Intro 00000	Model 00000	Calibration o	Blanchard Results o	Evans Replication	Increased Risk Results	Conclusion o

Public Debt, Interest Rates, and Negative Shocks

Richard W. Evans¹

²University of Chicago, Open Source Economics Laboratory, M.A. Program in Computational Social Science

January 4, 2020 AEA Annual Meeting San Diego, California Intro Model Calibration

on Blancha o Evans Replication

Increased Risk Resu

Conclusion o

12 OECD Countries, 10-yr govt bond rate, 1981-2018

Interest rates have broadly declined over last 28 years

 Iniro
 Model
 Calibration
 Blanchard Results
 Evans Replication
 Increased Risk Results
 Conclusio

 c ● c o o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 o
 <

Blanchard (2019), Fig. 4, Avg int rate vs. growth, USA

 Intro
 Model
 Ca

 00000
 00000
 0

Calibration o

Blanchard Results

Evans Replication

Increased Risk Results

Conclusion o

12 OECD Countries, GDP growth rate, 1981-2018

All current growth rates are higher than 10-year bond rates.

Intro Model Ca 000000 00000 0

Calibration o

Blanchard Results

Evans Replication

Increased Risk Results

Conclusion o

12 OECD Countries, Total Debt/GDP, 1995-2018

Debt dynamics and responses are varied across countries

<mark>Intro</mark> 0000●	Model 00000	Calibration o	Blanchard Results	Evans Replication	Increased Risk Results	Conclusion o

My goal and results

Specific question

What are the long-run average welfare costs and risks of increased government debt when interest rates are low?

- 1 Replication study of Blanchard (2019)
 - Model almost identical to Evans, Kotlikoff, Phillips (2013)
 - No parameterizations with long-run avg. utility gains
- 2 How do results change as more realistic risk added?
 - Reduce safety-net endowment x₁ to young
 - Long-run average utility losses exacerbated
- 3 Calibration using equity prem. rate spread may bias results
 - Rare disaster macro fincancial literature: Rebelo, Wang, Yang (2019), Tsai and Wachter (2015), Evans, Kotlikoff, Phillips (2013), Gourio (2012), Barro (2009)
 - Higher spreads associated with existence of rare disasters and fiscal stress

Intro 00000	<mark>Model</mark> ●0000	Calibration o	Blanchard Results o	Evans Replication	Increased Risk Results	Conclusion o	
Mod	el su	mmary					

- Two-period-lived agent overlapping generations
- Inelastic labor supply: $n_1 = 1$, $n_2 = 0$
- Representative CES production
- 100-percent depreciation
- Aggregate TFP shocks
- Government transfer obligation to old from young

Intro 00000	<mark>Model</mark> o●ooo	Calibration o	Blanchard Results o	Evans Replication	Increased Risk Results	Conclusion o

Households

$$\max_{c_{1,t},k_{2,t+1},c_{2,t+1}} (1-\beta) \ln(c_{1,t}) + \beta \frac{1}{1-\gamma} \ln\left(E_t [(c_{2,t+1})^{1-\gamma}]\right) \quad \forall t$$
(1)

such that
$$c_{1,t} + k_{2,t+1} = w_t + x_1 - H_t$$
 (2)

and
$$c_{2,t+1} = R_{t+1}k_{2,t+1} + H_{t+1}$$
 (3)

and
$$c_{1,t}, c_{2,t+1}, k_{2,t+1} > 0$$
 (4)

$$H_t = \min \left(\bar{H}, w_t + x_1 - c_{min} - K_{min} \right) \quad \forall t$$
(5)

Young-age endowment x_1 prevents default, violation of (4)

$$\frac{1-\beta}{c_{1,t}} = \beta \frac{E_t \left[R_{t+1} \left(c_{2,t+1} \right)^{-\gamma} \right]}{E_t \left[\left(c_{2,t+1} \right)^{1-\gamma} \right]} \quad \text{and} \quad \bar{R}_t = \left(\frac{1-\beta}{\beta} \right) \frac{E_t \left[\left(c_{2,t+1} \right)^{1-\gamma} \right]}{(c_{1,t}) E_t \left[\left(c_{2,t+1} \right)^{-\gamma} \right]} \quad \forall t$$
(6)

Intro 00000	Model oo●oo	Calibration o	Blanchard Results o	Evans Replication	Increased Risk Results	Conclusion o
Firm	IS					

$$Y_t = F(K_t, L_t, z_t) = A_t \left[\alpha(K_t)^{\frac{\varepsilon - 1}{\varepsilon}} + (1 - \alpha)(L_t)^{\frac{\varepsilon - 1}{\varepsilon}} \right]^{\frac{\varepsilon}{\varepsilon - 1}} \quad \forall t \quad (7)$$

$$z_t = \rho z_{t-1} + (1 - \rho)\mu + \epsilon_t$$

where $\rho \in [0, 1), \ \mu \ge 0, \ \epsilon_t \sim N(0, \sigma), \text{ and } A_t \equiv e^{z_t}$ (8)

$$\max_{K_t,L_t} Pr_t = F(K_t, L_t, z_t) - w_t L_t - R_t K_t \quad \forall t$$
(9)

$$R_{t} = \alpha(A_{t})^{\frac{\varepsilon-1}{\varepsilon}} \left[\frac{Y_{t}}{K_{t}}\right]^{\frac{1}{\varepsilon}} \quad \forall t$$

$$w_{t} = (1-\alpha)(A_{t})^{\frac{\varepsilon-1}{\varepsilon}} \left[\frac{Y_{t}}{L_{t}}\right]^{\frac{1}{\varepsilon}} \quad \forall t$$
(10)
(11)

Intro 00000	<mark>Model</mark> ooo●o	Calibration O	Blanchard Results	Evans Replication	Increased Risk Results	Conclusion o

Government Transfer Program

$$c_{1,t} + k_{2,t+1} = w_t + x_1 - H_t \quad \forall t$$
 (2)

$$c_{2,t} = R_t k_{2,t} + H_t \quad \forall t \tag{3}$$

$$H_{t} \equiv \begin{cases} \bar{H} & \text{if } w_{t} \geq \bar{H} - x_{1} + c_{min} + K_{min} \\ w_{t} + x_{1} - c_{min} - K_{min} & \text{if } w_{t} < \bar{H} - x + c_{min} + K_{min} \end{cases} \quad \forall t$$
$$= \min(\bar{H}, w_{t} + x_{1} - c_{min} - K_{min}) \quad \forall t \qquad (5)$$

- Balanced budget government transfer program
- Is debt because obligation to old

	Calibration	Blanchard Results	Evans Replication	Increased Risk Results	Conclusion
00000					

Market clearing and equilibrium

$$L_t = 1 \quad \forall t \tag{12}$$

$$K_t = k_{2,t} \quad \forall t \tag{13}$$

$$0 = B_t = b_{2,t} \quad \forall t \tag{14}$$

$$Y_t = C_t + K_{t+1} - (1 - \delta)K_t \quad \forall t$$
(15)

Eqlb. Def.: stationary price and allocation functions s.t.

- Households optimize in every period (6)
- Firms optimize in every period (10), (11)
- Government transfers (5)
- Markets clear (12), (13), and (14)

Blanchard (2019) calibration

- Annual data avg $r_{t,an}$ in [0.00, 0.04] and avg $\bar{r}_{t,an}$ in [-0.02, 0.01]
- $\sigma = 0.2$ to match std. dev of annual log stock returns of 15%
- μ : when $\overline{H} = 0$ and $\varepsilon = \infty \Rightarrow E_t[R_{t+1}] = \alpha e^{\mu + \frac{\sigma^2}{2}}$
- γ : when $\bar{H} = 0$ and $\varepsilon = 1$ or $\infty \Rightarrow \ln(E_t[R_{t+1}]) \ln(\bar{R}_t) = \gamma \sigma^2$
- β : some algebra when $\overline{H} = 0$ and $\varepsilon = 1 \Rightarrow \beta = \left(\frac{\alpha}{1-\alpha}\right) \frac{1}{2E[R_{t+1}]}$
- $x_1 = 100\%$ of average wage when $\bar{H} = 0$ and $\varepsilon = 1 \Rightarrow$ $x_1 = \left[(1 - \alpha) e^{\mu + \frac{\sigma^2}{2}} (2\beta)^{\alpha} \right]^{\frac{1}{1 - \alpha}}$

 Intro
 Model
 Calibration
 Blanchard Results
 Evans Replication
 Increased Risk Results
 Conclusion

 00000
 00000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00</

Blanchard (2019), constant mu (Figs. 7, 9)

Percent change in long-run average lifetime utility from increased promised transfer \bar{H}

linear p	orod.	avera	ge R (ar	nnual)
$\varepsilon = 0$	∞	-2.0%	-0.5%	1.0%
average	0.0%	3.0%	0.3%	-1.1%
R_t	2.0%	2.8%	0.1%	-1.3%
(annual)	4.0%	2.6%	-0.3%	-1.5%

Cobb-Do	ouglas	avera	ge R (ar	nnual)
$\varepsilon =$	1	-2.0%	-0.5%	1.0%
average	0.0%	3.0%	0.2%	-0.4%
R_t	2.0%	0.2%	-0.4%	-0.5%
(annual) 4.0%		0.1%	-0.4%	-0.5%

Evans replication of Blanchard (2019), constant mu

Blanchard Results

Model

Calibration

Percent change in long-run average lifetime utility from increased promised transfer \bar{H}

•0

linear p	orod.	avera	age Ā (an	nual)
$\varepsilon = 0$	∞	-2.0%	-0.5%	1.0%
average	0.0%	-0.59%	-0.59%	n/a
R_t	2.0%	-0.73%	-0.73%	-0.73%
(annual) 4.0%		-0.86%	-0.86%	-0.86%

Cobb-Do	ouglas	avera	age $ar{R}$ (an	nual)
$\varepsilon =$	1	-2.0%	-0.5%	1.0%
average	0.0%	-0.78%	-0.77%	n/a
R_t	2.0%	-1.62%	-1.58%	-1.54%
(annual)	4.0%	-3.35%	-3.23%	-3.10%

Evans replication of Blanchard (2019), variable mu

Blanchard Results

Model

Calibration

Percent change in long-run average lifetime utility from increased promised transfer \bar{H}

00

Increased Risk Results

linear p	orod.	avera	age Ā (an	nual)
$\varepsilon = 0$	∞	-2.0%	-0.5%	1.0%
average	0.0%	-0.66%	-0.66%	n/a
R_t	2.0%	-0.31%	-0.31%	-0.31%
(annual)	4.0%	-0.16%	-0.16%	-0.16%

Cobb-Douglas		average \bar{R} (annual)			
$\varepsilon = 1$		-2.0%	-0.5%	1.0%	
average	0.0%	-1.00%	-0.98%	n/a	
R_t	2.0%	-0.52%	-0.51%	-0.49%	
(annual)	4.0%	-0.32%	-0.31%	-0.30%	

Welfare from increased transfer: 0.5x

Blanchard Results

Model

Calibration

Percent change in long-run average lifetime utility from increased promised transfer \bar{H}

Evans Replication

•0

linear prod.		average \bar{R} (annual)		
$\varepsilon = \infty$		-2.0%	-0.5%	1.0%
average	0.0%	-1.44%	-1.44%	n/a
R_t	2.0%	-0.55%	-0.55%	-0.55%
(annual)	4.0%	-0.27%	-0.27%	-0.27%

Cobb-Douglas		average \bar{R} (annual)		
$\varepsilon = 1$		-2.0%	-0.5%	1.0%
average	0.0%	-3.14%	-3.08%	n/a
R_t	2.0%	-1.28%	-1.23%	-1.19%
(annual)	4.0%	-0.71%	-0.68%	-0.65%

Welfare from increased transfer: x=0

Blanchard Results

Model

Calibration

Percent change in long-run average lifetime utility from increased promised transfer \bar{H}

Evans Replication

00

linear prod.		average \bar{R} (annual)		
$\varepsilon = \infty$		-2.0%	-0.5%	1.0%
average	0.0%	-20.59%	-20.59%	n/a
R_t	2.0%	-1.83%	-1.83%	-1.83%
(annual)	4.0%	-0.73%	-0.73%	-0.73%

Cobb-Douglas		average \bar{R} (annual)			
$\varepsilon = 1$		-2.0%	-0.5%	1.0%	
average	0.0%	-39.87%	-38.30%	n/a	
R_t	2.0%	-19.05%	-18.01%	-17.00%	
(annual)	4.0%	-5.84%	-5.43%	-5.04%	

- Replication results: no positive long-run welfare gains in any calibrated parameterization
- Reducing young-agent endowment x₁ exacerbates long-run welfare losses

 Calibration using small interest rate spread (low equity premium) likely biases results toward beneficial government debt