AEA/ASSA 2020 Annual Meetings

Use of Machine Learning Algorithms

Predicting Success among Female Entrepreneurs

Evidence from Three African Countries

Joao Montalvao
Africa Gender Innovation Lab, World Bank

Dario Sansone

Vanderbilt University
and University of Exeter

Friday January, $3^{\text {rd }} 2020$

Looking for high-growth female firms

- High-growth firms: 20\% of firms in manufacturing and service sectors
- But contribute up to 80% to new sales and jobs in developing countries (Goswami et al., 2019)
- Female entrepreneurship seen as a way to stimulate economic growth and increase female economic empowerment (Hallward-Driemeier, 2013; Brixiová et al., 2019)
- Access to capital key barrier limiting female entrepreneurs in poor countries (Delecourt and Ng, 2019)
- Previous attempts at finding high-growth firms based on observable info led to lackluster results (Goswami et al., 2019)

Research question

- Can we identify successful female entrepreneurs?
- New rich and large data from Ethiopia, Tanzania, and Togo
- Compare simple models with heuristic models and ML algorithms

Preview of findings

- All models have low predicting power when focusing on profit levels in Tanzania
- Promising results when concentrating on top firms
- Past profits, sales, and employment levels powerful predictors of future performance
- ML algorithms often achieve higher performance, but results vary across algorithms, Cl wide and overlapping
- Substantially higher performance when combining data from all three countries
- ML algorithms can identify 45\% of top firms

Related work

- Almost no studies on predicting successful entrepreneurs in developing countries
- Fafchamps and Woodruff (2017) judges’ evaluations vs. survey-based measures
- Both have some predictive power in Ghana
- McKenzie and Sansone (2019): large business plan competition in Nigeria
- Business plan scores from judges uncorrelated with business survival, employment, sales, profit levels
- All models achieve low R^{2} and accuracy rates
- No noticeable improvements from ML

Contribution

- Replicate most of the findings from McKenzie and Sansone (2019)
- Focus on female entrepreneurs
- Larger sample size
- Richer data
- Secondary use of data from multiple RCTs

Data

- First analysis: Tanzania
- 4,003 female microentrepreneurs (2016-2018)
- Data on respondents' mobile money (M-Pesa) and mobile savings/loans (M-Pawa) weekly transactions
- Second analysis: Tanzania plus Ethiopia and Togo
- 2,369 female-owned middle-size firms in Ethiopia (20142017)
- 789 female microentrepreneurs in Togo (2013-2016)

Basic models

1. Benchmark model with just a constant
2. Age
3. Educations (Van Der Sluis et al., 2008; Queiro, 2016)
4. When the firm was founded (Agarwal and Gort, 2002)
5. Baseline performance: past profits, past sales, \#employees
6. Heuristic model (Fafchamps and Woodruff, 2017; McKenzie and Sansone, 2019)

- Age, marital status, education and ability, business knowledge, household wealth, risk aversion, business industry, access to credit, life satisfaction and optimism

7. Heuristic model with past performance

ML algorithms

- LASSO
- Support Vector Machine
- Boosting
- Combine ML algorithms with Ensemble
- Different levels of flexibility and interpretability
- Fully exploit rich set of possible predictors
- \# predictors becomes even larger after considering how responses to certain questions should be coded (e.g. which incorrect answer one chooses)
- 5 -fold CV procedure (80% training, 20% hold-out)

Goodness-of-fit

- Continuous outcomes
- MSE
- Pearson correlation coefficient (\mathbf{R}^{2})
- Binary outcomes:
- Accuracy: proportion of predictions that are correct out of all observations
- Recall: proportion of top firms correctly identifies

Profit levels and growth. Tanzania

- Age, education, firm age: low predictive power

			Profit levels			Profit growth		
			MSE		R^{2}		MSE	R^{2}
			Model	Predictors	Mean	C.I.		Mean
1	OLS	Constant	23.08	$[20.05 ; 26.11]$	0.0%	28,494	$[24,437 ; 32,551]$	0.0%
2	OLS	Age	23.09	$[20.06 ; 26.13]$	0.2%	28,545	$[24,476 ; 32,614]$	0.1%
3	OLS	Education	22.99	$[19.97 ; 26.02]$	0.4%	28,512	$[24,462 ; 32,563]$	0.0%
4	OLS	Firm age	22.68	$[19.71 ; 25.66]$	1.8%	28,522	$[24,475 ; 32,569]$	0.0%
5	OLS	Past performance	22.08	$[19.11 ; 25.05]$	4.4%	26,111	$[22,635 ; 29,586]$	8.4%
6	OLS	Heuristic	22.95	$[20.00 ; 25.90]$	1.2%	27,765	$[23,796 ; 31,735]$	2.6%
7	OLS	Heuristic + Past	22.21	$[19.27 ; 25.14]$	4.2%	25,518	$[22,151 ; 28,884]$	10.4%
8	LASSO	All baseline	22.26	$[19.34 ; 25.19]$	3.6%	24,450	$[21,235 ; 27,665]$	15.0%
9	SVM	All baseline	22.76	$[19.63 ; 25.89]$	3.4%	27,697	$[23,824 ; 31,569]$	2.7%
10	Boosting	All baseline	22.05	$[19.13 ; 24.97]$	4.5%	24,524	$[21,350 ; 27,698]$	13.8%
11	Ensemble	All baseline	21.94	$[19.05 ; 24.83]$	5.0%	24,360	$[21,178 ; 27,541]$	14.5%

Profit levels and growth. Tanzania

- Past profits, sales, \#employees reliable predictors

			Profit levels				Profit growth	
			MSE		R^{2}		MSE	R^{2}
			Model	Predictors	Mean	C.I.		Mean
1	OLS	Constant	23.08	$[20.05 ; 26.11]$	0.0%	28,494	$[24,437 ; 32,551]$	0.0%
2	OLS	Age	23.09	$[20.06 ; 26.13]$	0.2%	28,545	$[24,476 ; 32,614]$	0.1%
3	OLS	Education	22.99	$[19.97 ; 26.02]$	0.4%	28,512	$[24,462 ; 32,563]$	0.0%
4	OLS	Firm age	22.68	$[19.71 ; 25.66]$	1.8%	28,522	$[24,475 ; 32,569]$	0.0%
5	OLS	Past performance	22.08	$[19.11 ; 25.05]$	4.4%	26,111	$[22,635 ; 29,586]$	8.4%
6	OLS	Heuristic	22.95	$[20.00 ; 25.90]$	1.2%	27,765	$[23,796 ; 31,735]$	2.6%
7	OLS	Heuristic + Past	22.21	$[19.27 ; 25.14]$	4.2%	25,518	$[22,151 ; 28,884]$	10.4%
8	LASSO	All baseline	22.26	$[19.34 ; 25.19]$	3.6%	24,450	$[21,235 ; 27,665]$	15.0%
9	SVM	All baseline	22.76	$[19.63 ; 25.89]$	3.4%	27,697	$[23,824 ; 31,569]$	2.7%
10	Boosting	All baseline	22.05	$[19.13 ; 24.97]$	4.5%	24,524	$[21,350 ; 27,698]$	13.8%
11	Ensemble	All baseline	21.94	$[19.05 ; 24.83]$	5.0%	24,360	$[21,178 ; 27,541]$	14.5%

Profit levels and growth. Tanzania

- Heurist model underperforms

	Model	Predictors	Profit levels			Profit growth		
				MSE	R^{2}		MSE	R^{2}
			Mean	C.I.		Mean	C.I.	
1	OLS	Constant	23.08	[20.05; 26.11]	0.0\%	28,494	[24,437; 32,551]	0.0\%
2	OLS	Age	23.09	[20.06; 26.13]	0.2\%	28,545	[24,476; 32,614]	0.1\%
3	OLS	Education	22.99	[19.97; 26.02]	0.4\%	28,512	[24,462; 32,563]	0.0\%
4	OLS	Firm age	22.68	[19.71; 25.66]	1.8\%	28,522	[24,475; 32,569]	0.0\%
5	OLS	Past performance	22.08	[19.11; 25.05]	4.4\%	26,111	[22,635; 29,586]	8.4\%
6	OLS	Heuristic	22.95	[20.00; 25.90]	1.2\%	27,765	[23,796; 31,735]	2.6\%
7	OLS	Heuristic + Past	22.21	[19.27; 25.14]	4.2\%	25,518	[22,151; 28,884]	10.4\%
8	LASSO	All baseline	22.26	[19.34; 25.19]	3.6\%	24,450	[21,235; 27,665]	15.0\%
9	SVM	All baseline	22.76	[19.63; 25.89]	3.4\%	27,697	[23,824; 31,569]	2.7\%
10	Boosting	All baseline	22.05	[19.13; 24.97]	4.5\%	24,524	[21,350; 27,698]	13.8\%
11	Ensemble	All baseline	21.94	[19.05; 24.83]	5.0\%	24,360	[21,178; 27,541]	14.5\%

Profit levels and growth. Tanzania

- ML: small improvements, large Cl (McKenzie and Sansone, 2019; Beattie et al., 2016; Goel et al., 2010)

			Profit levels				Profit growth	
			MSE		R^{2}		MSE	R^{2}
			Model	Predictors	Mean	C.I.		Mean
1	OLS	Constant	23.08	$[20.05 ; 26.11]$	0.0%	28,494	$[24,437 ; 32,551]$	0.0%
2	OLS	Age	23.09	$[20.06 ; 26.13]$	0.2%	28,545	$[24,476 ; 32,614]$	0.1%
3	OLS	Education	22.99	$[19.97 ; 26.02]$	0.4%	28,512	$[24,462 ; 32,563]$	0.0%
4	OLS	Firm age	22.68	$[19.71 ; 25.66]$	1.8%	28,522	$[24,475 ; 32,569]$	0.0%
5	OLS	Past performance	22.08	$[19.11 ; 25.05]$	4.4%	26,111	$[22,635 ; 29,586]$	8.4%
6	OLS	Heuristic	22.95	$[20.00 ; 25.90]$	1.2%	27,765	$[23,796 ; 31,735]$	2.6%
7	OLS	Heuristic + Past	22.21	$[19.27 ; 25.14]$	4.2%	25,518	$[22,151 ; 28,884]$	10.4%
8	LASSO	All baseline	22.26	$[19.34 ; 25.19]$	3.6%	24,450	$[21,235 ; 27,665]$	15.0%
9	SVM	All baseline	22.76	$[19.63 ; 25.89]$	3.4%	27,697	$[23,824 ; 31,569]$	2.7%
10	Boosting	All baseline	22.05	$[19.13 ; 24.97]$	4.5%	24,524	$[21,350 ; 27,698]$	13.8%
11	Ensemble	All baseline	21.94	$[19.05 ; 24.83]$	5.0%	24,360	$[21,178 ; 27,541]$	14.5%

- Mobile data among selected predictors (Björkegren and Grissen, 2019)

Top firms. Tanzania

- Can we identify firms in the top $\mathbf{1 0 \%}$ of the profit distribution?

			Profit levels				Profit growth	
			Accuracy		Recall	Accuracy		Recall
			Model	Predictors	Mean	C.I.		Mean
1	OLS	Constant	81.5%	$[79.4 \%, 83.6 \%]$	11.8%	80.1%	$[77.9 \%, 82.3 \%]$	7.0%
2	OLS	Age	79.9%	$[77.7 \% ; 82.2 \%]$	4.7%	80.6%	$[78.4 \% ; 82.9 \%]$	9.3%
3	OLS	Education	81.3%	$[79.1 \% ; 83.4 \%]$	10.6%	80.4%	$[78.0 \% ; 82.7 \%]$	8.1%
4	OLS	Firm age	81.5%	$[79.5 \%, 83.5 \%]$	11.8%	80.4%	$[78.2 \% ; 82.5 \%]$	8.1%
5	OLS	Past performance	85.9%	$[83.8 \% ; 88.1 \%]$	31.8%	84.9%	$[82.6 \% ; 87.2 \%]$	27.9%
6	OLS	Heuristic	83.1%	$[80.8 \% ; 85.3 \%]$	18.8%	84.6%	$[82.2 \% ; 87.1 \%]$	26.7%
7	OLS	Heuristic + Past	85.2%	$[83.0 \% ; 87.3 \%]$	28.2%	86.0%	$[83.7 \% ; 88.2 \%]$	32.6%
8	LASSO	All baseline	84.6%	$[82.4 \% ; 86.9 \%]$	25.9%	88.1%	$[85.8 \% ; 90.4 \%]$	41.9%
9	SVM	All baseline	83.6%	$[81.2 \% ; 86.0 \%]$	21.2%	83.8%	$[81.6 \% ; 86.1 \%]$	23.3%
10	Boosting	All baseline	87.2%	$[85.1 \% ; 89.4 \%]$	37.6%	85.7%	$[83.4 \% ; 88.0 \%]$	31.4%
11	Ensemble	All baseline	85.2%	$[82.9 \% ; 87.4 \%]$	28.2%	86.8%	$[84.6 \% ; 89.0 \%]$	36.0%

- Promising results

Profit levels and growth. Pooled

- Substantial improvement in ML performance, especially for profit growth

	Model	Predictors	Profit levels			Profit growth		
				MSE	R ${ }^{2}$		MSE	R^{2}
			Mean	C.I.		Mean	C.I.	
1	OLS	Constant	5.27	[4.85; 5.71]	0.0\%	29,894	[26,666; 33,122]	0.0\%
2	OLS	Age	5.26	[4.82; 5.69]	0.5\%	29,866	[26,638; 33,095]	0.1\%
3	OLS	Education	5.26	[4.83; 5.70]	0.3\%	29,855	[26,627; 33,084]	0.1\%
4	OLS	Firm age	5.16	[4.73; 5.59]	2.2\%	29,828	[26,612; 33,044]	0.3\%
5	OLS	Past performance	4.96	[4.49; 5.44]	6.3\%	27,484	[24,552; 30,415]	8.8\%
6	OLS	Heuristic	5.23	[4.79; 5.67]	1.0\%	30,039	[26,815; 33,263]	0.0\%
7	OLS	Heuristic + Past	4.93	[4.46; 5.40]	7.0\%	27,544	[24,621; 30,467]	8.3\%
8	LASSO	All baseline	4.76	[4.31; 5.20]	9.9\%	26,152	[23,456; 28,849]	12.9\%
9	SVM	All baseline	4.91	[4.39; 5.43]	10.2\%	26,979	[23,967; 29,992]	10.7\%
10	Boosting	All baseline	4.76	[4.30; 5.22]	10.1\%	23,007	[20,504; 25,510]	23.7\%
11	Ensemble	All baseline	4.73	[4.27; 5.18]	10.7\%	23,043	[20,551; 25,534]	23.5\%

Top firms. Pooled

- Correctly identify 45% high-growth firms

	Model	Predictors	Profit levels			Profit growth		
				Accuracy	Recall		Accuracy	Recall
			Mean	C.I.		Mean	C.I.	
1	OLS	Constant	81.5\%	[79.8\%; 83.1\%]	8.1\%	80.4\%	[78.8\%, 82.1\%]	7.5\%
2	OLS	Age	81.5\%	[79.9\%; 83.0\%]	8.1\%	81.4\%	[79.7\%, 83.0\%]	11.6\%
3	OLS	Education	82.3\%	[80.8\%; 83.9\%]	12.5\%	81.2\%	[79.5\%, 82.9\%]	11.0\%
4	OLS	Firm age	81.8\%	[80.3\%; 83.2\%]	9.6\%	81.0\%	[79.3\%, 82.8\%]	10.3\%
5	OLS	Past performance	88.2\%	[86.6\%; 89.7\%]	41.2\%	86.6\%	[84.9\%; 88.3\%]	34.9\%
6	OLS	Heuristic	83.5\%	[82.0\%; 85.1\%]	18.4\%	81.0\%	[79.4\%; 82.7\%]	10.3\%
7	OLS	Heuristic + Past	87.4\%	[85.8\%; 89.0\%]	37.5\%	85.1\%	[83.2\%; 86.9\%]	28.1\%
8	LASSO	All baseline	87.4\%	[85.8\%; 89.0\%]	37.5\%	86.6\%	[85.0\%; 88.2\%]	34.9\%
9	SVM	All baseline	88.2\%	[86.5\%; 89.8\%]	41.2\%	85.2\%	[83.5\%; 86.9\%]	28.8\%
10	Boosting	All baseline	87.6\%	[86.0\%; 89.1\%]	38.2\%	88.6\%	[86.9\%; 90.2\%]	43.8\%
11	Ensemble	All baseline	88.0\%	[86.5\%; 89.5\%]	40.4\%	88.8\%	[87.1\%; 90.4\%]	44.5\%

Investment simulation

- $3 x$ higher returns than randomly picking firms

			Investment Simulation	
	Model	Predictors	Mean	C.I.
1	OLS	Constant	19,801	$[10,531 ; 29,071]$
2	OLS	Age	14,890	$[6,314 ; 23,465]$
3	OLS	Education	19,017	$[13,832 ; 24,202]$
4	OLS	Firm age	16,548	$[10,863 ; 22,232]$
5	OLS	Past performance	58,487	$[42,514 ; 74,460]$
6	OLS	Heuristic	29,012	$[18,338 ; 39,686]$
7	OLS	Heuristic + Past	56,208	$[41,119 ; 71,296]$
8	LASSO	All baseline	56,982	$[42,069 ; 71,894]$
9	SVM	All baseline	61,866	$[45,870 ; 77,863]$
10	Boosting	All baseline	55,319	$[39,950 ; 70,689]$
11	Ensemble	All baseline	59,705	$[42,960 ; 76,450]$

Conclusions

- Difficult to predict successful entrepreneurs using survey data: R^{2} always below 11% for profit levels
- ML algorithms can do significantly better than basic and heuristic models
- Requirement: large and rich data
- Currently collaborating with fintech company to further develop and distribute a ML algorithm
- Future research:
- Use predictions from ML algorithms as preliminary step in RCTs (Chandler et al., 2011)
- Incorporate ML predictions in human decisions

Thank you!

Review ML literature on my website

- @SansoneEcon

