dimensional integral over the latent states h1:T . Andrieu et al.

(2010) propose the pseudo marginal Metropolis-Hastings (PMMH) method for Bayesian

inference in state space models; PMMH carries out Markov chain Monte Carlo (MCMC)

on an expanded space using an unbiased estimate p̂ (y1:T |θ, u) of the likelihood p (y1:T |θ),
where u is the set of random numbers used to construct the likelihood estimator. Given

that the PMMH is currently at (θ, u), the PMMH sampler accepts a proposal
(
θ
′
, u
′)

with the acceptance probability

min

{
1,
p̂
(
y1:T |θ

′
, u
′)
p
(
θ
′)

p̂ (y1:T |θ, u) p (θ)

q
(
θ|θ′
)

q (θ′ |θ)

}
. (8)

Algorithm 1 in Appendix A outlines the standard PMMH method.

Pitt et al. (2012) show that under idealised conditions the variance of the log of the es-

timated likelihood should be around 1 for the optimal performance of the PMMH method,

and that the performance of the method deteriorates exponentially as the variance of the

log of the estimated likelihood increases beyond 1. However, a drawback of PMMH is

that it is sensitive to the size of the variance of the log of the estimated likelihood, so

that for many problems it is computationally demanding to ensure that variance of the

log of the estimated likelihood is around 1; e.g. Fernández-Villaverde et al. (2011) use

the PMMH method with 2000 particles to obtain the unbiased estimate of the likelihood.

Deligiannidis et al. (2018) refined the PMMH method by correlating the pseudo random

numbers u and u
′

used in estimating the likelihood at the current and proposed values of

the Markov chain to reduce the variance of log p̂
(
y1:T |θ

′
, u
′)− log p̂ (y1:T |θ, u) appearing

in (8). The correlated PMMH approach helps the chain to mix even if highly variable

estimates of the likelihood are used; this means that generally far fewer particles are

required at every iteration of the MCMC than for the standard PMMH. Algorithm 2 in

Appendix B describes the correlated PMMH algorithm. The backward simulation algo-

8



rithm in Godsill et al. (2004) is used to sample the latent log-volatility; Algorithm 3 in

the appendix C describes the correlated particle filter algorithm to obtain the unbiased

estimate of the likelihood.

We follow Kim et al. (1998) and choose the prior for the persistence parameters φy

and φh as (φ+ 1) /2 ∼ Beta (a0 = 20, b0 = 1.5), i.e.

p (φ) =
1

2B (a0, b0)

(
1 + φ

2

)a0−1(
1− φ

2

)b0−1

. (9)

The prior for τ is the half-Cauchy distribution, i.e. p (τ) = (2I (τ > 0))/(π(1 + τ 2)) , the

prior for p (µh) ∝ 1, and the prior for p (ρ) ∼ U (−1, 1). These prior densities cover most

possible values in practice, are non-informative, and independent.

The correlated PMMH sampler was run for 15000 iterations, with the initial 5000

iterations discarded as burn-in. We use an adaptive random walk proposal for q
(
θ
′|θ
)

and,

following Garthwaite et al. (2016), adaptively tune the scaling factor of the covariance

matrix. This enables us to pre-specify the overall acceptance probability before running

the correlated PMMH method. In the examples, the overall acceptance probability is set

as 25% and the number of particles to 100.

3 Empirical Results

We now discuss the results from estimating the stochastic volatility model with and

without leverage effects. Table 1 reports the posterior mean estimates of the stochastic

volatility parameters (with 95% credible intervals in brackets) for the growth rate in

total credit available to the nonfinancial sector. The table shows that: (1) the parameter

estimates of the basic SV model assuming ρ = 0 are similar to the parameter estimates

of the SV model with leverage (allowing for correlation between shocks to the level and

variance of credit-growth). Next, we consider the parameter estimates of the SV model

with leverage; (2) the average volatility of an innovation to total credit, µh, is large

revealing a large degree of volatility in the credit growth and the posterior of µh is

tightly concentrated; (3) there is substantial evidence for stochastic volatility in the data

for credit-growth rate (a large τ); (4) the shocks to the level and log-volatility of total

credit are quite persistent (large φy and φh); (5) the credible interval for the correlation

parameter ρ is wide; although, allowing for the leverage effect increases the precision with

which most parameters are estimated (τ , φy, φh). In section 6.3 we report these estimates

across different measures of credit to show that time-variation in credit-uncertainty is a

robust empirical feature.

Figure 2 plots the posterior mean estimate for the volatility process from the SV-
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Table 1: Posterior Mean Estimates (with 95% credible intervals in brackets) of the standard
SV Model and the SV model with leverage.

Parameters SV SV-leverage

µh −10.12
(−10.77,−9.32)

−10.23
(−10.83,−9.61)

φh 0.89
(0.64,0.99)

0.91
(0.75,0.98)

φy 0.83
(0.73,0.91)

0.83
(0.75,0.91)

τ 0.29
(0.09,0.66)

0.27
(0.12,0.53)

ρ – 0.50
(−0.16,0.95)

Figure 2: Time-varying volatility in credit growth. We plot the posterior mean estimate of the
process describing the standard deviation in credit-growth: 100 exp(ht/2). Shaded grey areas
show NBER recessions.

leverage model5 and its 90% credible interval; the figure shows that the second moment

characterizing uncertainty in access to credit displays significant time variation. Our

measure effectively distinguishes periods of high and low credit availability. The earlier

part of the sample, between 1982 and 1986, is a period of high credit growth and high

uncertainty in credit growth. This time period also has banking deregulation. The turning

point in the late eighties shows that there is a decline in the volatility as the process of

deregulation becomes fully integrated. This decline in credit volatility continues into the

late 1990s when the economy witnesses a dot-com boom and bust. Figure 3 plots the

estimated posterior mean for the extracted shocks along with the growth rate of credit

and shows how the extracted shock moves with the business cycle process.

5The estimated volatility for both models – without and without leverage are comparable as implied
by the estimated parameters.
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Figure 3: Estimated shocks to the volatility in credit growth. We plot the posterior mean
estimate of the shocks that capture independent changes in uncertainty in blue, and the data
on quarterly growth rate for total credit available to the nonfinancial sector in black. Shaded
gray areas denote NBER recessions. We standardize the data on the growth rate of credit, and
extracted shocks to capture the relative difference in the size of shocks between recessions and
expansions.

To understand how the estimated latent volatility in credit growth rate relates to

existing measures of uncertainty, Table 2 reports the correlation at various leads and lags

for our measure of time-varying volatility and commonly used measures of uncertainty

(VIX, JLN Index: Jurado, Ludvigson, and Ng (2015), BBD Index: Baker, Bloom, and

Davis (2016)). While a positive correlation is observed, it is important to note that the

estimate does not move one for one with these measures. The shocks are extracted from

the credit market itself, so while measures such as the VIX capture aggregate uncertainty,

they do not tell us whether it originates in the macro or the financial sectors of the

economy; i.e., is it spiking because of a goods market shock or a financial shock. Thus

Table 2: Lead/Lag Correlation: Corr (σh,t, V arx,t+k), where σh,t = exp (ht/2) is our measure,
V arx,t+k are the alternative measures of uncertainty defined in column 1, and k is the number
of quarters ahead

Alternative measures of uncertainty k -3 -2 -1 0 1 2 3 4

VIX 0.19 0.22 0.24 0.31 0.35 0.37 0.42 0.44
BBD – Economic Policy Uncertainty Index 0.21 0.23 0.24 0.29 0.27 0.25 0.27 0.31
JLN – Macro Uncertainty Index/h=1 0.37 0.40 0.43 0.48 0.52 0.53 0.54 0.53
JLN – Real Uncertainty Index/h=1 0.29 0.31 0.34 0.38 0.40 0.42 0.42 0.42
JLN – Financial Uncertainty Index/h=1 0.10 0.13 0.18 0.23 0.27 0.29 0.32 0.31

far, the dynamics of the second moment characterizing credit-uncertainty are examined.

This measure distinguishes periods of easy availability of credit from periods of a credit
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crunch and low credit availability. Having established these empirical regularities, we

next consider the importance of this process in generating business cycle fluctuations.

4 Real effects of shocks to credit-uncertainty

Do shocks to credit-uncertainty have real effects? To answer this question we use

the extracted shocks to credit-uncertainty and construct local projections as in Jordà

(2005). Equation (10) describes our specification for constructing the regime-independent

responses of macroeconomic variables at horizon h for shocks to credit-uncertainty in

period t,

xt+h = αh + ψh(L)zt−1 + βhshockt + εt+h ; (10)

x is the macroeconomic variable of interest, z is a vector of control variables, ψh(L) is

a second-order polynomial in the lag operator, and shock is the identified shock – either

η∗t or ηt from the stochastic volatility model in section 2. The baseline control variables

include lags of the GDP growth rate, lags of the dependent variable, lags of a financial

stress index6, and lags of the quarterly credit growth rate. The macroeconomic variables

considered for constructing local projections include credit-dependent measures of real

activity (total vehicle sales and durable consumption) as well as broader measures of

macroeconomic activity (aggregate consumption, non-durable consumption, investment,

GDP, unemployment rate and total employed). To understand the effects on credit

markets, we also examine the effect on the growth rate of household leverage and the

difference between Baa and Aaa corporate bond yields.

We follow Ramey and Zubairy (2018) to account for state dependence and examine the

presence of heterogeneity in the response of macroeconomic variables for shocks to credit-

uncertainty in recessions and expansions, and extend the linear model in Equation (10)

to

xt+h = It−1[αR,h + ψR,h(L)zt−1 + βR,hshockt + εt+h]

+ (1− It−1)[αNR,h + ψNR,h(L)zt−1 + βNR,hshockt + εt+h] . (11)

Equation (11) allows for state dependence in calculating impulse responses; It−1 is a

dummy variable indicating whether the state of the economy is in a recession when

the shock hits. All the model coefficients are allowed to vary according to the state of

the economy. To account for the serial correlation in the error terms, the Newey-West

correction is used for the standard errors.

6We use the Chicago Fed’s National Financial Conditions Index (NFCI) to control for the state of
financial conditions.
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Figure 4: Impact of changes in η∗t . Impulse responses calculated for the quarterly real growth
rate of aggregate consumption. The blue line is the effect of a one standard deviation shock
to η∗t in the linear model (shaded blue area – 68% CI). The black line is the effect of a one
standard deviation shock to η∗t in recessions (shaded gray area – 68% CI). The red line is the
effect of a one standard deviation shock to η∗t in expansions (dashed red line – 68% CI).

The results are presented in two parts. First, Figures 4, 5 and 6 isolate the effects of

a pure shock to the second moment, η∗t . Second, Figures 7 and 8 plot the total effect of a

shock to uncertainty, ηt, after accounting for a change in the first moment of credit growth

rate and its uncertainty. This decomposition provides a novel insight by capturing the

pure effects of time-variation in uncertainty and how it interacts with changes in the first

moment. The impulse responses are computed using growth rates (log-first differences) of

total vehicle sales, aggregate consumption, durable consumption, non-durable consump-

tion, investment, GDP, unemployment, non-farm employment, and household leverage.

The shocks are standardized such that the coefficients in Equation (10) and (11) can

be interpreted as the elasticity of the relevant variable with respect to a one-standard

deviation increase in uncertainty.

4.1 Impact of a “pure” uncertainty shock (η∗t)

We begin the discussion of our results by highlighting the importance of state-

dependence in quantifying the effects of ‘pure’ shocks to credit-uncertainty. We do this

by first comparing the prediction from the linear model with the prediction from the

model allowing state-dependence. For analyzing the differences in the predictions from

the linear model vis-à-vis the state-dependent model, we focus on the response of aggre-

gate consumption in Figure 4. Figures 5 and 6 focus on the differential effects of shocks

to credit-uncertainty in recessions and expansions across all the variables.

Impulse responses from the linear model shows that an increase in credit-uncertainty
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(after removing the effects of a shock to the first moment) is contractionary. However,

once we decompose the effects across recessions and expansions, we find that the real

effects of credit-uncertainty are mainly observed in downturns. In recessions while we

observe amplified effects, the effect of changes in uncertainty about credit access in ex-

pansions is negligible across the broad set of variables considered in the analysis. To

take a deeper look at this asymmetry we revisit the expressions for calculating linear and

state-dependent impulse responses in Eqs. 12 and 13 respectively.

xt+h = αh + ψh(L)zt−1 + βhshockt + εt+h ; (12)

xt+h = It−1[αR,h + ψR,h(L)zt−1 + βR,hshockt + εt+h] + (1− It−1)[αNR,h + ψNR,h(L)zt−1+

βNR,hshockt + εt+h]; (13)

On comparing the Equations 12 and 13, we can see that the linear model captures the

average response across recessions and expansions. In the absence of a state-dependent

examination of impulse responses, the asymmetry in the effects of shocks to credit-

uncertainty would be lost. Figure 4 shows that for the linear model, a shock to credit-

uncertainty is contractionary and on impact aggregate consumption decreases by 0.1%.

On decomposing the effects across recessions (black line) and expansions (red line) we

see that the effects of credit-uncertainty matter largely during downturns where the de-

cline in consumption is three times larger in comparison to the linear model and six

times larger in comparison to expansions. In Section D of the appendix we plot the

impulse responses for all the macroeconomic variables, comparing the prediction from

the linear model along with the responses for recessions and expansions to show that the

linear model consistently underestimates the impact of credit-uncertainty across all the

variables considered in the analysis.

Qualitatively, the results from the linear model align with the empirical regularities

characterizing the effects of aggregate uncertainty using alternative measures such as the

VIX (Bloom, 2009), the JLN index (Jurado et al., 2015). The bigger effect in recessions

is similar to those in Chatterjee (2018) and reinforce the importance of state-dependence

in examining the effects of uncertainty shocks.

Having illustrated this difference between the linear and state-dependent impulse re-

sponses, in Figures 5 and 6 we focus on the asymmetric impact of shocks to credit-

uncertainty in recessions and expansions.7 During downturns, macroeconomic variables,

7In Sections E and F of the appendix, we show impulse responses of macroeconomic variables for a
pure uncertainty shock where the shock has been constructed using data on the growth rate in consumer
credit and nonfinancial business debt instead of total credit available to the nonfinancial sector as the
underlying measure for credit growth. Irrespective of variable choice in estimating the uncertainty shock,
the asymmetry of transmission in recessions and expansions across a broad measure of macro economic
activity is consistently observed.
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Figure 5: Impact of changes in η∗t on real activity. Impulse responses calculated for the
quarterly real growth rate of total vehicle sales, durable consumption, total consumption, non-
durable consumption, investment, GDP, the unemployment rate and total employed in the non-
farm sector. The black line is the effect of a one standard deviation shock to η∗t in recessions
(shaded gray area – 68% CI). The red line is the effect of a one standard deviation shock to η∗t
in expansions (dashed red line – 68% CI).
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Figure 6: Impact of changes in η∗t on credit markets. Impulse responses calculated for the
growth rate of household leverage (household credit/GDP) and the difference between Baa and
Aaa corporate bond yields. The black line is the effect of a one standard deviation shock to η∗t
in recessions (shaded gray area – 68% CI). The red line is the effect of a one standard deviation
shock to η∗t in expansions (dashed red line – 68% CI).

such as vehicle sales and durable consumption, that are relatively more credit-dependent,

show a sharper decline compared to broader measures of activity such as aggregate con-

sumption. Conversely, non-durable consumption shows a significant slowdown in the

periods following a shock. Investment, like the credit-sensitive components of consump-

tion, also records a sharper slowdown. The unemployment rate peaks ten quarters after

the initial shock in response.8 In addition to examining the response of the unemploy-

ment rate we also examine the response of total employed and find that there is significant

decline on impact as well as persistent effects in the quarters following the shock. When

the effects across these measures of activity are combined, we find that GDP declines as

well.9

To understand the effects on household debt and corporate borrowing costs, Figure 6

examines the impulse responses of household leverage and the difference between the

3-month Baa and Aaa corporate bond yields. The conclusions are similar to those for

the macroeconomic variables – the effects are bigger during downturns. The extent of

asymmetry in response is particularly prominent for the Baa-Aaa spread – the peak

response is a 30 basis point increase in recessions occurring within 5 quarters of the shock

as opposed to a peak response of about 15 basis points in expansions occurring 8 quarters

after the shock.

The dynamics of credit spreads in recessions have been studied in different forms; the

8The amplified response of the unemployment rate in recessions is qualitatively similar to what has
been shown in Caggiano, Castelnuovo, and Groshenny (2014) who examine the impact of uncertainty
shocks on unemployment dynamics in recessions, however using the VIX as a proxy for uncertainty. Our
results using shocks to credit-uncertainty suggest quantitatively bigger effects.

9We plot the response of net-exports and the trade-weighted real exchange rate as well for the U.S.
in Section G of the appendix.
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work of Christiano et al. (2015), for instance, captures the movement of the credit spread

through the financial wedge by incorporating a tax on the gross rate of return on capital;

in our set-up we are able to quantify the source of shock that stems directly from the

movement in credit aggregates and in turn generates a spike in the Baa-Aaa spread on

impact during downturns.

Figures 5 and 6 thus establish the asymmetric effects of shocks to credit-uncertainty

for macroeconomic variables in recessions and expansions. An additional takeaway from

this analysis is understanding the causes of a slow recovery following a recession. Jordà

et al. (2013) find that recovery following a financial recession is slower in comparison

to a recovery following a non-financial recession. Our results suggest the changes in the

second moment capturing credit-uncertainty can exacerbate both the depth and duration

of a recession and, hence, lead to a slower recovery.

4.2 Impact of an uncertainty shock with level effects (ηt)

So far, we examined impulse responses to changes in uncertainty after removing the

effects of shocks to the first moment. This analysis is important as it emphasizes the

importance of ‘pure’ shocks to the second moment describing credit-uncertainty.

Figure 3 shows that shocks to uncertainty spike during recessions when there is also a

sharp decline in the growth rate of credit (in expansions, uncertainty about credit access

can co-move positively with credit growth, especially in the mid 1980s). We now focus

on shocks to credit-uncertainty that embeds changes in the first-moment characterizing

credit-growth. To understand the effects of uncertainty that reflect changes in the first-

moment, we look at the impulse responses of macro variables for ηt.
10 Figures 7 and 8

examine the effects the shocks to uncertainty after accounting for the change in the first

moment.

We report the impulse responses for the recessionary regime only as our results suggest

that the impact in expansions is negligible. The solid black line in each figure captures

the effects of shocks to uncertainty after removing the effects of the first moment and is

identical to the results reported for the recessionary regime in Figures 4, 5 and 6. The

solid blue line in each figure captures the effects after allowing for interaction between

the first and second moment.

These results are important, as they allow us to quantify the effects of aggregate

uncertainty by considering the interaction with the first moment. While existing studies

examine the time-variation of uncertainty in periods of elevated financial stress, they do

not quantify the real effects by taking into account the interaction between shocks to the

10The expression for the uncertainty shock embedding first moment implications is given by: ηt =
ρεt−1 +

√
1− ρ2η∗t . η∗t is the pure/independent component.
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Figure 7: Impact of changes in ηt on real activity. Impulse responses calculated for the
quarterly real growth rate of total vehicle sales, durable consumption, total consumption, non-
durable consumption, investment, GDP, the unemployment rate and total employed in the
non-farm sector. The blue line is the effect of a one standard deviation shock to ηt in recessions
(shaded gray area – 68% CI). The black line is the effect of a one standard deviation shock to
η∗t in recessions (shaded blue area – 68% CI).

first and second moments.

The decline in the credit-sensitive components of consumption, after taking into ac-
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Figure 8: Impact of changes in ηt on credit markets. Impulse responses calculated for the
growth rate of household leverage (household credit/GDP) and the difference between Baa and
Aaa corporate bond yields. The blue line is the effect of a one standard deviation shock to ηt in
recessions (shaded gray area – 68% CI). The black line is the effect of a one standard deviation
shock to η∗t in recessions (shaded blue area – 68% CI).

count the decline in the credit growth rate and increase in credit-uncertainty, is about

three times higher for both the growth rate of vehicle sales and durable consumption,

compared to the impact of a pure shock to uncertainty. As before, a significant impact is

observed two periods after the shock for non-durable consumption. Across all variables,

there is an amplification in the slowdown once the second moment shock is allowed to

interact with shocks to the first moment.

Thus far, we have examined the empirical importance of our extracted shocks. In

the next section, we develop a theoretical model to provide intuition and understand the

channels of transmission for our proposed shock.

5 Theoretical Model

We use a model of collateral constraints in the spirit of Kiyotaki and Moore (1997) as

a theoretical framework for interpreting the empirical results. In a simple real business

cycle (RBC) model, a role for credit frictions is introduced by incorporating a working

capital requirement on the firms’ side. We assume that at the beginning of each period,

firms must pay labor prior to production of output. Firms finance this labor payment

with an intratemporal loan.11 There is no interest rate on financing the working capital

because the firms pay off the loans within the period. However, the amount that a firm

can borrow is limited to a fraction of the value of firm capital. The specification of the

model environment follows Sims (2017). The novelty of our model lies in introducing

uncertainty through a stochastic volatility channel in credit availability that directly

11We abstract from intertemporal debt in the baseline model. The intuition governing the impact of
an uncertainty shock remains unchanged compared to the scenario with intertemporal debt.
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interacts with the ability of the firm to borrow.

5.1 Model Description

This is a model in discrete time where agents live infinitely. Households consume (Ct),

supply labor (Nt) and save (Bt); Rt is the gross rate of return on savings. Household

utility is of CRRA type, additively separable in labor and consumption; γc is inverse of

the intertemporal elasticity of substitution, χ is the inverse of the Frisch elasticity, β is

the discount factor, and θ is set such that in steady state, the hours supplied is one-third.

Households optimize:

max
{Ct,Nt,Bt+1}

E0

∞∑
t=0

βt
(
C1−γc
t

1− γc
− θN

1+χ
t

1 + χ

)

subject to

Ct +Bt+1 = WtNt +Rt−1Bt + Πt ;

Wt is the real wage and Πt denotes residual profits from firms. The first order conditions

of the household are

C−γct = λt ; (14)

θNχ
t = λtWt ; (15)

1 = βEt

[(Ct+1

Ct

)−γc
Rt

]
. (16)

The firms own capital stock (Kt) and hire labor input (Nt) from households to produce

output Yt using the Cobb-Douglas production technology

Yt = AtK
α
t Nt

1−α ; (17)

At describes the state of aggregate technology. Capital accumulation is subject to ad-

justment costs and evolves as

Kt+1 = (1− δ)Kt + It −
φ

2

( It
Kt

− δ
)2

Kt ; (18)

It is investment, δ is the rate at which capital depreciates and φ is the cost of adjusting

capital. In this framework, investment is financed using residual profits (dividends). The

dividend payout is

Πt = Yt − wtNt − It .

We introduce a working capital constraint in this simple RBC setup and assume that firms

must pay labor prior to producing output and the working capital is financed through an
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intratemporal loan. The constraint restricting working-capital financing is

WtNt ≤ ζtqtKt (19)

The amount the firm can borrow as seen from Eq. 19, is limited to a fraction ζt of the

total value of capital, with qt the price of capital. qt is the shadow price of capital and is

defined using the Lagrange multiplier on the law of motion of capital in the optimization

problem of the firm that we discuss below. The firm chooses investment (It), capital

(Kt+1) and labor (Nt) by maximizing the the discounted sum of dividends (Πt)

max
{It,Nt,Kt+1}

E0

∞∑
t=0

βt
λt
λ0

[
AtK

α
t Nt

1−α −WtNt − It
]

subject to the law of motion for capital (Eq. 18) and the constraint restricting working-

capital financing (Eq. 19). Firm dividends at time t+j are discounted using the stochastic

discount factor from the optimization problem of the households – βjλt+j/λt. Let µt be

the multiplier on the working capital constraint; µt > 0 implies that the constraint

binds and changes in ζt impact the equilibrium conditions of the model. The first order

conditions corresponding to the optimal choices of investment (It), labor (Nt) and capital

(Kt+1) are

Wt(1 + µt) = (1− α)AtK
α
t N

−α
t , (20)

1 = qt

[
1− φ

( It
Kt

− δ
)]

, (21)

qt = βEt
λt+1

λt

[
αAt+1K

α−1
t+1 N

1−α
t+1 +qt+1

(
(1−δ)+µt+1ζt+1−

φ

2

( It+1

Kt+1

−δ
)2

+φ
( It+1

Kt+1

−δ
) It+1

Kt+1

)]
,

(22)

and

µt(WtNt − ζtqtKt) = 0 with µt ≥ 0 . (23)

When the credit constraint binds, µt > 0 and (WtNt − ζtqtKt) = 0; when the constraint

is slack, µt = 0 and (WtNt − ζtqtKt) < 0. The market clearing condition is

Yt = Ct + It . (24)

We assume that the fraction of the value of the firm that can be borrowed follows an

AR(1) process with a time-varying second moment,

ζt − ζss = ρ(ζt−1 − ζss) + exp (ht/2)εt ,

ht = (1− ρh)h+ ρhht−1 + τη∗t ;
(25)
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ζss is the fraction the firm can borrow against the value of capital in steady state; h is

the average uncertainty in credit availability; and τ is the extent of stochastic volatility

in credit availability. The specification of stochastic volatility in the model is identical to

what is estimated in Section 2 and is similar to what has been presented in Fernández-

Villaverde et al. (2011), Fernández-Villaverde et al. (2015), and Fernández-Villaverde

and Guerrón-Quintana (forthcoming).12 Ceteris paribus, a shock to the first moment

of ζt (εt) in the model relaxes the borrowing constraint and firms have access to more

credit. Likewise, a shock to the second moment of ζt (η∗t ) generates uncertainty about

credit available in the economy. We introduce a collateral constraint in a flexible price

DSGE model and interpret the relaxation and tightening of credit availability vis-à-vis

shocks to ζt. This simple set-up captures the essence of the transmission of shocks to

volatility about credit availability. The first moment implications of credit access are

frequently studied (for e.g.: Jermann and Quadrini (2012)); however, our findings show

that this second moment describing credit-uncertainty by itself can generate important

implications for real activity and business cycles. Equations (14)-(25) summarize the

equilibrium conditions in the model.

5.2 Model Calibration

The model is calibrated quarterly and the behavioral parameters of the model are

standard. The share of capital in the Cobb-Douglas production function is set at α = 0.33,

the discount factor β = 0.99, the rate of depreciation of capital δ = 0.02, and investment

adjustment costs φ = 4. The parameter θ scaling the disutility of labor supply is set to

5.7063 so that labor hours in steady state are 1
3
. The inverse interemporal elasticity of

substitution is fixed at γc = 1 and the inverse of the Frisch elasticity of labor supply at

χ = 1. We set the state of aggregate technology At to 1.

We next calibrate the steady-state value of ζt and the parameters governing the evo-

lution of ζt. Note that when the collateral constraint binds in steady state, µ > 0, it

imposes certain restrictions on the steady state values of ζt = ζss. For µ > 0 in steady

state, it can be shown that ζss <
1−α
α

(
1
β
− (1 − δ)

)
. Given the values of α, β, δ, we find

that ζss < 0.0602. To match the uncertainty in the model with what we find in the

data, we revisit the posterior estimates presented in Table 1 of section 3 and calibrate the

parameters guiding the evolution of ζt using the estimates describing credit-uncertainty

in the data. We think this approach captures the impact of unforeseen changes of credit

availability (first order as well as second order) in the data as well as the model; with

positive (negative) shocks to ζt implying higher (lower) availability of credit in the data

12Our results are robust to the alternative specification in Basu and Bundick (2017).

22



as well as relaxing (tightening) of the borrowing constraint in the representative agent

model. The same intuition works for a shock to the second moment as well.

We set h = µh = −10.12, ρh = φh = 0.91, τ = 0.25 and ρ = φy = 0.83, corresponding

to the posterior means obtained from the estimates in section 3. The steady-state value

of ζt = ζss is calibrated to 1.75%. This calibration implies that the standard deviation

of shocks to the first moment of ζt is exp(µh/2) = 0.0063.13 The specification of the

stochastic volatility process is exactly the same as in the model presented in section 2.

We set the correlation coefficient between shocks to the first moment and second moment

to zero so that we can focus on the effects of shocks to credit-uncertainty by itself.

5.3 Model Solution

The goal of this paper is to explore the effects of a change in the second moment that

captures uncertainty shocks to credit constraints. A first order approximation shuts down

the effects of changes in higher-order moments by construction. A second-order solution

impacts expected values but does not influence the dynamics as higher-order terms do

not independently enter the solution (Schmitt-Grohé and Uribe, 2004). It is necessary

to consider a third-order approximation for uncertainty to have dynamic effects. We

do so by using the perturbation methods combined with pruning (to prevent explosive

solutions) in Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2018). The credit

constraint always binds.

5.4 Transmission of shock to uncertainty

The behavior of the firm in this environment is subject to collateral constraints on

borrowing. Since the constraint limits the quantity a firm may borrow, it has implications

for how much labor the firm can hire. That is, it introduces a wedge between the friction-

less competitive equilibrium and the realized outcome in the constrained economy. This

simple assumption generates important implications by introducing a distortion between

labor demanded by firms and labor supplied by households.

Basu and Bundick (2017) show that in a flexible-price model, an uncertainty shock

introduced through time variation in the volatility of household preferences cannot gen-

erate a simultaneous decline in consumption, investment, and output; this is regarded as

a stylized fact that characterizes the effect of an uncertainty shock. Basu and Bundick

13We could alternately calibrate the evolution of ζt using parameters describing stochastic volatility in
nonfinancial business debt. The parameters are similar to what we find from estimation using data on
total credit extended to the private nonfinancial sector and presented in section 6.3. The results remain
unchanged with this alternative calibration. We also carry out robustness checks to different values of
ζss in section 6.2.
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Figure 9: Impulse responses for a 1 standard deviation shock to uncertainty η∗t in the DSGE
model. A shock to credit uncertainty triggers a simultaneous decline in output, consumption,
investment, hours, and real wages.

(2017) subsequently highlight the importance of nominal rigidities through the wedge in-

troduced by the presence of a mark-up in labor demand. In our environment, however we

introduce uncertainty through a credit channel. The collateral constraint in our model,

24



operating through the intratemporal working capital channel, distorts the flexible price

equilibrium. The labor demand side of the model now reflects the effect of the collateral

constraint

Wt(1 + µt) = (1− α)AtK
α
t N

−α
t ;

the labor supply side remains unaffected by this distortion;

Wt =
θNχ

t

C−γct

.

An uncertainty shock in the model triggers a precautionary saving response by households,

leading to decrease in consumption, an increase in marginal utility and an increase in

labor supply. In a flexible price model, this increase in labor supply is absorbed and thus

prevents the simultaneous decline in consumption, investment and output. In a flexible

price model with collateral constraints, when there is an uncertainty shock to ζt that

limits that amount that a firm can borrow, the multiplier on the borrowing constraint

now provides the additional margin that is provided by the mark-up in a model with sticky

prices. When there is an exogenous shock to credit-uncertainty – here interpreted as a

shock to the second moment of ζt – there is an increase in µt, the Lagrange multiplier

on the binding constraint, which prevents labor demand from increasing and in turn

generates sizable and simultaneous declines in hours, real wages, output, consumption

and investment.

To better understand how the precautionary motives interact with the endogenous

variables, we now examine the expression for the third-order accurate solution of the

model and focus exclusively on third-order effects.14 Following Andreasen et al. (2018),

the expression that only preserves the third-order effects for the control variables after

pruning is,

y3rd
t = gv

x
3rd
t−1

0

0

+ 2Gvv

(x
f
t−1

εt

η∗t

⊗
x

s
t−1

0

0

)+

Gvvv

(x
f
t−1

εt

η∗t

⊗
x

f
t−1

εt

η∗t

⊗
x

f
t−1

εt

η∗t

)+
3

6
gσσvσ

2

x
f
t−1

εt

η∗t

+
1

6
gσσσσ

2

The vector of state variables, is xt = [Kt, ζt, ht, σ] for our model, and the vector of

14Schmitt-Grohé and Uribe (2004) show that up to a second-order, independent changes in uncertainty
shocks do not impact the dynamics. The dynamic effects of uncertainty can be obtained as third-order
effects from a third-order approximation.
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shocks is [εt, η
∗
t ]. Kt is the level of capital stock, ζt is the fraction of value of capital

against which the firm can borrow, ht is the time-varying variance of ζt, and σ is the

perturbation parameter. εt is a shock to the first moment of ζt and η∗t is a shock to the

second moment of ζt. Here, xft preserves the first-order effects, xst preserves the second-

order effects, and, xrdt preserves the third-order effects for the state variables in the DSGE

model. The extended state space vector for higher-order solution includes the second and

third-order terms along with the usual first-order effects.15 The matrix gv summarize

the coefficients at the first-order. The matrices Gvv and Gvvv summarize the coefficients

corresponding to the interaction terms at the second and third-order, respectively; gσσν

captures the direct effect of an uncertainty shock for a third-order approximation; and

since all innovations in our model have symmetric distributions gσσσ is a vector with all

elements equal to 0.16

A change in η∗t captures an uncertainty shock in the model. Using the third-order

solution, we decompose the impulse response on impact for a shock to credit-uncertainty

into two parts; a direct effect and an interaction effect. On impact, an uncertainty shock

has a direct effect on the endogenous variables through η∗t , and the size of the impact is

obtained by the relevant coefficients of the matrix gσσv for the control variables.17 Column

1 of Table 3 reports direct effects.

We now isolate the interaction effects. Under a rational expectations assumption,

agents can observe the shock to uncertainty about credit access η∗t at time t, hence,

15The extended state space vector is given as follows:

[
xft−1, x

s
t−1, x

3rd

t−1, εt, η
∗
t , x

f
t−1 ⊗ xft−1, x

f
t−1 ⊗

εt, x
f
t−1 ⊗ η∗t , εt ⊗ εt, εt ⊗ η∗t , η∗t ⊗ η∗t , x

f
t−1 ⊗ xst−1, x

f
t−1 ⊗ x

f
t−1 ⊗ x

f
t−1, x

f
t−1 ⊗ x

f
t−1 ⊗ εt, x

f
t−1 ⊗ x

f
t−1 ⊗

η∗t , x
f
t−1 ⊗ εt ⊗ εt, x

f
t−1 ⊗ εt ⊗ η∗t , x

f
t−1 ⊗ η∗t ⊗ η∗t , εt ⊗ εt ⊗ εt, εt ⊗ εt ⊗ η∗t , εt ⊗ η∗t ⊗ η∗t , η∗t ⊗ η∗t ⊗ η∗t

]
.⊗ is

the Kronecker product.
16The effect on the state variables that only preserves the third-order effects after pruning is similarly

obtained, from,

x3rdt = hv

x3rdt−1

0
0

+ 2Hvv

(xft−1

εt
η∗t

⊗
xst−1

0
0

)+

Hvvv

(xft−1

εt
η∗t

⊗
xft−1

εt
η∗t

⊗
xft−1

εt
η∗t

)+
3

6
hσσvσ

2

xft−1

εt
η∗t

+
1

6
hσσσσ

2

The matrix hv summarize the coefficients at the first-order. The matrices Hvv and Hvvv summarize
the coefficients corresponding to the interaction terms at the second and third-order, respectively; hσσν
captures the direct effect of an uncertainty shock for a third-order approximation; and since all inno-
vations in our model have symmetric distributions hσσσ is a vector with all elements equal to 0. For a
detailed exposition on the pruned third-order solution, refer to equations (65) and (66) in the Appendix
to Andreasen et al. (2018).

17In our model dim(gσσv) = 5× 5. So the fifth column of this matrix captures the non-zero effects of
an uncertainty shock.
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Table 3: Decomposing the effects of an uncertainty (η∗t ) shock on impact

Variables Direct Effect of η∗t Interaction Effect of η∗tEt(εt, εt) Total Effect
(% change) (% change) (% change)

(1) (2) (3)

Consumption -0.097 -0.078 -0.175
Real Wages -0.04 -0.836 -0.876

Rate of Return on Capital -0.084 0.008 -0.076
GDP 0.039 -0.505 -0.466
Hours 0.058 -0.758 -0.7

Marginal Utility 0.097 0.078 0.175
Wedge 0.046 0.132 0.178

Price of Capital 0.018 -0.06 -0.042
Investment 0.226 -1.251 -1.025

Etη
∗
t = η∗t . If the impulse responses are computed at the nonstochastic steady state,

then on impact all (t − 1) dated variables are 0, that is, xft−1 = 0, xst−1 = 0, xrdt−1 = 0;

therefore, Et(x
f
t−1x

s
t−1) = 0. Additionally, the interaction terms of the form Et(x

f
t−1εtη

∗
t ),

Et(x
f
t−1εtεt), Et(x

f
t−1η

∗
t η
∗
t ), and Et(x

f
t−1η

∗
t εt) can be expressed as η∗tEt(x

f
t−1εt), Et(x

f
t−1εtεt),

η∗t
2Et(x

f
t−1), and η∗tEt(x

f
t−1εt); these terms are zero since the shocks to the first moment

are uncorrelated with xft−1; the remaining interaction terms are Et(εtεtεt), Et(εtεtη
∗
t ),

Et(εtη
∗
t η
∗
t ) and Et(η

∗
t η
∗
t η
∗
t ).

A shock to η∗t implies that the effects on the interaction terms are η∗tEt(εtεt), η
∗
t

2Et(εt)

and η∗t
3. Given that εt ∼

iid
(0, 1), η∗t ∼

iid
(0, 1), Et(η

∗
t εt) = 0, Etεt = 0, and Et(εtεt) =

1, the non-zero interaction effect in the extended state space shows up for η∗tEt(εtεt).

For a model with symmetric shocks, the coefficients corresponding to η∗t
3 are 0. The

interaction effects for a shock to η∗t are therefore captured by the coefficients corresponding

to η∗tEt(εtεt) in the Gvvv matrix. Column 2 of Table 3 reports the effect on impact

attributed to the interaction channel. Column 3 of Table 3 summarizes the total effect

on impact = the sum of the direct effect and interaction effect. An advantage of this

decomposition is that it helps isolate the precautionary savings driven change in hours

supplied and the contraction in hours demanded that works through the wedge µt.

Column 1 of Table 3 shows that the direct effect of an uncertainty shock clearly

generates a precautionary decline in consumption, an increase in the marginal utility,

hours, and investment.18 However, there is also an increase in the wedge µt through

the direct effect. Column 2 of Table 3 shows that the interaction effects between these

18Given that capital is a state variable, investment has to increase in response to the direct effect if
there a decline in consumption and increase in labor supply since this is a closed economy model and
Yt = Ct + It.
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different elements dampens total hours supplied, GDP and investment, but amplifies the

initial decline in consumption from the precautionary response. Column 3 of Table 3

presents total effects, and correspond to the response on impact in Figure 9 discussed

above. In a sticky price environment, the excess labor supply (row 5 of Column 1 in

Table 3) cannot be absorbed as the markup responds endogenously to precautionary

driven increase in labor supply; however with the presence of the wedge now entering

through the collateral constraint, there is an inward shift of the labor demand curve that

is captured by the response of hours (row 5 Column 2 in Table 3).

If the decline in labor is sufficiently strong, the decline in output is accompanied by a

sharp fall in investment along with a decline in consumption. This decomposed view of

interpreting the impact of uncertainty explicitly quantifies the different channels through

which the shock is transmitted in our model.

These results operate through the firm’s binding borrowing constraint and are insight-

ful as an uncertainty shock of this form generates a simultaneous decline in hours, real

wages, consumption, investment, and output in a parsimoniously specified environment.

One of the challenges in the theoretical literature examining the effects of uncertainty

has been to generate a sizable and simultaneous impact for endogenous variables in re-

sponse to changes in the second moment. Our proposed shock and model with a collateral

constraint can generate a significant impact on macroeconomic variables in response to

changes in uncertainty. The model predictions thus match the patterns recovered from

empirically analyzing the effects of shocks to credit-uncertainty in Section 4.1, as well as

building intuition about the cause of the slowdown in activity.

6 Extensions and Robustness

Thus far, we have been examining the propagation of a shock to credit-uncertainty

to the real economy. The impulse responses in section 5.4 show that an increase credit-

uncertainty is recessionary and the transmission relies on an interaction between the

borrowing constraint faced by firms and the precautionary saving response from the

households. The baseline model can provide an empirically-consistent explanation for

the response of aggregate variables. In this section we consider a simple extension of the

model presented in section 5, evaluate the robustness of results to calibrated parameters

in the model; we also check the robustness of our empirical results to using different

measures of credit-growth, different choice of prior and different sample size.
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Figure 10: Impact of changes in η∗t (pure shock to uncertainty) on earnings for retail trade
and private sector as a whole. Impulse responses calculated for the quarterly real growth rate
of income calculated using hours and hourly earnings for retail trade and the private sector as
a whole. The blue line is the effect of a one standard deviation shock to η∗t in the linear model
(shaded blue area – 68% CI). The black line is the effect of a one standard deviation shock to η∗t
in recessions (shaded gray area – 68% CI). The red line is the effect of a one standard deviation
shock to η∗t in expansions (dashed red line – 68% CI).

6.1 Extension with hand-to-mouth consumers

We consider a simple extension of the framework examined in section 5.1 and introduce

heterogeneity in the description of households. The motivation to consider this extension

is twofold. First, the transmission of shock to credit-uncertainty relies on the interaction

between the precautionary savings motive by the households and the wedge stemming

from the borrowing constraint faced by firms. The idea is to understand the importance of

the collateral constraint when the precautionary channel is diluted. Second, we examine

the empirical impulse responses of quarterly earnings for the retail trade sector and the

private sector as a whole.19 Figure 10 shows that on impact earnings for those working

in retail trade decline significantly on impact, whereas, the decline for the private sector

as a whole can be seen several quarters after the shock. The population capturing those

employed in retail trade can be interpreted as agents with limited access to savings and

consumption smoothing.

In the theoretical environment we capture these features by incorporating hand-to-

mouth consumers. Within the continuum of infinitely lived households we introduce a

fraction ν that do not have access to savings, and therefore do not own any assets or

liabilities and in each period consume their labor income. These are the hand-to-mouth

consumers or the non-Ricardian households. The remaining (1−ν) fraction of households

are able to save as before. The non-Ricardian households are important as they cannot

19We construct the empirical measure of quarterly earnings using data on average hourly earnings
and weekly hours and then examine the growth rate to remove the effects of time trend. Impulse
responses have been constructed using the method of local projections and the estimated shock on
credit-uncertainty as in section 4.
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engage in precautionary savings behavior. Along with the responses of GDP, investment,

and aggregate consumption, we examine the consumption response of the non-Ricardian

households to understand if they are more vulnerable to the effects of uncertainty in the

economy.

The equilibrium conditions of the model are now updated to reflect this feature of

heterogeneity. The behavior of the Ricardian households is identical to those in the

baseline model in Section 5.1. The hand-to-mouth/non-Ricardian agents maximize period

utility

max
{CNRt ,NNR

t }

(
CNR
t

1−γc

1− γc
− θR

NNR
t

1+χ

1 + χ

)
subject to

CNR
t = WtN

NR
t .

The first order conditions give

NNR
t =

(
W 1−γc
t

θR

) 1
χ+γc

. (26)

The parameter θR is chosen such that hours supplied by the non-Ricardian agents in

steady state is 1/3. In addition to Eq. 26, aggregate consumption and hours now reflect

the heterogeneity in households,

Ct = νCNR
t + (1− ν)CR

t (27)

and

Nt = νNNR
t + (1− ν)NR

t . (28)

Before we proceed to examining the impulse responses, we would like to highlight some

features of the model setup. The labor supply for the hand-to-mouth agents is fixed when

γc = 1. The implications for earning and consumption for the hand-to-mouth consumers,

therefore, stem completely from the dynamics of labor demand, and the contraction

in labor demand is brought about by the interaction between the wedge (µt) and the

uncertainty shock. The value of ν is now set to 11.5.%20 The baseline model presented

in sections 5.1 through 5.4 corresponds to ν = 0. In the data, earnings are measured

by a product of hours worked and hourly earnings. In the theoretical environment,

consumption by the hand-to-mouth consumers also equals the product of wages and

hours. We use this relation to compare the responses of aggregate consumption and the

consumption of the hand-to-mouth agents. Figure 11 compares the prediction from the

20This captures the ratio of total employed in retail trade to total employed in the non-farm sector.
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Figure 11: Comparing the response of aggregate consumption and consumption/earnings of
hand-to-mouth/non optimizing agents.

Figure 12: Impulse responses of output, aggregate consumption and investment with hand-
to-mouth agents.

model with what we find in the data and shows that introducing heterogeneity in savings

behavior can generate the amplified decline for the hand-to-mouth consumers. Moreover,

as shown in Figure 12, even with the precautionary channel diluted, the increase in the

wedge stemming from the borrowing constraint on firms is recessionary and can generate

a decline in key macroeconomic variables.

6.2 Differential effects

In the empirical analysis we highlight the asymmetry in the effects of shocks to credit-

uncertainty in recessions and expansions. In the theoretical environment, we do not

distinguish between recessions and expansions. One way to potentially address the dif-

ferential effects across recessions and expansions in the theoretical model is by changing

the steady state value of the collateral constraint. The intuition guiding this choice is

as follows. When ζss is closer to the limiting value of 0.0602, the constraint is closer to
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Figure 13: Impulse responses of output, aggregate consumption and investment for different
values of ζt in steady state. In a recession the collateral constraint is farther from slackness
(ζss = 0.0175) compared to expansions (ζss = 0.0475).

being slack as opposed to when the steady state value is farther away and closer to zero.21

We present impulse responses for different values of ζss in Figure 13 that can indirectly

capture the effects of recessions and expansions; with expansions being captured by the

calibration of ζt that is closer to slackness (0.0475).22 Note that despite different values

of ζss the simultaneity in the decline of output, consumption and investment is preserved.

6.3 Robustness Checks

This section carries out some robustness checks of the empirical results by considering

alternative choice of priors for the SV parameters, taking a longer sample for the series

{yt}, and considering other measures of credit. Table 4 summarizes the results.

Alternative choice of prior: We use the following tighter priors for the SV model

p (φy) = p (φh) ∼ TN(0,1) (0.9, 0.052), p (µh) ∼ N (0, 102), p (τ) ∼ TN(0,∞) (0.5, 0.32),

and p (ρ) ∼ U (−1, 1). The TN(lo,up) (c, d2) denotes the univariate normal distribution

with mean c and standard deviation d constrained to the interval (lo, up). We denote

the results with alternative prior as yPt in Table 4. The estimation in section 2 uses

uninformative priors.

Longer sample: In section 2, we estimate the model using data between 1979 Q1 to

2018 Q4. We estimate the model using an extended sample between 1952Q1-2018Q4.

21While calibrating the model parameters we show that the parameters in the model imply that in
steady state ζt < 0.0602.

22Guerrieri and Iacoviello (2017) in their analysis find that the collateral constraint on housing wealth
becomes slack during expansions and tightens during the Great Recession.
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Table 4: Posterior Mean Estimates (with 95% credible intervals in brackets)

Parameters yt – Baseline yPt yLt xt ct zt

µh −10.23
(−10.83,−9.61)

−10.22
(−10.85,−9.67)

−9.80
(−10.90,−9.06)

−10.06
(−10.8,−9.55)

−8.06
(−8.53,−7.65)

−10.14
(−10.5,−9.80)

φh 0.91
(0.75,0.98)

0.91
(0.83,0.97)

0.97
(0.93,0.99)

0.86
(0.61,0.99)

0.78
(0.49,0.99)

0.89
(0.78,0.96)

φy 0.83
(0.75,0.91)

0.84
(0.78,0.91)

0.73
(0.62,0.83)

0.82
(0.72,0.93)

0.22
(0.09,0.37)

0.81
(0.73,0.88)

τ 0.27
(0.12,0.53)

0.29
(0.15,0.55)

0.16
(0.08,0.28)

0.32
(0.09,0.63)

0.38
(0.05,0.78)

0.30
(0.17,0.47)

ρ 0.50
(−0.16,0.95)

0.45
(−0.21,0.92)

0.42
(−0.06,0.76)

−0.32
(−0.76,0.2)

0.55
(0.09,0.82)

0.77
(0.42,0.95)

We denote the results for the extended sample as yLt in Table 4.

Alternative definitions of credit: Sections 2-5 examine the presence and impact

of shocks to the second moment using Total Credit to Private nonfinancial Sector as

a measure of credit growth. This is a broad measure and captures credit extended to

non-financial corporations, households and non-profit institutions serving households. To

understand if our results are robust to alternative definitions of credit, we carry out the

estimation using data on credit extended to nonfinancial businesses (debt securities and

loans; liability) – (xt in Table 4),23 consumer credit owned by households (ct in Table 4)24

along with an alternative measure of total credit available in the macroeconomy – debt

securities, loans and liability in all sectors (zt in Table 4).25

Table 4 shows that the parameter estimates of the SV model are very similar between

the three scenarios suggesting that the results are robust against prior specification and

different lengths of the datasets. For alternative definitions of credit as well, we find that

this evidence stochastic volatility is a common and robust feature.

7 Conclusion

In this paper, we present a new stylized fact that characterizes the time variation in

the volatility of credit growth. We interpret this stochastic volatility in credit growth as

credit-uncertainty. Our results suggest that unforeseen changes in credit-uncertainty can

trigger a sharp slowdown in real activity. We empirically distinguish between the effects

in expansions and recessions and show that these effects are asymmetric in nature – and

23The series has been taken from the Financial Accounts of the United States. For details on compo-
sition see https://www.federalreserve.gov/apps/fof/SeriesAnalyzer.aspx?s=LA144104005&t=

24The series has been taken from the Financial Accounts of the United States. For details on compo-
sition see https://www.federalreserve.gov/apps/fof/SeriesAnalyzer.aspx?s=FL153166000&t=L.

101&suf=Q
25The series has been taken from the Financial Accounts of the United States. For details on compo-

sition see https://www.federalreserve.gov/apps/fof/SeriesAnalyzer.aspx?s=FL894104005&t=
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matter during downturns. Shocks to credit-uncertainty have a significant impact on real

activity during busts; while during booms the effects are negligible and uncertainty about

credit access does not impede the pace of real activity. We exploit the dynamics of credit

expansion and contraction to extract uncertainty shocks and introduce a channel that

potentially explains the slowdown in the pace of recovery following a crash.

To provide intuition for the transmission mechanism, we present a flexible-price model

with collateral constraints and examine the effects of a shock to credit-uncertainty in this

framework. We find that when the collateral constraint binds, unforeseen changes in

credit-uncertainty transmits by triggering a precautionary response that interacts with

the collateral constraint to generate a sizable and simultaneous decline in output, con-

sumption, investment, real wages, and hours. This interaction is a novel feature and

generates the simultaneous decline in these variables that previous work on uncertainty

shocks without credit constraints has been unable to produce in a flexible price environ-

ment.
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Appendix

A The standard PMMH algorithm

Algorithm 1 The pseudo marginal Metropolis-Hastings

• Set the initial values of θ(0) arbitrarily.

• Sample u ∼ N (0, I), and run a particle filter to compute an estimate p̂ (y1:T |θ, u) of the likelihood and to sample

the initial h
(0)
1:T .

• For each of the MCMC iterations, i = 1, ...,M ,

– Sample θ
′

from the proposal density q
(
θ
′ |θ
)

and u
′ ∼ N (0, I)

– Run a particle filter to compute an estimate of likelihood p̂
(
y1:T |θ

′
, u
′
)

and sample h
′
1:T .

– With probability

min

1,
p̂
(
y1:T |θ

′
, u
′
)
p
(
θ
′
)

p̂ (y1:T |θ, u) p (θ)

q
(
θ|θ′

)
q
(
θ′ |θ

)
 ; (29)

set h
(i)
1:T = h

′
1:T , p̂ (y1:T |θ, u)(i) = p̂

(
y1:T |θ

′
, u
′
)

, and θ(i) = θ
′
; otherwise, set h

(i)
1:T = h

(i−1)
1:T ,

p̂ (y1:T |θ, u)(i) = p̂ (y1:T |θ, u)(i−1), and θ(i) = θ(i−1).
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B The correlated PMMH algorithm

Algorithm 2 The correlated pseudo marginal Metropolis-Hastings (PMMH)

• Set the initial values of θ(0) arbitrarily.

• Sample u ∼ N (0, I), and run a particle filter to compute an estimate of likelihood p̂ (y1:T |θ, u) and to sample the

initial h
(0)
1:T .

• For each of the MCMC iterations, i = 1, ...,M ,

– Sample θ
′

from the proposal density q
(
θ
′ |θ
)

.

– Sample u∗ ∼ N (0, I), and set u
′

= γu+
√

1− γ2u∗; γ is the correlation between u and u
′

and is set close
to 1.

– Run a particle filter to compute an estimate of likelihood p̂
(
y1:T |θ

′
, u
′
)

and sample h
′
1:T .

– With probability in Equation (29) set h
(i)
1:T = h

′
1:T , p̂ (y1:T |θ, u)(i) = p̂

(
y1:T |θ

′
, u
′
)

, u(i) = u
′
, and θ(i) = θ

′
;

otherwise, set h
(i)
1:T = h

(i−1)
1:T , p̂ (y1:T |θ, u)(i) = p̂ (y1:T |θ, u)(i−1), u(i) = u(i−1), and θ(i) = θ(i−1).

C The Correlated Particle Filter Algorithm

This section discusses the correlated particle filter of Deligiannidis et al. (2018). We use this

particle filter algorithm to sequentially approximate the joint filtering densities

{p (ht|y1:t, θ) : t = 1, ..., T} using N particles, i.e., weighted samples
{
h1:N
t , w1:N

t

}
, drawn from

some proposal densities m1 (h1) and mt (ht|ht−1) for t ≥ 2; see Andrieu et al. (2010) for detailed

assumptions about the proposal densities. Let

wi1 =
p (y1|h1) p (h1)

m1 (h1)
, wi2 =

p (y2|h2, y1) p (h2|h1, y1)

m2 (h2|h1)
, wit =

p (yt|ht, yt−1) p (ht|ht−1, yt−1, yt−2)

mt (ht|ht−1)
,

(30)

for t ≥ 3 , and wit =
wit∑N
j=1 w

j
t

. Let u be the pseudo-random vector used to obtain the unbiased

estimate of the likelihood; u has two components u1:N
h,1:T and u1:N

A,1:T−1.

Let uih,t be the vector random variable used to generate the particles hit given θ and h
ait−1

t−1 .

We write,

hi1 = H
(
uih,1; θ

)
and hit = H

(
uih,t; θ, h

ait−1

t−1

)
for t ≥ 1, (31)

where ait−1 is the ancestor index of hit. Denote the distribution of uih,t as ψht(·).
For t ≥ 2, let uA,t−1 be the vector of random variables used to generate the ancestor indices

a1:N
t−1 using the resampling schemeM

(
a1:N
t−1|w1:N

t−1, h
1:N
t−1

)
and define ψA,t−1(·) as the distribution of

uA,t−1. Common choices for ψht(·) and ψA,t−1(·) are iid U(0, 1) or iid N(0, 1) random variables.

The particle filter provides the unbiased estimate of the likelihood

p̂ (y|θ, u) =

T∏
t=1

(
1

N

N∑
i=1

wit

)
. (32)
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For the correlated PMMH to work efficiently, it is necessary that the logs of the likelihood

estimates p̂ (y|θ, u) and p̂
(
y|θ′ , u′

)
are highly correlated. The resampling steps in the particle

filter introduce discontinuities even when θ and θ
′

are only slightly different, where θ is the

current value and θ
′
is the proposed value of the parameters. The discontinuity problem is solved

by first sorting the particles from the smallest to largest before resampling them. Algorithm 3

gives the correlated particle filter algorithm. At time t = 1, step 1 generates

hi1 =
√
τ2/(1− φ2)uih,1 + µh, (33)

for i = 1, ..., N . Steps 2 and 3 compute unnormalised and normalised weights for all particles,

respectively.

At time t > 1, Step 1 sorts the particles from smallest to largest and obtains the sorted

particles and weights. Step 2 in Algorithm 4 resamples the particles using multinomial resam-

pling and obtain the ancestor index a1:N
t−1 in the original order of the particles in Step 3. Step 4

generates

hit = µh + φ

(
h
ait−1

t−1 − µh
)

+ ρτ exp

−hait−1

t−1

2

 (yt−1 − φyyt−2) +
√
τ2 (1− ρ2)uih,t, (34)

for i = 1, ..., N ; it then compute the unnormalised and normalised weights of all particles.

Algorithm 3 The Correlated particle filter (CPF) algorithm
Input: u1:Nh,1:T , u1:NA,1:T−1, and N

Output: h1:N1:T , a1:N1:T−1, and w1:N
1:T

For t = 1,

1. Set hi1 = H
(
uih,1; θ

)
for i = 1, ..., N .

2. Compute the unnormalised weights wi1, for i = 1, ..., N .

3. Compute the normalised weights wi1 for i = 1, ...N .

For t ≥ 2

1. Sort the particles hit−1 from the smallest to largest and obtain the sorted indices ζi for i = 1, ..., N , and the sorted

particles and weights h̃it−1 = h
ζi
t−1 and w̃

i
t−1 = w

ζi
t−1, for i = 1, . . . , N .

2. Obtain the ancestor indices based on the sorted particles ã1:Nt−1 using the multinomial resampling in Algorithm 4.

3. Obtain the ancestor indices based on the original order of the particles ait−1 for i = 1, ..., N .

4. Set hit = H

(
uiht; θ, h

ait−1
t−1

)
, for i = 1, ..., N .

5. Compute the unnormalised weights wit, for i = 1, ..., N

6. Compute the normalised weights wit for i = 1, ..., N
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Algorithm 4 Multinomial Resampling Algorithm

Input: uA,t−1, sorted particles h̃1:Nt−1, and sorted weights w̃
1:N
t−1 (see Algorithm 3) Output: ã1:Nt−1

1. Compute the cumulative weights

F̂Nt−1 (j) =

j∑
i=1

w̃
i
t−1.

based on the sorted particles
{
h̃1:Nt−1, w̃

1:N
t−1

}
2. Set ãit−1 = min

j
F̂Nt−1 (j) ≥ uiA,t−1 for i = 1, ...N ; For i = 1, ..., N ; ãit−1 is the ancestor index based on the sorted

particles.
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D Impulse responses for macroeconomic variables (baseline)

Figure 14: Impact of changes in η∗t on real activity. Impulse responses calculated for the
quarterly real growth rate of total vehicle sales, durable consumption, total consumption, non-
durable consumption, investment, GDP, the unemployment rate and total employed in the
non-farm sector. The blue line is the effect of a one standard deviation shock to η∗t in the linear
model (shaded blue area – 68% CI). The black line is the effect of a one standard deviation
shock to η∗t in recessions (shaded gray area – 68% CI). The red line is the effect of a one standard
deviation shock to η∗t in expansions (dashed red line – 68% CI).
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Figure 15: Impact of changes in η∗t on credit markets. Impulse responses calculated for
household leverage (household credit/GDP), and the credit spread computed as the difference
between the Baa and Aaa bonds. The black line is the effect of a one standard deviation shock
to η∗t in recessions (shaded gray area – 68% CI). The red line is the effect of a one standard
deviation shock to η∗t in expansions (dashed red line – 68% CI).
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E Impulse responses with shocks constructed using data on
Consumer Credit

Figure 16: Impact of changes in η∗t on real activity. Impulse responses calculated for the
quarterly real growth rate of total vehicle sales aggregate consumption, expenditure on durable
consumption, expenditure on non-durable consumption, investment and the unemployment rate.
The black line is the effect of a one standard deviation shock to η∗t in recessions (shaded gray
area – 68% CI). The red line is the effect of a one standard deviation shock to η∗t in expansions
(dashed red line – 68% CI).
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Figure 17: Impact of changes in η∗t on credit markets. Impulse responses calculated for the
growth rate of household leverage (household credit/GDP) and the difference between Baa and
Aaa corporate bond yields. The black line is the effect of a one standard deviation shock to η∗t
in recessions (shaded gray area – 68% CI). The red line is the effect of a one standard deviation
shock to η∗t in expansions (dashed red line – 68% CI).
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F Impulse responses with shocks constructed using data on
Nonfinancial Business Debt

Figure 18: Impact of changes in η∗t on real activity. Impulse responses calculated for the
quarterly real growth rate of total vehicle sales, durable consumption, total consumption, non-
durable consumption, investment, GDP, the unemployment rate and total employed in the non-
farm sector. The black line is the effect of a one standard deviation shock to η∗t in recessions
(shaded gray area – 68% CI). The red line is the effect of a one standard deviation shock to η∗t
in expansions (dashed red line – 68% CI).
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Figure 19: Impact of changes in η∗t on credit markets. Impulse responses calculated for the
growth rate of household leverage (household credit/GDP) and the difference between Baa and
Aaa corporate bond yields. The black line is the effect of a one standard deviation shock to η∗t
in recessions (shaded gray area – 68% CI). The red line is the effect of a one standard deviation
shock to η∗t in expansions (dashed red line – 68% CI).

G Impulse responses for Net-Exports and U.S. Dollar Index

Figure 20: Impact of changes in η∗t on net-exports and the real exchange rate measured
through the Broad Real Trade Weighted U.S. Dollar Index. The black line is the effect of a one
standard deviation shock to η∗t in recessions (shaded gray area – 68% CI). The red line is the
effect of a one standard deviation shock to η∗t in expansions (dashed red line – 68% CI).
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