Dynamically optimal treatment allocation using Reinforcement Learning

Karun Adusumilli (UPenn), Friedrich Geiecke (LSE) & Claudio Schilter (U. Zurich)

January 1, 2020
Dynamic Treatment Allocation

- The treatment assignment problem:
 - How do we assign individuals to treatment using observational data?

- Decision problem of maximizing population welfare
 - Large literature on this in the ‘static’ setting
 - Exploits similarity with classification

- This paper:
 - Individuals arrive sequentially (e.g when unemployed)
 - Planner has to assign individuals to treatment (e.g job training):
 - Various planner constraints: Finite budget/capacity, borrowing, queues...
 - Turns out similar to optimal control/Reinforcement Learning
Dynamics vs Statics: Two examples

- **Borrowing constraints**
 - Assume rate of arrival of individuals and flow of funds is constant
 - ‘Static’ rule (e.g. Kitagawa-Tetnov ‘18): only depends on covariates
 - However: Under a static rule budget follows a random walk!
 - Eventually shatters any borrowing constraints
 - Optimal rule: Change with budget ≡ optimal control of budget path

- **Finite budget**
 - Planner starts with pot of money that is not replenished
 - Training depletes budget and future benefits are discounted
 - Existing methods not applicable even if we just want a ‘static rule’
 - They need specification % of population to be treated
 - But this is endogenous to policy!
Other examples

▶ Finite budget and time
 ▶ Planner is given pot of money to be used up within a year

▶ Finite capacity
 ▶ E.g fixed number of caseworkers for home visits etc
 ▶ If capacity is full, people turned away (or waitlisted)
 ▶ People finish treatment at known rates which frees up capacity

▶ Queues
 ▶ Why? Time for treatment is longer than arrival rates
 ▶ Waiting is costly and not treating someone shortens wait times
 ▶ Current length of queue is a state variable

▶ Related: Multiple queues
 ▶ Some cases are more time-sensitive
 ▶ Can use two queues: shorter queue for riskier patients
Preliminary remarks

- We focus on ‘offline’ learning
 - Use historical/RCT data to estimate policy
 - In infinite horizon, our algorithm can be used fully online
 - However we do not have any claim on optimality
 - Note: bandit algorithms are not applicable!
- Key assumption: Individuals do not respond strategically to policy
 - Arrival rates are exogenous and unaffected by policy
 - However results apply if we have a model of policy response
What we do: Overview

- Estimation of optimal policy rule in pre-specified class
 - Ethical/computational/legal reasons (Kitagawa-Tetenov, 2018)

- Basic elements of our theory
 - For each policy, write down a PDE for expected value fn (a la HJB)
 - Using data, write down sample version of PDE for each policy
 - Maximize over sample PDE solutions to estimate optimal policy
 - Bound difference in solutions using PDE techniques
 ⇒ Regret bounds
Overview (contd.)

▶ Computation

▶ Approximate PDE with (semi-discrete) dynamic program

▶ Solve using Reinforcement Learning (RL): Actor-Critic algorithm

▶ Solves for maximum within pre-specified policy classes

▶ Computationally fast due to parallelization

▶ Some results

▶ $\sqrt{\frac{v}{n}}$ rates for regret where v is complexity of policy class
Setup

- State variable: $s \equiv (x, z, t)$
 - x individual covariates
 - z budget/institutional constraint
 - t time

- Arrivals: Poisson point process with parameter $\lambda(t)N$
 - Set $\lambda(t_0) = 1$ as normalization
 - N is scale parameter that will be taken to ∞

- Distribution of covariates: F
 - Assumed fixed for this talk
 - In paper: allowed to change with t
Setup (contd.)

- Actions: $a = 1$ (Train) or $a = 0$ (Do not train)

- Choosing a results in utility $Y(a)/N$ for social planner
 - Utility scaled to a ‘per-person’ number

- Rewards: expected utility given covariate x
 \[
 r(x, a) = E[Y(a)|x]
 \]
 - Look at additive welfare criteria so normalize $r(x, 0) = 0$
Setup (contd.)

- Law of motion for z:

$$z' - z = \frac{G_a(s)}{N}, \; a \in \{0, 1\}$$

- Interpreting $G_a(s)$: Flow rate of budget wrt mass m of individuals
- Here, m is defined by giving each individual $1/N$ weight
- If planner chooses a for mass δm of individuals, z changes by

$$\delta z \approx G_a(s) \delta m$$

- Example: Denote

 - $\sigma(z, t)$: Rate of inflow of funds wrt time
 - $c(x, z, t)$: Cost of treatment per person
 - b: Interest rate for borrowing/saving

$$G_a(s) = \lambda(t)^{-1} \{\sigma(z, t) + bz\} - c(x, z, t)\mathbb{I}(a = 1)$$
Policy class

- Policy function: $\pi(.|s) : s \rightarrow [0, 1]$
 - Taken to be probabilistic

- We consider policy class $\{\pi_\theta : \theta \in \Theta\}$
 - Can include various constraints on policies
 - For theoretical results: θ can be anything

- In practice we use soft-max class

$$\pi^{(\sigma)}_\theta(1|x, z) = \frac{\exp(\theta^T f(x, z)/\sigma)}{1 + \exp(\theta^T f(x, z)/\sigma)}$$

- σ is ‘temperature’: can be fixed or subsumed into θ
- E.g: $\sigma \rightarrow 0$ gives linear-eligibility scores (Kitagawa & Tetenov, ‘18)
Value functions

- Integrated value function: $h_\theta(z, t)$
 - Expected welfare for social planner at z, t before observing x

- Define
 \[
 \bar{r}_\theta(z, t) := E_{x \sim F} [r(x, 1) \pi_\theta (1|x, z, t)],
 \]
 and
 \[
 \bar{G}_\theta(z, t) := E_{x \sim F} [G_1(s) \pi_\theta (1|s) + G_0(s) \pi_\theta (0|s)|z, t]
 \]

- $\bar{r}_\theta(z, t)$: expected flow (wrt mass of people) utility at state (z, t)
- $\bar{G}_\theta(z, t)$: expected flow change to z at state (z, t)
PDE for the integrated value function

\[\beta h_\theta(z, t) - \lambda(t) \tilde{r}_\theta(z, t) - \lambda(t) \tilde{G}_\theta(z, t) \partial_z h_\theta(z, t) - \partial_t h_\theta(z, t) = 0 \]

- Obtained in the limit \(N \to \infty \)
 - In fact \(N = 1 \) also gives same PDE in infinite horizon setup

- PDE encapsulates ‘no arbitrage’
 - Think of \(\beta \) as natural rate of interest and \(h_\theta(z, t) \) as valuation

- We need to specify boundary condition

- In general differentiable solution does not exist!
 - Work with viscosity solutions (Crandall & Lions 83)
Boundary conditions

- **Dirichlet:**
 - Finite time horizon, finite budget or both

 \[h_\theta(z, t) = 0 \text{ on } \Gamma; \quad \Gamma \equiv \{(z, t) : z = 0 \text{ or } t = T\} \]

- **Periodic:**
 - Infinite horizon setting with \(t \) periodic with period \(T_p \)

 \[h_\theta(z, t) = h_\theta(z, t + T_p) \quad \forall (z, t) \in \mathbb{R} \times [t_0, \infty) \]

- **Generalized Neumann (Finite\|Infinite horizon versions):**
 - Basic idea: behavior at boundary is different from interior
 - Useful to model borrowing constraints

 \[
 \beta h_\theta(z, t) - \sigma(z, t) \partial_z h_\theta(z, t) - \partial_t h_\theta(z, t) = 0, \quad \text{on } \{z\} \times [t_0, T] \\
 h_\theta(z, T) = 0, \quad \text{on } (z, \infty) \times \{T\} \quad \text{OR} \\
 h_\theta(z, t) = h_\theta(z, t + T_p), \quad \forall (z, t) \in \mathcal{U}
 \]
Social planner objective

\[\beta h_\theta(z, t) - \lambda(t)\bar{r}_\theta(z, t) - \lambda(t)\bar{G}_\theta(z, t)\partial_z h_\theta(z, t) - \partial_t h_\theta(z, t) = 0 \]

- Class of PDEs: one for each policy
- We will think of \(\lambda(\cdot) \) as a ‘forecast’ and condition on it
- Policy objective given \(\lambda(\cdot) \):
 \[\theta^* = \arg\max_{\theta \in \Theta} W(\theta); \quad W(\theta) := h_\theta(z_0, t_0) \]
 - \(z_0, t_0 \): Initial budget and time
- More generally: planner has distribution over forecasts \(\lambda(t) \)
 - Then: \(W(\theta) = \int h_\theta(z_0, t_0; \lambda) dP(\lambda) \)
The sample counterparts

- Denote F_n empirical distribution of RCT data
 - Assume $F_n \to F$

- Estimate $r(x, a)$ using RCT data with a doubly robust estimate

- Define

 $$\hat{r}_\theta(z, t) = E_{x \sim F_n} [\hat{r}(x, 1) \pi_\theta (1|x, z, t)] ,$$

 and

 $$\hat{G}_\theta(z, t) := E_{x \sim F_n} [G_1(x, z, t) \pi_\theta (1|x, z, t) + G_0(x, z, t) \pi_\theta (0|x, z, t)]$$
Computation: Estimating the value function

- We can use sample counterparts and obtain sample PDE:

\[
\beta \hat{h}_\theta(z, t) - \lambda(t) \hat{G}_\theta(z, t) \partial_z \hat{h}_\theta(z, t) - \partial_t \hat{h}_\theta(z, t) - \lambda(t) \hat{r}_\theta(z, t) = 0
\]

- But solving this directly is too difficult

- Solution: approximate with a dynamic program instead

\[
\tilde{h}_\theta(z, t) = \frac{\hat{r}_\theta(z, t)}{b_n} + E_{n, \theta} \left[e^{-\beta(t' - t)} \tilde{h}_\theta(z', t') \bigg| z, t \right]
\]

- Here: \(z' = z - b_n^{-1} G_a(s), \ b_n(t' - t) \sim \exp(\lambda(t)) \)

- \(1/b_n \): discrete change to mass of individuals (basically same as \(1/N \))

- Determines numerical error: same idea as step size in PDE solvers
Reinforcement Learning

▶ We create simulations of dynamic environment, called Episodes
 ▶ Using estimated rewards \hat{r} and sampling individuals from F_n

▶ Just the environment for Reinforcement Learning
 ▶ Take action from current policy, observe \hat{r}, move to next state
 ▶ Based on reward, update policy

▶ We use Actor-Critic algorithm
 ▶ Stochastic Gradient Descent (SGD) updates along $\nabla_{\theta} \tilde{h}_\theta(z_0, t_0)$
 ▶ Gradient requires an estimate of $h_\theta(z, t)$ for current θ
 ▶ Parametrize $\tilde{h}_\theta(z, t) = \nu^T \phi(z, t)$ and use another SGD to update ν
 ▶ Key idea: update θ, ν simultaneously!
 ▶ Two timescale trick uses faster learning rate for ν
Statistical and numerical properties

Probabilistic bounds on regret

Suppose that \hat{r} is a doubly robust estimate. Then under some regularity conditions

$$W(\theta^*) - W(\hat{\theta}) \leq C\sqrt{\frac{v}{n}} + K\sqrt{\frac{1}{b_n}}$$

uniformly over $(\lambda(\cdot), F)$

Remarks:

- v is VC dimension of
 $$G_a = \{ \pi_\theta(a|\cdot,z,t)G_a(\cdot,z,t) : (z,t) \in \bar{U}, \theta \in \Theta \}$$
- Second term is numerical error from approximation
- Proof uses results from the theory of viscosity solutions
- For infinite horizon need β to be sufficiently large
Application: JTPA study

- RCT data on training for unemployed adults
 - $n \approx 9000$, done over 2 years
 - Outcomes: 30 month earnings - cost of treatment (774)

- Finite budget and time: Can only treat 1600 people within a year
 - Discount factor $\beta = -\log 0.9$ or 0.9 over course of year

- Estimation of arrival rates:
 - Cluster data into 4 groups (k-means)
 - Estimate $\lambda(t)$ using Poisson regression for each cluster

- Policy class ($x : 1, \text{age, education, prev. earnings}$)
 $$\pi(a = 1|s) \sim \text{Logit}(x, x \cdot z)$$
Normalized relative to random policy (also roughly same as treating everyone)
Policy maps
Conclusion

- Actor-Critic algorithm for learning constrained optimal policy

- Some other extensions that we include in paper
 - Heterogenous non-compliance using IVs
 - Continuing to learn after coming online

- Ongoing work
 - Online learning
 - Dynamic treatment regimes
The Actor-Critic algorithm

Policy Gradient Theorem

\[\nabla_\theta \tilde{h}_\theta (z_0, t_0) = E_{n, \theta} \left[e^{-\beta(t-t_0)} \left\{ \hat{r}_n(x, a) + \beta \hat{h}_\theta (z', t') - \hat{h}_\theta (z, t) \right\} \nabla_\theta \ln \pi (a|s; \theta) \right] \]
The Actor-Critic algorithm

Policy Gradient Theorem

$$\nabla_\theta \tilde{h}_\theta(z_0, t_0) = E_{n,\theta} \left[e^{-\beta(t-t_0)} \left\{ \hat{r}_n(x, a) + \beta \hat{h}_\theta(z', t') - \hat{h}_\theta(z, t) \right\} \nabla_\theta \ln \pi(a|s; \theta) \right]$$

Functional Approximation:

$$\nabla_\theta \tilde{h}_\theta(z_0, t_0) \approx E_{n,\theta} \left[e^{-\beta(t-t_0)} \left\{ \hat{r}_n(x, a) + \beta \nu^T \phi_{z', t'} - \nu^T \phi_{z, t} \right\} \nabla_\theta \ln \pi(a|s; \theta) \right]$$
The Actor-Critic algorithm

Policy Gradient Theorem

\[\nabla_\theta \tilde{h}_\theta(z_0, t_0) = E_{n, \theta} \left[e^{-\beta(t-t_0)} \left\{ \hat{r}_n(x, a) + \beta \hat{h}_\theta(z', t') - \hat{h}_\theta(z, t) \right\} \nabla_\theta \ln \pi(a|s; \theta) \right] \]

Functional Approximation:

\[\nabla_\theta \tilde{h}_\theta(z_0, t_0) \approx E_{n, \theta} \left[e^{-\beta(t-t_0)} \left\{ \hat{r}_n(x, a) + \beta \nu^T \phi_{z', t'} - \nu^T \phi_{z, t} \right\} \nabla_\theta \ln \pi(a|s; \theta) \right] \]

Temporal-Difference (TD) Learning

\[\nu^*_\theta = \arg \min_{\nu} E_{n, \theta} \left[\left\| \tilde{h}_\theta(z, t) - \nu^T \phi_{z, t} \right\|^2 \right] := \hat{Q}(\nu|\theta) \]
Stochastic Gradient Updates

\[\nabla_\theta \tilde{h}_\theta(z_0, t_0) \approx E_{n, \theta} \left[e^{-\beta(t-t_0)} \{ \hat{r}_n(x, a) + \beta \nu^T \phi_{z', t'} - \nu^T \phi_{z, t} \} \nabla_\theta \ln \pi(a|s; \theta) \right] \]

\[\nabla_\nu \hat{Q}(\nu|\theta) \approx E_{n, \theta} \left[(\hat{r}_n(x, a) + \beta \nu^T \phi_{z', t'} - \nu^T \phi_{z, t}) \phi_{z, t} \right] \]

- Convert both to SGD updates (AC algorithm)

 \[\theta \leftarrow \theta + \alpha_\theta e^{-\beta(t-t_0)} (\hat{r}_n(x, a) + \beta \nu^T \phi_{z', t'} - \nu^T \phi_{z, t}) \nabla_\theta \ln \pi(a|s; \theta) \]

 \[\nu \leftarrow \nu + \alpha_\nu (\hat{r}_n(x, a) + \beta \nu^T \phi_{z', t'} - \nu^T \phi_{z, t}) \phi_{z, t} \]

- Updates are ‘online’
 - Take \(a \sim \pi_\theta \) and continually update while interacting with env.

- Updates to \(\theta, \nu \) done simultaneously at two timescales: \(\alpha_\nu \gg \alpha_\theta \)
 - No need to wait for \(\nu_\theta \) to converge
Convergence of Actor-Critic

Convergence of Actor-Critic algorithm

Suppose the learning rates satisfy \(\sum_k \alpha^{(k)} \to \infty \), \(\sum_k \alpha^{2(k)} < \infty \), and \(\alpha^{(k)} \theta / \alpha^{(k)} \nu \to 0 \). Then under some regularity conditions

\[
\theta^{(k)} \to \theta_c, \quad \nu^{(k)} \to \nu_c,
\]

where convergence is local. Furthermore given \(\epsilon > 0 \) there exists \(M \) s.t

\[
\| \hat{\theta} - \theta_c \| \leq \epsilon \quad \text{whenever } \text{dim}(\nu) \geq M.
\]

Remarks:

- \(k \) is order of updates
- There is no statistical tradeoff for choosing \(\text{dim}(\nu) \), ideally \(\nu = \infty \)
Application 2: Finite budget

- Finite budget: Can only treat 1600 people
 - Discount factor $\beta = -\log 0.9$ or 0.9 over course of year
 - Note: there is no time constraint anymore

- Policy class $(x: 1, \text{age, education, prev. earnings})$

$$\pi(a = 1 | s) \sim \text{Logit}(x, x \cdot \cos(2\pi t), x \cdot z)$$
Doubly Robust (preliminary)

- Episodes approximately trained in each of 23 parallel processes
- Average cumulative episode reward achieved

Reward trajectory

- # people considered: 145K ≈ 23 years
Policy maps (DR)

Age Coefficient

Education Coefficient

Previous Earnings Coefficient