# Sequential versus Simultaneous Disclosure

Keri (Peicong) Hu and Joel Sobel

December 29, 2019

Sequential Versus Simultaneous Disclosure

Hu and Sobel

# MODEL

- I finite player set.
- ► Common action set X; X is a finite subset of the real line.
- ▶  $x = (x_1, ..., x_l), x_i \in \mathbb{R}$ , let  $M(x) = \max\{x_1, ..., x_l\}$ .
- ▶ Payoffs  $\tilde{u}_i(x) = u_i(M(x))$ , where  $u_i(\cdot) : X \to \mathbb{R}$  are arbitrary.

### Interpretation

- Unmodeled decision maker in organization.
- ► DM needs authorization from (at least) one player.
- Authorization of the form "you can take action x<sub>i</sub>." (Default is min X.)
- ► DM prefers higher *x*.

# Not Today

- 1. X not linearly ordered.
- 2. X not common to all agents.
- 3. DM's preferences not monotonic.
- 4. Authorization requires more than one agent.

Time permitting: Alternative interpretations of model.

## **Basic Questions**

- 1. How well does DM do?
- 2. How should DM consult agents?
- 3. What is the value of having additional agents?

# **Basic Answers**

- 1. DM's outcome:
  - Simultaneous consultation has full disclosure equilibrium.
  - This equilibrium is silly.
  - Equilibria in full disclosure game are Pareto ranked.
  - Refinement picks agents' favorite; DM's least favorite.
- 2. DM with discretion (described later) does exactly as well with sequential mechanisms as with simultaneous.
- 3. Easy to quantify whether an agent agent helps.

## Context

- 1. Literature on communication suggests adding just one agent can generate DM's favorite outcome.
- 2. Literature on communication suggests simultaneous superior to sequential.
- These (stylized) assertions are "less true" in this model:
  - 1. DM's favorite **is** an equilibrium in two-player game, but it is typically not an equilibrium if one removes weakly dominated strategies.
  - 2. Sequential consultation cannot do better than simultaneous consultation (generically), but if DM has commitment power it will not do worse.

# Pareto Efficiency

### Definition

### The smallest strictly Pareto equilibrium outcome is

$$\pi^* = \min\{\pi : u_i(\pi) > u_i(x_i) \text{ for all } x_i > \pi \text{ and all } i\}.$$

### Definition

The smallest weakly Pareto equilibrium outcome is

$$\tilde{\pi}^* = \min\{\pi : u_i(\pi) \ge u_i(x_i) \text{ for all } x_i > \pi \text{ and all } i\}.$$

- 1.  $\pi^*$  and  $\tilde{\pi}^*$  are well defined.
- $2. \ \pi^* \geq \tilde{\pi}^*.$
- 3. Equality if  $u_i(\cdot)$  is one-to-one for each player.
- 4. "Pareto" (efficient) from the point of view of agents (restrict to equilibria).

## Simultaneous Disclosure

Agent *i* selects  $x_i$ . Payoffs  $u_i(M(x))$ 

## Simple Observations about NE

- 1. If  $x = (x_1, ..., x_l)$  satisfies  $x_i \le \pi$  and at least two  $x_j = \pi^*$  is a Nash Equilibrium for  $\pi = \pi^*$  and  $\tilde{\pi}^*$ .
- 2.  $\max X$  is always NE outcome.
- 3. Pure-strategy NE are Pareto ranked: If  $x^*$  and  $x^{**}$  are both Nash Equilibria and  $M(x^*) \leq M(x^{**})$ , then  $\tilde{u}_i(x^*) \geq \tilde{u}_i(x^{**})$  for all *i*. This leads us to consider a more restrictive solution concept.

 $\max X$  great for the (unmodeled) DM, but is the worst NE for agents.

# Simple Observations about NE

- 1. If  $x = (x_1, ..., x_l)$  satisfies  $x_i \le \pi$  and at least two  $x_j = \pi^*$  is a Nash Equilibrium for  $\pi = \pi^*$  and  $\tilde{\pi}^*$ .
- 2.  $\max X$  is always NE outcome.
- 3. Pure-strategy NE are Pareto ranked: If  $x^*$  and  $x^{**}$  are both Nash Equilibria and  $M(x^*) \leq M(x^{**})$ , then  $\tilde{u}_i(x^*) \geq \tilde{u}_i(x^{**})$  for all *i*. This leads us to consider a more restrictive solution concept.

 $\max X$  great for the (unmodeled) DM, but is the worst NE for agents.

Look for refinements.

# Warm Up: Single-Peaked Preferences

Assume each *i* has single-peaked preferences:

```
For each i there is m_i such that u_i(\cdot) increases for x_i < m_i, decreases for x_i > m_i.
```

- 1. General properties of equilibria remain (Pareto ranked, full disclosure possible), but
- 2. "Obviously" it is dominant for Agent i to play  $m_i$ .
- 3. Properties:
  - 3.1 Easy characterization.
  - 3.2 (Refined) outcome is (typically) less than full disclosure.
  - 3.3 DM only needs one agent (maximum  $m_i$ ).
  - 3.4 Informally, no loss or gain associated with sequential procedures.

## Iterative Deletion of Weakly Dominated Strategies

#### Definition

Given subsets  $X'_i \subset X_i$ , with  $X' = \prod_{i \in I} X'_i$ , Player *i*'s strategy  $x_i \in X'_i$  is weakly dominated relative to X' if there exists  $z_i \in X'_i$  such that  $\tilde{u}_i(x_i, x_{-i}) \leq \tilde{u}_i(z_i, x_{-i})$  for all  $x_{-i} \in X'_{-i}$ , with strict inequality for at least one  $x_{-i} \in X'_{-i}$ .

#### Definition

The set  $S = S_1 \times \cdots \times S_i \subset X$  survives iterated deletion of weakly dominated strategies (IDWDS) if for k = 0, 1, 2... there are sets  $S^k = S_1^k \times \cdots \times S_i^k$ , such that  $S^0 = X$ ,  $S^k \subset S^{k-1}$  for k > 0;  $S_i^k$ is obtained by (possibly) removing strategies in  $S_i^{k-1}$  that are weakly dominated relative to  $S^{k-1}$ ;  $S^k = S^{k-1}$  if and only if for each *i* no strategy in  $S_i^k$  is weakly dominated relative to  $S^{k-1}$ ; and each  $S_i$  can be written in the form  $\bigcap_{k=1}^{\infty} S_i^k$ .

### Comments

- 1. Process stops after finitely many steps (finite game).
- 2. Order generally matters (but not in generic cases and not much in general).

## First Result

### Proposition

If x is a strategy profile that survives IDWDS, then  $M(x) \in [\tilde{\pi}^*, \pi^*]$ . If x is a Nash equilibrium strategy profile that survives IDWDS, then  $\tilde{u}_i(x) \ge u_i(\pi^*)$  for all *i*.

#### Corollary

If  $\pi^* = \tilde{\pi}^*$ , then for all x that survives IDWDS,  $M(x) = \pi^*$ .

### Comments

- 1. Bounds on payoffs that survive refinement (typically strict reduction).
- 2. Corollary follows directly from Proposition.
- 3. Corollary says "generically" IDWDS selects Senders' favorite equilibrium.
- 4. Compared to single-peaked case:
  - 4.1 Generally need full power of iterated deletion.
  - 4.2 Still typically get less than  $\max X$ .
  - 4.3 Extra agents help if they increase  $\pi^*$ .

# Idea of Proof

1. "Low disclosures stay."

There always remain strategy profiles x such that  $\max\{x_1, \ldots, x_I\} \le \pi^*$ .

By definition, if other agents are below  $\pi^*,$  best response is below  $\pi^*.$ 

2. "Very low disclosures leave."

There exists no strategy profile  $x \in S$  such that  $M(x) < \tilde{\pi}^*$ .

Disclosing  $\tilde{\pi}^*$  (or higher) eventually dominates for someone. 3. "High strategies leave."

```
No strategy z_i > \pi^* survives IDWDS.
```

Sequential Versus Simultaneous Disclosure

# Example: Second Result Needs Assumptions

- 1. Five information structures, 1, 2, 3, 4, 5; higher numbers better for DM.
- 2. Two Senders.
- 3. Sender 1 has strict preferences:  $2 \succ 4 \succ 1 \succ 5 \succ 3$ .
- 4. Sender 2 has strict preferences:  $1 \succ 3 \succ 2 \succ 5 \succ 4$ .
- 5. Unique outcome that survives IDWDS in the simultaneous game is full disclosure:  $\pi^* = \tilde{\pi}^* = 5$ .

## More

Four possible sequences without returning to an agent: consulting exactly one agent, or consulting both in either order. Without commitment, the possible outcomes are:

| Sequence        | Disclosure |
|-----------------|------------|
| Agent 1         | 2          |
| Agent 2         | 1          |
| Agent 1, then 2 | 1          |
| Agent 2, then 1 | 2          |

# More claims

Returning to an agent will not lead to higher x. Without commitment, sequential process need not lead to  $\pi^*$ .

Commitment, no return:

- Start with E<sub>1</sub> and sometimes asks E<sub>2</sub>, then more is possible with commitment.
- ▶ If the *DM* stops after 1, 2, or 3, *E*<sub>1</sub> will announce 2, which will be the final outcome. If the *DM* stops after 4 or 5, the outcome will be 4.
- ► If the DM consults E<sub>1</sub> first, then he would do best by committing not to consult E<sub>2</sub> if E<sub>1</sub> plays at least 4.
- ► If DM consults E<sub>2</sub> first, he gets 1 if the DM stops after 1; 2 if the DM stops after 2, 4 or 5, and 3 if the DM stops at 3. DM can obtains 3 by consulting first E<sub>2</sub>, then E<sub>1</sub> (with commitment).

# Conclude

- The best the DM can do with commitment but without returning to agents is 4.
- Hence commitment increases DM's value, but does not generate 5.
- But: there is a sequential disclosure protocol that generates  $\pi^* = \tilde{\pi}^*$ .
- The protocol involves asking E<sub>1</sub>, then E<sub>2</sub>, and then going back to E<sub>1</sub>, with the commitment to stop if E<sub>2</sub> discloses 3.
- ▶ Why? If you start with E<sub>2</sub> and promise to stop after a disclosure of 3 (or more), then the disclosure will be either 3 or 5 (depending on the starting point). This leaves E<sub>1</sub> no choice but to disclose everything.

## Assertion

If DM can:

- 1. Pick order of agents consulted;
- 2. Return to agents;
- 3. Commit to ending process (after an appropriate action by an agent)

DM can induce  $\pi^*$ . (Never more.)

# Comparison

- 1. Simultaneous and Sequential are equivalent (same equilibrium value).
- 2. Simultaneous better: DM does not need to know preferences.
- 3. Simultaneous better: no need for commitment assumption.
- 4. Sequential better: only need one agent (with the threat of calling in others).

## More Commitment, Less Information Needed

Sequential protocol to obtain  $\pi^*$ :

1. Ask Agent 1: "Will you permit me to take max X?"

If yes, stop. If no, continue.

2. General step (no permission granted): Keep track of last agent asked (*i*) and which x asked.

2.1 If i < I, ask agent i + 1 "Will you permit me to take x?"

If yes, stop. If no, continue.

2.2 If i = I, ask agent 1: "Will you permit me to take L(x)?"

If yes, stop. If no, continue. [L(x) is the element of X just below x.]



Stronger commitment power versus lower information requirement.

# Alternative Interpretation I

Agents provide vital inputs:

- 1. x<sub>i</sub> is input to production process (could be information or physical item).
- 2. DM processes  $x = (x_1, \ldots, x_l)$  and takes an action.
- 3. M(x) is sufficient statistic for DM. (Makes more sense in the informational interpretation.)
- 4. DM's preferences are increasing in x.
- 5. Agents' preferences are arbitrary.

# Alternative Interpretation II

**Bayesian Persuasion** 

- 1. Agents actions are "experiments"
- 2. Here it is essential to study multi-dimensional case.