In Search of Information: Use of Google Trends’ Data to Narrow Information Gaps for Low-income Developing Countries

Futoshi Narita (IMF), Rujun Yin (IMF)

Disclaimer: This paper is part of a research project on macroeconomic policy in low-income countries (IMF: Identifier: GB-1-2002960) supported by the U.K.’s Department for International Development (DFID). The views expressed in this paper are those of the authors and do not necessarily represent the views of the IMF, its Executive Board, IMF management, or the DFID. We thank the Google Trends support team for their assistance. 1 Ms. Yin is a former IMF employee.

Abstract

Timely data availability is a longstanding challenge in policy-making and analysis for low-income developing countries. This paper explores the use of Google Trends’ data to narrow such information gaps and finds that online search frequencies about a country significantly correlate with macroeconomic variables (e.g., real GDP, inflation, capital flows), conditional on other covariates. The correlation with real GDP is stronger than that of nighttime lights, whereas the opposite is found for emerging market economies. The search frequencies also improve out-of-sample nowcasting performance albeit slightly, demonstrating their potential to facilitate timely assessments of economic conditions in low-income developing countries.

Motivation

- Macroeconomic data for low-income countries are available with time lags, posing a challenge in real-time economic assessment (Chart 1).
- Can unconventional data such as online search volume (Choi and Varian, 2012) help address this issue?

Use Google Trends to quantify online searches about a country.

- Leverage “big data” generated in higher-income countries to extract useful information about low-income countries (Chart 2).

Proposition 1. Search ≈ Attention

Google’s search volume index (SVI) about a query is proportionate to the population share of those who are interested in the object represented by the query:

\[SVI_{t,i}(q) = \text{Constant} \times \frac{N_{t,i}(q)}{\text{Population}_{t,i}} \]

if, across all queries, the following three assumptions hold (Chart 3):
1. Same average number of Google searches per person.
2. Random use of Google Search (and access to the Internet).
3. Constant average queries per person.

Remark: Proposition 1 contributes to the literature by formalizing the use of SVIs to proxy people’s attention (e.g., Da, Engelberg, and Gao, 2011) and sets a basis to discuss possible biases that could arise in such analyses.

Results – key highlights

- Online search indexes about a country are more useful than nighttime lights (Henderson, Storeygard, and Weil, 2012) when nowcasting real GDP for low-income countries (Chart 4).
- In contrast, the opposite is found for emerging market economies.
- Some indexes capture positive effects (e.g., business & industry) and others capture negative effects (e.g., law & government, health).
- Online search indexes improve out-of-sample performance, albeit to a small extent (2.6 percent reduction in the mean squared error).

Discussions

- The major source of information seems to be attention from foreign locations because online searches made domestically (e.g., searches about Malawi made in Malawi) do not generally change the results.
- Online search indexes generally work better for low-income countries than emerging market economies.
- Other estimation methods (Bayesian Model Averaging, LASSO, Ridge, Random Forests) lead to broadly similar results.
- Lagged online search indexes do not perform well, likely because the lag length of one year could be too long.
- Jumps (or positive outliers) in online search indexes could be used to form dummies for associated critical events (e.g., natural disasters).
- Online search indexes are also correlated with other macroeconomic variables. For example, online searches under the finance category are associated with currency depreciation and high inflation.

Conclusions

- This paper demonstrates the usefulness of the information contained in Google’s online search indexes in macroeconomic nowcasting, particularly for low-income countries.
- The assumptions required in Proposition 1 provide useful guidance on when online search indexes represent people’s attention without bias.
- The contrasting results between low-income countries versus emerging market economies imply some structural differences between these groups of economies. Further investigation would be interesting.

References

Contact

Futoshi Narita (International Monetary Fund)
Email: fnarita@imf.org