Preferences & Beliefs in the Marriage Market for Young Brides

Alison Andrew (Chicago, UCL, IFS), Abi Adams-Prassl (Oxford)

ASSA
January 2020
Motivation

- **Early marriage** and **school dropout** common amongst young women
Motivation

- Early marriage and school dropout common amongst young women

- In rural Rajasthan, India:
 - 1 in 3 married by 18,
 - 1 in 3 out of school by 16
Motivation

- Early marriage and school dropout common amongst young women
- In rural Rajasthan, India:
 - 1 in 3 married by 18,
 - 1 in 3 out of school by 16
- We aim to characterise the drivers of parental decisions underlying these patterns:
Motivation

• Early marriage and school dropout common amongst young women

• In rural Rajasthan, India:
 • 1 in 3 married by 18,
 • 1 in 3 out of school by 16

• We aim to characterise the drivers of parental decisions underlying these patterns:

1 What are parents’ preferences over age of marriage, education and match quality?
Motivation

• Early marriage and school dropout common amongst young women

• In rural Rajasthan, India:
 • 1 in 3 married by 18,
 • 1 in 3 out of school by 16

• We aim to characterise the drivers of parental decisions underlying these patterns:

 1 What are parents’ preferences over age of marriage, education and match quality?

 2 What are parents’ subjective beliefs about the marriage market returns to youth and education of daughters?
Our Approach

- Challenging to infer much about either preferences or beliefs from observational data
 - identification problem, unobserved choice sets, social desirability bias
Our Approach

- Challenging to infer much about either preferences or beliefs from observational data
 - identification problem, unobserved choice sets, social desirability bias

- We take an experimental approach (~4600 caregivers):
 - Take a finite horizon, dynamic discrete choice model
 - Design two types of hypothetical choice experiments that when analysed in the structure of the model identify both preferences and beliefs
Our Approach

- Challenging to infer much about either preferences or beliefs from observational data
 - identification problem, unobserved choice sets, social desirability bias

- We take an experimental approach (~4600 caregivers):
 - Take a finite horizon, dynamic discrete choice model
 - Design two types of hypothetical choice experiments that when analysed in the structure of the model identify both preferences and beliefs

- Hypothetical framing/vignettes:
 - Limits social desirability bias
 - Limits the role of unobserved characteristics
 - Focus is on population averages (but allow for random preference heterogeneity).
Our Approach

- Identification from comparing choices in experiments with and without uncertainty over future marriage offers:
Our Approach

- Identification from comparing choices in experiments with and without uncertainty over future marriage offers:

 - “Ex Post”: Choice under certainty identifies preferences over daughters’ education, age of marriage and marriage match
Our Approach

- Identification from comparing choices in experiments with and without uncertainty over future marriage offers:
 - “Ex Post”: Choice under certainty identifies preferences over daughters’ education, age of marriage and marriage match
 - “Ex Ante”: Choice under uncertainty identifies beliefs about future offer distribution taking preferences as given
Our Approach

- Identification from comparing choices in experiments with and without uncertainty over future marriage offers:
 - “Ex Post”: Choice under certainty identifies preferences over daughters’ education, age of marriage and marriage match
 - “Ex Ante”: Choice under uncertainty identifies beliefs about future offer distribution taking preferences as given
- Label our methodology as a “revealed belief” approach
Our Approach

- Identification from comparing choices in experiments with and without uncertainty over future marriage offers:
 - “Ex Post”: Choice under certainty identifies preferences over daughters’ education, age of marriage and marriage match
 - “Ex Ante”: Choice under uncertainty identifies beliefs about future offer distribution taking preferences as given
- Label our methodology as a “revealed belief” approach
- A random 50% of respondents do each type of experiment. Not a within design.
Contributions + Findings: Substantive

- Conditional on a marriage market match, weak preference for education
Contributions + Findings: Substantive

• Conditional on a marriage market match, weak preference for education

• However, parents believe in a substantial marriage market return to education
 • They believe that an 18 year old girl currently in College has a 60% chance of a marriage offer from a high quality groom compared to a negligible chance if she only has primary school level education
Contributions + Findings: Substantive

- Conditional on a marriage market match, weak preference for education

- However, parents believe in a substantial marriage market return to education
 - They believe that an 18 year old girl currently in College has a 60% chance of a marriage offer from a high quality groom compared to a negligible chance if she only has primary school level education

- Parents prefer to delay their daughter’s marriage until age 18, but have no preference for delaying further
Conditional on a marriage market match, weak preference for education

However, parents believe in a substantial marriage market return to education

- They believe that an 18 year old girl currently in College has a 60% chance of a marriage offer from a high quality groom compared to a negligible chance if she only has primary school level education

Parents prefer to delay their daughter’s marriage until age 18, but have no preference for delaying further

But believe marriage market prospects deteriorate quickly with age after girls leave education
Contributions + Findings: Substantive

- Conditional on a marriage market match, weak preference for education

- However, parents believe in a substantial marriage market return to education

 - They believe that an 18 year old girl currently in College has a 60% chance of a marriage offer from a high quality groom compared to a negligible chance if she only has primary school level education

- Parents prefer to delay their daughter’s marriage until age 18, but have no preference for delaying further

- But believe marriage market prospects deteriorate quickly with age after girls leave education

- Patterns qualitatively consistent with elicited groom-side preferences, stated expectations and rates of assortative matching in survey data
• Existing methods of measuring expectations often focus on directly eliciting probabilities or ranges

• Two problems in our case:
 - Groom quality is multidimensional
 - Respondents have very low numeracy

• Our method is based on stated preference between relatable choices, does not require elicitation of probabilities and works with multi-dimensional uncertainty.

• Fun and easy to use across large samples
Preferences
Parents: Sachin + Priya
Girl: Geeta

1)

- Education: None, 1st, 5th, 7th, 8th, 9th, 10th, 11th, 12th, College
- Age: 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23

Husband:

- Education: None, 1st, 5th, 7th, 8th, 9th, 10th, 11th, 12th, College
- Age: 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23

2)

- Education: None, 1st, 5th, 7th, 8th, 9th, 10th, 11th, 12th, College

Likes school: Yes, Doesn't like school: No

School free: Yes, Payment required: No

Not much housework: Yes, Lots of housework: No
• Three stages (school, home and marriage) \Rightarrow Three components of utility
Model

- Three stages (school, home and marriage) \(\Rightarrow\) Three components of utility

- Before a girl is married:
 - Flow payoffs vary with school status, exogenous circumstances of the family and unobservable heterogeneity
Model

• Three stages (school, home and marriage) ⇒ Three components of utility

• Before a girl is married:
 • Flow payoffs vary with school status, exogenous circumstances of the family and unobservable heterogeneity

• Once a girl is married:
 • ‘Terminal’ payoff in the last period captures preferences over age of marriage, education and match quality
Model

- Three stages (school, home and marriage) ⇒ Three components of utility

- Before a girl is married:
 - Flow payoffs vary with school status, exogenous circumstances of the family and unobservable heterogeneity

- Once a girl is married:
 - ‘Terminal’ payoff in the last period captures preferences over age of marriage, education and match quality

- Future payoffs discounted with discount factor $\beta = 0.95$
Preferences over realised paths represented by the discounted sum of flow and terminal payoffs.

For respondent i in experiment j, the utility from option k is:

$$U(X_{ijk}, Z_{ij}, \omega_i) = \sum_{t: d_{ijkt}=S} \beta^t u^S(Z^S_{ij}, \omega_i) + \sum_{t: d_{ijkt}=H} \beta^t u^H(Z^H_{ij}, \omega_i) + \beta^T u^M(X_{ijk})$$

- $X = [A, E, Q]$: age (A), education (E) and groom quality (Q)
- Z: parent specific shifters of flow payoffs
- ω: parent specific preference heterogeneity
Respondent i chooses option k over k' in experiment j iff:

$$U(X_{ijk}, Z_{ij}, \omega_i) + \nu_{ijk} \geq U(X_{ijk'}, Z_{ij}, \omega_i) + \nu_{ijk'}$$
Identification

- Respondent i chooses option k over k' in experiment j iff:

 $$U(X_{ijk}, Z_{ij}, \omega_i) + \nu_{ijk} \geq U(X_{ijk'}, Z_{ij}, \omega_i) + \nu_{ijk'}$$

- Unobservables:

 - ν_{ijk} i.i.d. normal (scale normalised) over i, j, k: $\nu_{ijk} \sim N(0, 1)$
 - ω_i i.i.d. joint normal over i, constant over j, k
$U(X_{ijk}, Z_{ij}, \omega_i) = \sum_{t:d_{ijkl}=S} \beta^t u_{ij}^S + \sum_{t:d_{ijkl}=H} \beta^t u_{ij}^H + \beta^T u_{ijk}^M$
Preference Results: Education

\[U(X_{ijk}, Z_{ij}, \omega_i) = \sum_{t:d_{ijkt}=S} \beta^t u_{ij}^S + \sum_{t:d_{ijkt}=H} \beta^t u_{ij}^H + \beta^T u_{ijk}^M \]
Preference Results: Match Quality

\[U(X_{ijk}, Z_{ij}, \omega_i) = \sum_{t:d_{ijkt}=S} \beta^t u_{ij}^S + \sum_{t:d_{ijkt}=H} \beta^t u_{ij}^H + \beta^T u_{ijk}^M \]
Beliefs
Parents: Rohan + Maya Girl: Priya

<table>
<thead>
<tr>
<th>Very poor</th>
<th>Quite poor</th>
<th>Average</th>
<th>Quite wealthy</th>
<th>Very wealthy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
<th>4.5</th>
<th>5</th>
<th>5.5</th>
<th>6</th>
<th>6.5</th>
<th>7</th>
<th>7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>1st</td>
<td>5th</td>
<td>7th</td>
<td>8th</td>
<td>9th</td>
<td>10th</td>
<td>11th</td>
<td>12th</td>
<td>College</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Marriage prospect:

<table>
<thead>
<tr>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>1st</td>
<td>5th</td>
<td>7th</td>
<td>8th</td>
<td>9th</td>
<td>10th</td>
<td>11th</td>
<td>12th</td>
<td>College</td>
</tr>
</tbody>
</table>

2) Keep daughter in education next year

3) Take daughter out of school to help at home

Likes school | Doesn’t like school | School free | Payment required
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not much housework | Lots of housework | Well behaved and polite | Is friends with a few boys
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reduced Form Results: Age & Education

Proportion Choosing to Marry

Daughter's Age

Grade 7 Grade 8 Grade 9
Grade 10 Grade 11 Grade 12
College Currently in School Out of School
Parents make their decision, \(d_t \), to maximise discounted EU.

Expected future utility conditional on choosing optimally now and in the future is given by:

\[
v_i(E, A, q, Z) = \max_{d_t \in O_t(E_t)} W_i(d_t, E, A, q, Z)
\]

where \(W_i(\cdot) \) is the presented discounted value of choosing \(d_t \) and then choosing optimally from period \(t + 1 \) onwards.
Model

- Parents make their decision, d_t, to maximise discounted EU
- Expected future utility conditional on choosing optimally now and in the future is given by:
 \[v_i(E, A, q, Z) = \max_{d_t \in O_t(E_t)} W_i(d_t, E, A, q, Z) \]
 where $W_i(\cdot)$ is the presented discounted value of choosing d_t and then choosing optimally from period $t + 1$ onwards
- Marriage is a terminal payoff but the payoffs to home & school also depend on future expected payoffs
- Parents make their decision, d_t, to maximise discounted EU

- Expected future utility conditional on choosing optimally now and in the future is given by:

$$v_i(E, A, q, Z) = \max_{d_t \in O_t(E_t)} W_i(d_t, E, A, q, Z)$$

where $W_i(\cdot)$ is the presented discounted value of choosing d_t and then choosing optimally from period $t + 1$ onwards.

- Marriage is a terminal payoff but the payoffs to home & school also depend on future expected payoffs

$$W_i^M \equiv u^M(E, A, q)$$
Parents make their decision, d_t, to maximise discounted EU.

Expected future utility conditional on choosing optimally now and in the future is given by:

$$v_i(E, A, q, Z) = \max_{d_t \in O_t(E_t)} W_i(d_t, E, A, q, Z)$$

where $W_i(\cdot)$ is the presented discounted value of choosing d_t and then choosing optimally from period $t + 1$ onwards.

Marriage is a terminal payoff but the payoffs to home & school also depend on future expected payoffs:

$$W_i^M \equiv u^M(E, A, q)$$

$$W_i^S \equiv \theta_i - C + \beta \sum_{q \in \{H, L\}} \pi(E + 1, A + 1, q)v_i(E + 1, A + 1, q, Z)$$
Parents make their decision, d_t, to maximise discounted EU

Expected future utility conditional on choosing optimally now and in the future is given by:

$$v_i(E, A, q, Z) = \max_{d_t \in O_t(E_t)} W_i(d_t, E, A, q, Z)$$

where $W_i(\cdot)$ is the presented discounted value of choosing d_t and then choosing optimally from period $t + 1$ onwards.

Marriage is a terminal payoff but the payoffs to home & school also depend on future expected payoffs

$$W_i^M \equiv u^M(E, A, q)$$

$$W_i^S \equiv \theta_i - C + \beta \sum_{q \in \{H, L\}} \pi(E + 1, A + 1, q) v_i(E + 1, A + 1, q, Z)$$

$$W_i^H \equiv \theta_i + B + \beta \sum \pi(E, A + 1, q) v_i(E, A + 1, q, Z)$$
Subjective Beliefs

- We impose a set of functional forms on beliefs for estimation:

 \[\pi(A, E, q = H) = \Phi(M_{\tau}) \]

 where

 \[M_{\tau} = \tau_0 + \tau_a Age + \tau_e Ed + \tau_c Coll + \tau_i ln + \tau_{ia} ln \times Age + \tau_g Good \]

- Estimate \(\tau \) by Method of Simulated Moments, matching:
 - marriage probability of accepting marriage offer within age-education-government job cells
 - probability of keeping daughters in education

- ...taking the distribution of \(\omega \) and \(u(\cdot) \) as given
Subjective Belief: Prob High Quality Groom

![Graph showing the probability of high quality groom over daughter age for different grades and college.]

- 7th Grade
- 8th Grade
- 9th Grade
- 10th Grade
- 11th Grade
- 12th Grade
- College
- Friends with Boys

Alison Andrew

September 2019

Page 20
Validation

• To validate our revealed belief measures, we conduct two additional experiments
 • Elicitation of groom side preferences
 • Direct elicitation of expected match characteristics
Marriage prospect 1:

<table>
<thead>
<tr>
<th>Age</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td>None</td>
<td>1st</td>
<td>5th</td>
<td>7th</td>
<td>8th</td>
<td>9th</td>
<td>10th</td>
<td>11th</td>
<td>12th</td>
<td>College</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Marriage prospect 2:

<table>
<thead>
<tr>
<th>Age</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td>None</td>
<td>1st</td>
<td>5th</td>
<td>7th</td>
<td>8th</td>
<td>9th</td>
<td>10th</td>
<td>11th</td>
<td>12th</td>
<td>College</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Economic Status

<table>
<thead>
<tr>
<th>Status</th>
<th>Very poor</th>
<th>Quite poor</th>
<th>Average</th>
<th>Quite wealthy</th>
<th>Very wealthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td>4</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
</tr>
<tr>
<td>6</td>
<td>6.5</td>
<td>7</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Social Behavior

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Well behaved and polite</th>
<th>Is friends with a few boys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Validation: Groom’s side preferences
If _______ got married this year she probably marry someone like this...

Parents: ____________________ Girl: ____________________

<table>
<thead>
<tr>
<th>Very poor</th>
<th>Quite poor</th>
<th>Average</th>
<th>Quite wealthy</th>
<th>Very wealthy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>None</th>
<th>1st</th>
<th>5th</th>
<th>7th</th>
<th>8th</th>
<th>9th</th>
<th>10th</th>
<th>11th</th>
<th>12th</th>
<th>College</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
</tbody>
</table>

None | 1st | 5th | 7th | 8th | 9th | 10th | 11th | 12th | College |

Government Job | No Government Job

Well behaved and polite | Is friends with a few boys

<table>
<thead>
<tr>
<th>Very poor</th>
<th>Average</th>
<th>Very wealthy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>1.5</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td>4</td>
</tr>
<tr>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
</tr>
<tr>
<td>6</td>
<td>6.5</td>
<td>7</td>
</tr>
<tr>
<td>7.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Validation: ‘Expected match’
Conclusions

- Estimate preferences and beliefs over age of marriage, education and match quality in a context with conservative gender norms and high rates of both early marriage and school dropout.

- Novel approach to separately identify preferences and subjective beliefs.

- Based on relatable choices, does not require elicitation of probabilities and works with multi-dimensional uncertainty.
Conclusions

• Absenting marriage market returns parents prefer...
 • to delay marriage until 18, not further
 • (weakly) to keep a daughter in school until end of high school, no further

• However, parents believe...
 • education increases marriage market prospects
 • but prospects deteriorate quickly with age on leaving education

• Schooling is hugely protective factor against early marriage
Table: Sample descriptives of female caregivers

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years</td>
<td>41.92</td>
<td>8.365</td>
<td>4464</td>
</tr>
<tr>
<td>Own age at marriage in years*</td>
<td>15.57</td>
<td>3.361</td>
<td>4423</td>
</tr>
<tr>
<td>Years of school*</td>
<td>1.492</td>
<td>3.267</td>
<td>4605</td>
</tr>
<tr>
<td>Can read complete sentence (in Hindi)*</td>
<td>0.104</td>
<td>0.305</td>
<td>4353</td>
</tr>
<tr>
<td>Number of sons*</td>
<td>2.118</td>
<td>1.112</td>
<td>4343</td>
</tr>
<tr>
<td>Number of daughters*</td>
<td>2.447</td>
<td>1.320</td>
<td>4343</td>
</tr>
<tr>
<td>Owns asset that can dispose of at will</td>
<td>0.132</td>
<td>0.339</td>
<td>4604</td>
</tr>
<tr>
<td>Can go to market unaccompanied*</td>
<td>0.611</td>
<td>0.488</td>
<td>4463</td>
</tr>
<tr>
<td>At least some say over when child gets married</td>
<td>0.963</td>
<td>0.190</td>
<td>4536</td>
</tr>
<tr>
<td>At least some say over to whom child gets married</td>
<td>0.952</td>
<td>0.213</td>
<td>4532</td>
</tr>
<tr>
<td>At least some say over when child leaves school</td>
<td>0.942</td>
<td>0.235</td>
<td>4534</td>
</tr>
<tr>
<td>Has done any work (inc. on family farm) in last year</td>
<td>0.595</td>
<td>0.491</td>
<td>4604</td>
</tr>
<tr>
<td>Has worked for cash in last year</td>
<td>0.344</td>
<td>0.475</td>
<td>4604</td>
</tr>
<tr>
<td>Has child (male or female) who is married</td>
<td>0.364</td>
<td>0.481</td>
<td>4576</td>
</tr>
<tr>
<td>House has dirt floor*</td>
<td>0.507</td>
<td>0.500</td>
<td>4603</td>
</tr>
<tr>
<td>Scheduled caste or scheduled tribe*</td>
<td>0.352</td>
<td>0.478</td>
<td>4581</td>
</tr>
<tr>
<td>Other Backward Caste or Economically Backward Class*</td>
<td>0.451</td>
<td>0.498</td>
<td>4581</td>
</tr>
<tr>
<td>Hindu*</td>
<td>0.968</td>
<td>0.177</td>
<td>4602</td>
</tr>
</tbody>
</table>