Bail-ins and Bailouts: Incentives, Connectivity, and Systemic Stability

Benjamin Bernard, Agostino Capponi, Joe Stiglitz

NTU, Columbia, Columbia

American Finance Association 2020 Annual Meeting
San Diego
Interconnectedness and risk

- In an interconnected system, shocks to one unit of system may (are likely to) have effects on others
 - But in some cases, impacts can be spread throughout the system
 - Net effect is limited (approaches zero with sufficient diversification)
- Advocates of global financial integration talk about the advantages of risk sharing
- But in the context of crises, they worried about contagion, the spread of “disease” from one entity to another
 - AIG Insurance was bailed out for $85 billion one day after Lehman Brothers defaults ($182 billion total). Troubled Asset Relief Program purchased assets in the size of $426 billion.
Is integration always desirable?

- The intuition behind why integration is desirable was based on “convexity”
 - With convex technologies and concave utility functions, risk sharing is always beneficial
 - If technologies are not convex, then risk sharing can lower expected utility
 - Plenty of non-convexities in the real world
 - Bankruptcy costs ([this paper](#))
 - Filing of Lehman Brothers wiped out $46 billion of its market value
 - Information (Radner-Stiglitz, Arnott-Stiglitz)
- Quarantines contain the spread of contagious diseases
Transmission of shocks

- Even without *direct* financial market interlinkages, there can be extensive interdependencies through which a shock in one part of the system can be transmitted to others.
 - Liquidity crises are associated with forced sales of assets, leading to price declines.
 Bernanke estimated that Bear Stearns’ rescue prevented a potential fire sale of nearly $210 billion of Bear Stearns’ assets.

- Financial linkages, while they may enhance risk sharing, may increase these adverse effects.
This paper focuses on the implications of interconnectedness on private and public intervention policies.

Without bail-outs:

But there had long been a view that it would be better to have bail-ins:
- Few successes (LTCM).
- Key question: how to induce banks to participate.
 - Banks will be hurt if there is not a bail-out after failures of counterparties.
 - But is the threat of government not to bail out credible?
 - Each bank has incentive to free ride on the bail-ins of other banks.
Key results

- Show that there may exist an optimal bail-in strategy, which takes into account costs of government funds and losses of banks.
- When such a bail-in strategy exists, it is preferable to a bail-out.
- Dense networks with intermediate size shocks make the bail-in strategy less credible because systemic risk is increased.
 - Reverse the desirability of dense vs. sparse networks for intermediate size shocks.
 - Calibration to data from 2018 EBA stress test shows that welfare losses in the sparsest network are lower than in the most dense network by more than 13.96% in the presence of intervention.
 - Emphasize key role of government policy as well as the nature of the shocks in assessing desirability of alternative network structures.
Main result visualized

Figure: Welfare losses in a diversified (blue) and a concentrated network (red) in the presence (solid lines) and absence (dashed lines) of intervention.

- When no-intervention losses exceed costs of a public bailout (black dashed line), the government’s threat to not intervene is not credible.
- If the threat is credible, contributions are larger in the sparse network because free-riding incentives are weaker.
- Without intervention or in a model with bailouts only, the diversified network is preferable unless the shock is too large.
Methods of Intervention

Bailout: Government provides liquidity through taxpayer money.

Example: Citigroup, AIG Insurance, and UBS, among others.

Bail-in: Creditors voluntarily forgive part of the debt in exchange for equity in the reorganized company.

Example: Long Term Capital Management was bailed-in in 1998. Under the supervision of the Federal Reserve Bank of New York, a total of 14 banks agreed to participate in a recapitalization plan.

Assisted/subsidized bail-in: Contributions from regulator and banks.

Example: Bear Stearns was sold to JP Morgan Chase for $1.2 billion with a government protection of $30 billion.
Model of the Financial Network
Model Primitives and Asset Liquidation

Balance sheet of bank $i = 1, \ldots, n$ is described by:

- Bilateral exposures L^{ji}, denoting i’s liability to j.
- Financial commitments w^i by bank i with higher seniority than inter-bank liabilities (depositors’ claims, wages, operating expenses).
- Bank i’s cash holdings c^i.
- Bank i’s investments of size e^i in projects/assets.

Each bank i can liquidate $\ell^i \in [0, e^i]$ to recover $\alpha \ell^i$ in cash, where

$$\alpha = d^{-1}(\ell) = \exp \left(-\gamma \sum_{i=1}^{n} \ell^i \right)$$
Network Structure and Bankruptcy Losses

Network topology captured by relative liability matrix

\[\pi^{ji} = \frac{L^{ji}}{L^i}, \]

where \(L^i = \sum_j L^{ji} \) are bank \(i \)'s total liabilities.

A clearing payment vector \(p = (p^1, \ldots, p^n) \) is a solution to

\[
p^i = \begin{cases}
L^i & \text{if } c^i + \alpha_p \ell^i_p + \sum_j \pi^{ij} p^j \geq L^i + w^i, \\
(\beta(c^i + \alpha_p \ell^i_p + \sum_j \pi^{ij} p^j) - w^i)^+ & \text{otherwise}.
\end{cases}
\]

For clearing payment vector \(p \), we call \((p, \ell_p, \alpha_p) \) a clearing equilibrium.
Given \((p, \alpha)\), welfare losses are equal to

\[
W(p, \alpha) = (1 - \alpha) \sum_{i=1}^{n} e^i + (1 - \beta) \sum_{i \in \mathcal{D}(p)} \left(c^i + \alpha e^i + \sum_{j=1}^{n} \pi^{ij} p^j \right),
\]

where \(\mathcal{D}(p) := \{ i \mid p^i < L^i \}\)

Lemma

For any financial system \((L, \pi, e, c, w, \gamma, \beta)\), there exists a clearing equilibrium \((\bar{p}, \bar{\alpha}, \bar{\ell})\) that Pareto-dominates all other clearing equilibria.
Endogenous Intervention
Bail-ins and Bailouts

An assisted bail-in \((b, s)\) consists of:

- Contribution \(b^i \geq 0\) by every bank \(i\),
- Subsidy \(s^i \geq 0\) to bank \(i\),
- Government's contribution is \(\sum_i (s^i - b^i) \geq 0\).

Note: Includes bailouts and privately backed bail-ins as special cases.

After transfers:

- Liabilities are cleared with clearing equilibrium \((\bar{p}(b, s), \bar{\ell}(b, s), \bar{\alpha}(b, s))\) of the financial system \((L, \pi, e, c + s, w + b, \gamma, \beta)\).
- Welfare losses are equal to

\[
W_\lambda(b, s) := W(\bar{p}(b, s), \bar{\alpha}(b, s)) + \lambda \sum_{i=1}^{n} (s^i - b^i).
\]
Negotiation as a 3-stage process:

1. Regulator proposes an assisted bail-in \((b, s)\).
2. Each bank \(i\) with \(b^i > 0\) chooses \(a^i \in \{0, 1\}\), indicating whether or not it agrees to participate.
3. Regulator chooses \(r \in \{\text{bail-in, bailout, no intervention}\}\).

Goal: Characterize subgame Pareto efficient equilibria.

- Regulator moves last: lack of commitment power.
- For talk: restrict attention to complete rescues.
Given proposal \((b, s)\) and response \(a\), regulator chooses between:

- **“bail-in”**: welfare losses \(W_\lambda(ab, s)\).
- **“bailout”**: welfare losses \(W_P\) in an optimal bailout.
- **“no intervention”**: welfare losses \(W_N = W_\lambda(0, 0)\).

Lack of commitment power:

- No-intervention threat is credible if and only if \(W_N \leq W_P\).
- Banks are willing to participate only if the threat is credible.
Incentives & Equilibrium Bail-In
Equilibrium Response by Banks

Lemma

Let \((b, s)\) be a bail-in proposal. In an equilibrium \(a\), bank \(i\) with \(b^i > 0\) accepts if and only if:

1. The no-intervention threat is credible,
2. \(b^i - s^i \leq \sum_j \pi^{ij}(L^j - p^j_N) + (\bar{\alpha}(b, s, a) - \alpha_N)e^i\),
3. \(W_\lambda(b, s, (0, a^{-i})) \geq W_N\).

Bank \(i\) is willing to contribute only if

- Its net contribution is smaller than its exposure to default cascade
- There is no bail-in coordinated without bank \(i\) (**no free-riding**)
Let $\eta(\alpha(\ell), \ell)$ be the vector of largest incentive-compatible contributions for a given liquidation decision ℓ.

Theorem

For any ℓ, let $i_1(\ell), i_2(\ell), \ldots$ be a decreasing order of banks according to $\eta^i(\alpha(\ell), \ell)$. Let $C(\ell) = \{i_1(\ell), \ldots, i_{m(\ell)}(\ell)\}$, where $m(\ell)$ is smallest k with

$$W_P - g(\alpha_P) + g(\alpha(\ell)) - \lambda \sum_{j=1}^{k} \eta^{j}(\alpha(\ell), 0) < W_N.$$

1. If $W_P < W_N$, the unique SPE equilibrium is a public bailout.

2. If $W_N \leq W_P$, there exists a set of liquidation decisions \mathcal{L}_* such that in any SPE equilibrium, an assisted bail-in with $b^i = \eta^i(\alpha(\ell), \ell)$ for $i \in C(\ell)$ and some $\ell \in \mathcal{L}_*$ is proposed and accepted by all banks.

- Clearing equilibrium (payments and liquidation value) and welfare losses are unique.
Size of Incentive-Compatible Contributions

Welfare losses of optimal bail-in are of the form

\[W^*_E \approx W_P - \sum_{i \in C} \eta^i(\alpha_*, 0). \]

- Contributions are larger in sparser networks.
- Fewer banks can be included in bail-in due to free-riding condition.
Credibility of the Regulator’s Threat
Lemma

Let $S_0 = \sum s_i^0$ be the aggregate shortfall of banks after the shock, and S_N the aggregate losses to all creditors after liabilities are cleared. The threat is credible if and only if

$$S_N - S_0 \leq \lambda S_0 + \sum_{i=1}^{n} (e^i - s_i^0) + g(\alpha_P),$$

where g is convex and trades-off taxpayer contributions with liquidation losses.

- Larger weight λ to tax-dollars improves credibility of threat.
- Enough illiquid assets to absorb the shock S_0 improves credibility.
- Large shocks and dense interconnections reduce credibility.
Total throughput of a bank i measures exposure of solvent junior creditors and senior creditors to a shock hitting i.

Let $C_N \subseteq D_N$ denote the set of defaulting banks which repay their senior creditors in full. The *throughput* of a bank $i \in C_N$ to a set of banks S is

$$
\theta^i_S(\beta, \pi) := \sum_{j \in S \setminus D_N} \pi(j)^{C_N}(I - \beta\pi_{C_N,C_N})^{-1} \rho_{i}^{C_N} + \beta \sum_{j \in S \cap D_N \setminus C_N} \pi(j)^{C_N}(I - \beta\pi_{C_N,C_N})^{-1} \rho_{i}^{C_N},
$$

where $\rho_{i}^{C_N}$ is a vector with entry 1 for bank i and 0 otherwise.

The total throughput of bank $i \in C_N$ is then defined as

$$
\theta^i(\beta, \pi) := \theta^i_{\{1, \ldots, N\}}(\beta, \pi).
$$
Figure: Let π_c and π_r denote the complete and ring interbank networks, respectively. Let $\pi_\mu := \mu \pi_c + (1 - \mu) \pi_r$. Left chart: total throughput $\theta^1(\beta, \pi_\mu)$ when $C_N = D_N = \{1, 2\}$. Right panel: total throughput $\theta^1(\beta, \pi_\mu)$ when $C_N = D_N = \{1, 2, 3, 4, 5\}$.

Credibility and Throughput

- We identify the *total throughput* as a sufficient statistic for the credibility $W_P - W_N$ of no-intervention threat

Lemma

Conditional on

(i) *The banks’ levels of solvency under no-intervention* (the sets \mathcal{D}_N, \mathcal{C}_N, and \mathcal{I}_N, where \mathcal{I}_N is the set of illiquid but solvent banks),

(ii) *The total value of banks’ claims on solvent banks*,

$W_P - W_N$ depends on π only through $\sum_{i \in \mathcal{C}_N} \theta_i^i (\beta, \pi)$ and $\sum_{i \in \mathcal{C}_N} \theta^i (\beta, \pi)$. Moreover, the total throughput of any bank is non-decreasing in β and takes values in $[0, 1]$.
Comparison Between Networks

<table>
<thead>
<tr>
<th></th>
<th>(\pi_2) not credible</th>
<th>(\pi_2) credible</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi_1) not credible</td>
<td>equal</td>
<td>lower in (\pi_2)</td>
</tr>
<tr>
<td>(\pi_1) credible</td>
<td>lower in (\pi_1)</td>
<td></td>
</tr>
</tbody>
</table>

Lemma

Consider two financial networks \((L, \pi_1, e, c, w)\) and \((L, \pi_2, e, c, w)\). If the threat is credible in \(\pi_1\) but not in \(\pi_2\), then equilibrium welfare losses are lower in \(\pi_1\) than in \(\pi_2\).
Network Calibration and Welfare Comparison

- Analytical comparison not possible if threat is credible in both networks
- Analyze dependence of equilibrium welfare losses on network structure using data from 2018 EBA stress test
- Fit a sparse and a dense network \(\pi_s \) and \(\pi_d \), respectively, to data
- Analyze welfare losses as a function of \(\pi_\mu := \mu \pi_s + (1 - \mu) \pi_d \) for \(\mu \in [0, 1] \)
- Shock to assets of HSBC, Barclays, and Deutsche Bank by an amount equal to their cash holdings
- No contagious defaults in the most dense network
Welfare Losses and Banks’ Contributions

Figure: Welfare losses and welfare impacts of banks’ contributions are shown relative to the welfare losses W_P in the complete bailout. Contributions of banks are shown cumulatively so that the contributed amount of a single bank corresponds to the distance between two consecutive lines.

- Equilibrium welfare losses in the sparsest network are 5.2% lower than in the most dense networks.
- Without intervention, they would be 31.2% larger.
Policy Implications

Sparse connections may reduce equilibrium welfare losses:

- The threat is credible for a larger range of shock sizes.
- Bail-in contributions by banks are larger.

Policy implications:

- Sparsely connected networks may be socially preferable
 - Limiting exposures towards individual counterparties may lead to networks which are too diversified.
- Tax on interconnectedness to prevent banks from diversifying their exposures beyond a certain limit.
Conclusion
Conclusion

Network model for financial intervention, where:

- There are two channels of contagion: counterparty and price-mediated contagion.

- The structure of intervention plan arises endogenously as the result of strategic interactions between regulator and banks

Equilibrium intervention plan:

- Depends fundamentally on credibility of regulator’s threat.

- Credibility depends on network structure only through total throughput of defaulting banks

- Sparse connections are conducive to a bail-in:
 - Reduced incentives for free-riding lead to larger contributions by banks.
 - For low recovery rates or large shocks: credibility is enhanced.
Thank you!
Given \((p, \alpha)\), bank \(i\) liquidates

\[
\ell^i(p, \alpha) = \min \left(\frac{1}{\alpha} \left(L^i + w^i - c^i - \sum_j \pi^{ij} p^j \right)^+ , \, e^i \right).
\]

(2)

Lemma

For any interbank repayments \(p\), there exists \((\alpha_p, \ell_p)\) satisfying (1) and \(\alpha = d^{-1}(\ell)\) simultaneously such that \(\alpha \leq \alpha_p\) for any other solution \((\alpha, \ell)\).
Complete Bailouts

In a complete bailout:

- Minimal/maximal subsidies are
 \[s_L = (L + w - c - \alpha_L \ell_L - \pi L)^+, \quad s_0 = (L + w - c - \pi L)^+. \]

- \(s_L \) and \(s_0 \) support clearing equilibria \((L, \ell_L, \alpha_L)\) and \((L, 0, 1)\), resp.

- In a bailout with subsidies \(s_L \leq s \leq s_0 \), welfare losses are equal to
 \[W_\lambda(s) = \sum_{i=1}^{n} (e^i + \lambda s^i_0) + g(\bar{\alpha}(s)), \]
 where \(g(\alpha) = \alpha \left(\frac{\lambda}{\gamma} \ln(\alpha) - \sum_{i=1}^{n} e^i \right). \)

- Regulator is indifferent between bailing and not bailing out the banks at the critical value \(\alpha_{\text{ind}} = \exp \left(\frac{\gamma}{\lambda} \sum_{i=1}^{n} e^i - 1 \right). \)

- When \(\alpha \) is very small, social losses from fire sales are very large, and a bailout is desirable.
Lemma

The liquidation value in an optimal bailout is $\alpha_P := \max(\min(\alpha_{\text{ind}}, 1), \alpha_L)$. Subsidies s are such that $s^i_L \leq s^i \leq s^i_0$ and

$$\sum_{i=1}^{n} s^i = \sum_{i=1}^{n} s^i_0 + \frac{\alpha_P \ln(\alpha_P)}{\gamma}.$$

Let W_P denote the resulting welfare losses.
Regulator wants to minimize free-riding incentives. Hence, he includes banks that are most exposed to contagion (for which \(\eta \) is largest).

However, \(\eta(\alpha, \ell) \) depends on which set \(C \) of banks that he includes.

In equilibrium, contributing banks \(C^* \) are the most-exposed banks for liquidation value \(\alpha^* \) and liquidation decision \(\ell \), such that contributions by banks in \(C^* \) induces liquidation value \(\alpha^* \) and vector of liquidation \(\ell \).

\(C^* \) and \(\alpha^* \) are generically unique, but \(\ell \) is not (\(\alpha^* \) only determines total liquidation, but not distribution of liquidation across banks).
Implications on Equilibrium Welfare

- There is a threshold \(\eta(\alpha, 0) \), up to which contributions are incentive-compatible and do not require asset liquidation.
- Up to \(\eta(\alpha, 0) \) each dollar contributed by banks reduced required taxpayer contributions by 1$
- Above \(\eta(\alpha, 0) \) additional contributions require liquidation and those impact welfare through the trade-off \(g(\alpha) \)
- Whether liquidation of assets is welfare enhancing depends on liquidity of asset
- Finally, even if liquidation may first-order decrease welfare, it may lead to an overall increase in welfare if it reduces free-riding incentives.
Total Throughput

- Throughput increases as the connectivity of defaulting banks increases.

- In sparsely connected networks, the regulator’s threat may not be credible for small shocks, but the credibility improves as the shock grows larger.

- Because the total throughput is small, the systemic threat does not increase much with the size of the shock.

- By contrast, in more diversified network structures, small losses can be well absorbed and the threat not to intervene is credible.

- However, because the total throughput is large, the threat becomes less credible as the shock size increases.
For a bank $i \in C_N$, the amplification of losses due to negative feedback loops between defaulting banks is captured through the Leontief matrix

$$\left(I - \beta \pi^{C_N,C_N}\right)^{-1} = \sum_{k=0}^{\infty} \left(\beta \pi^{C_N,C_N}\right)^k$$

Term k in the sum corresponds to the propagation of losses through liability chains in C_N of length k.

After accounting for feedback effects and bankruptcy losses, the exposure of a solvent creditor to a shock on bank i’s assets is π^{ji} for a solvent bank j and $\beta \pi^{ji}$ for the senior creditors of a bank $j \in D_N \setminus C_N$.
Subgame Pareto Efficient Equilibria (SPEE)

Definition

A strategy profile \((b, s, a, r)\) is subgame Pareto efficient if it is subgame perfect and after any proposal \((b, s)\), there is no other continuation equilibrium \((\tilde{a}, \tilde{r})\) of the accepting/rejecting subgame that Pareto dominates \((a, r)\) for the contributing (non-fundamentally defaulting) banks and the regulator.

- Capture the interactions between the regulator and the contributing banks, aiming at finding a suitable resolution outcome.
- Bail-in of LTCM: Peter Fisher of the FRBNY sat down with representatives of LTCM’s creditors to find an appropriate solution.
For any \((b, s)\), the accepting/rejecting subgame has an equilibrium.

For a given proposal \((b, s)\), a continuation equilibrium \(a\) is called
- an *accepting equilibrium* if \(r(b, s, a) = \text{“bail-in”}\),
- a *rejecting equilibrium* otherwise.

All accepting equilibria are subgame Pareto efficient (SPE). Rejecting equilibria are SPE if and only if there exists no accepting equilibrium.