Does Insurance for Treatment Crowd Out Prevention?
Evidence from Diabetics’ Insulin Usage

Daniel Kaliski1

1Birkbeck, University of London

Allied Social Science Association Meetings, 4th Jan. 2020
Motivation: Prevention

- *Ex ante* moral hazard: decrease efforts to avoid bad state if insured

- *Question:* how much does investment in health decrease if only treatment is covered?

- This paper: Evidence that insurance for treatment alone has large negative effects on prevention
Motivation: Setting

- Pre-2006:
 - U. S. over-65s covered for physicians and hospitals, but not medications

- Post-2006:
 - Medications covered for over-65s (“Medicare Part D”)

- Diabetics: 12-15% of the U.S. population & fastest growing chronic illness globally

- High costs of care - $850 billion, ~1% of global GDP (Bommer et al., 2017, Lancet)
This Paper

1. Regression discontinuity design: insurance for treatment alone

2. Difference-in-discontinuities design: allow effect to differ post-2006 - coverage for prevention added

3. Use life-cycle model to

 Reconcile results with literature and

 Derive results’ relationship to compensated elasticity

 Key simplification: no cumulative effects of human capital investment
Preview of Findings

1. Pre-2006: Insulin usage falls by -8 pp from 26% to 18% at age 65

2. Post-2006: subsidies for insulin offset this more than one-for-one

 Post-2006 effect is a net increase of +7 pp

3. Model shows that compensated elasticity \geq measured elasticity
Contribution

1. First evidence of large moral hazard effects in health behaviors due to provision of health insurance (cf. Card et al. 2008, AER; Finkelstein et al., 2012, QJE)
 - Consonant with literature on provision of treatment for AIDS & opioid overdoses (Goldman, Lakdawalla & Sood, 2006, QJE; Doleac & Mukherjee, 2019)
 Policy implication: underestimating extent of measures necessary to encourage prevention

2. First use of different life-cycle elasticities to analyse differences across studies of prevention (cf. Keane 2010, JEL, Ried 1998 JHE)
Structure of this Talk

▶ Background & Data
▶ Empirical Strategy
▶ Results
▶ Theoretical Framework
▶ Conclusion
Background: Diabetes (I)

- 10% of diabetics are Type I - will not survive long without insulin
Background: Diabetes (I)

- 10% of diabetics are Type I - will not survive long without insulin
- Majority are Type II - developed in older adulthood
Background: Diabetes (I)

- 10% of diabetics are Type I - will not survive long without insulin
- Majority are Type II - developed in older adulthood
- Early on, can use diet and oral medication (Metformin)
Background: Diabetes (I)

- 10% of diabetics are Type I - will not survive long without insulin
- Majority are Type II - developed in older adulthood
- Early on, can use diet and oral medication (Metformin)
- Insulin is typically used once disease worsens
Background: Diabetes (I)

- 10% of diabetics are Type I - will not survive long without insulin
- Majority are Type II - developed in older adulthood
- Early on, can use diet and oral medication (Metformin)
- Insulin is typically used once disease worsens
 - Usage can decline by 20% over a two-year period from initiation (Brown et al., 1999)
Costs of Insulin in the United States Pre-2006

- Non-monetary: Insulin complicated to use
Costs of Insulin in the United States Pre-2006

- Non-monetary: Insulin complicated to use
- Expensive:

 - No generic version
 - Coinsurance rates high (~50%)
 - $60 per vial in 2018 dollars in 1998 × 54 vials a year = $3240 a year
 - 200% of the federal poverty line in 1998 in 2018 dollars is $33500
 - Nearly 10% of household income without insurance
Costs of Insulin in the United States Pre-2006

- Non-monetary: Insulin complicated to use
- Expensive:
 - No generic version

- Coinsurance rates high (∼50%)
- $60 per vial in 2018 dollars in 1998 × 54 vials a year = $3,240 p. a.
- 200% of the federal poverty line in 1998 in 2018 dollars is $33,500:
 - Nearly 10% of household income without insurance
Costs of Insulin in the United States Pre-2006

- Non-monetary: Insulin complicated to use

- Expensive:
 - No generic version
 - Coinsurance rates high (∼50%)
Costs of Insulin in the United States Pre-2006

- Non-monetary: Insulin complicated to use

- Expensive:
 - No generic version
 - Coinsurance rates high (~50%)
Costs of Insulin in the United States Pre-2006

- Non-monetary: Insulin complicated to use

- Expensive:
 - No generic version
 - Coinsurance rates high (∼50%)
 - $60 per vial in 2018 dollars in 1998 × 54 vials p.a. = $3 240 p. a.

- 200% of the federal poverty line in 1998 in 2018 dollars is $33 500:
Costs of Insulin in the United States Pre-2006

- Non-monetary: Insulin complicated to use

- Expensive:
 - No generic version
 - Coinsurance rates high (≈50%)

- 200% of the federal poverty line in 1998 in 2018 dollars is $33,500:
 - Nearly 10% of household income without insurance
Regression Discontinuity Design

- RDD, if individual i’s age in months R_{it} exceeds eligibility threshold \bar{R}, $D_{it} = 1$ if person i is covered in period t, instrument for D_{it} with eligibility rule $1[R_{it} \geq \bar{R}]$,

$$Y_{it} = \beta_0 + \beta_1 D_{it} + \gamma_0 R_{it} + \gamma_1 1[R_{it} \geq \bar{R}] \times R_{it} + \delta X_{it} + \zeta t + \eta_i + \nu_{it} \text{ for } |R_{it} - \bar{R}| < h;$$

- Identifying assumption: no other discontinuities at cutoff
“Crowding Out” Pre-2006 & “Crowding In” Post-2006

▶ Intuition: behavior at the cutoff in 2006 different \implies policy changes net effect on behavior

$$Y_{it} = \beta_0 + \beta_1 D_{it} + \beta_2 1[t \geq 2006] + \beta_3 D_{it} \times 1[t \geq 2006] + \gamma_0 R_{it} + \gamma_1 1[R_{it} \geq \bar{R}] \times R_{it} + \delta X_{it} + \zeta t + \eta_i + \nu_{it}$$

▶ Assumption to id β_3: no other important differences at 65 between 2006 and previous years (i.e. cohort effects, simultaneous policy changes):
<table>
<thead>
<tr>
<th></th>
<th>(1) Employed</th>
<th>(2) Retired</th>
<th>(3) Partly Retired</th>
<th>(4) Hours</th>
<th>(5) Earnings</th>
<th>(6) Social Security</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.03</td>
<td>-0.03</td>
<td>0.09</td>
<td>-0.31</td>
<td>731.71</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td>(0.76)</td>
<td>(-0.72)</td>
<td>(1.01)</td>
<td>(-0.13)</td>
<td>(0.87)</td>
<td>(-0.11)</td>
</tr>
</tbody>
</table>

t statistics in parentheses

* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$
Other Health Outcomes, Diabetic Women, 1998-2004

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Hospital Stay Nights in Hospital</td>
<td>-0.04</td>
<td>3.09</td>
<td>0.14*</td>
<td>2.34</td>
</tr>
<tr>
<td>Any Doctor Visit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. Doctor Visits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney Problems</td>
<td>0.25</td>
<td>-0.09</td>
<td>-0.02</td>
<td>3.80</td>
</tr>
<tr>
<td>Poor Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes Diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* t statistics in parentheses

* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$
Difference-in-Discontinuities 1998-2008: Other Outcomes

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.08</td>
<td>-0.03</td>
<td>-0.00</td>
<td>-0.04</td>
</tr>
<tr>
<td>(1.37)</td>
<td>(-1.27)</td>
<td>(-0.00)</td>
<td>(-1.16)</td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>-0.03</td>
<td>0.06*</td>
<td>-0.06</td>
</tr>
<tr>
<td>(1.56)</td>
<td>(-1.12)</td>
<td>(2.24)</td>
<td>(-1.79)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours</th>
<th>Earnings</th>
<th>Soc. Sec.</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.11</td>
<td>-574.21</td>
<td>0.05***</td>
<td>0.05**</td>
</tr>
<tr>
<td>(-0.11)</td>
<td>(-0.63)</td>
<td>(4.54)</td>
<td>(2.69)</td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.31</td>
<td>-2252.86</td>
<td>0.05***</td>
<td>0.05**</td>
</tr>
<tr>
<td>(-0.27)</td>
<td>(-1.24)</td>
<td>(4.60)</td>
<td>(2.69)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Absence of Credit Constraints</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\hat{D}_{it}</td>
<td>-0.08*</td>
<td>-0.08**</td>
<td>-0.08**</td>
</tr>
<tr>
<td></td>
<td>(-2.50)</td>
<td>(-2.62)</td>
<td>(-2.62)</td>
</tr>
<tr>
<td>$1[t \geq 2006]$</td>
<td>-0.14*</td>
<td>-0.14*</td>
<td>-0.12*</td>
</tr>
<tr>
<td></td>
<td>(-2.53)</td>
<td>(-2.53)</td>
<td>(-2.38)</td>
</tr>
<tr>
<td>$D_{it} \times 1[t \geq 2006]$</td>
<td>0.15*</td>
<td>0.15*</td>
<td>0.13*</td>
</tr>
<tr>
<td></td>
<td>(2.41)</td>
<td>(2.42)</td>
<td>(2.28)</td>
</tr>
</tbody>
</table>

- By contrast, no effects on: oral medication use, exercise, or diet
Which Elasticity is Being Measured?

I estimate the intertemporal substitution (Frisch) effect of a lower price for treatment, since the price change is anticipated:

\[\varepsilon_{F}^{\phi_2, P^M} \equiv \left(\frac{P^M}{\phi_2} \right) \left(\frac{\partial \phi_2}{\partial P^M} \right) \left| \frac{\partial \mu}{\partial P^M} = 0 \right. \]

\[= - \left(\frac{P^M}{\phi_2} \right) \left(\frac{V_{\phi M} \left(\frac{\partial M_2}{\partial P^M} \right)}{V_{\phi \phi}} \right) > 0, \]

Compensated elasticity at least as large

Motivation: disparity between literatures on (i) specific interventions and (ii) health insurance expansions

- Latter often include income effects that can offset \textit{ex ante} moral hazard

Abstracts from cumulative effects & dynamic effects of lifespan extension
Conclusion

- In 1998-2004, Medicare coverage decreased the proportion of female diabetics who use insulin by 8 pp

- Post-2006, this is cancelled out by coverage for insulin

- Theoretical model reconciles with the literature:
 - Income effects likely larger than believed
 - Estimates here are lower bounds for the compensated effects