Delay the Pension Age or Reduce the Pension Benefit? Implications for labor force participation and individual welfare

Yuanyuan Deng1, Hanming Fang1,2,3, Katja Hanewald1 and Shang Wu1,4

1ARC Centre of Excellence in Population Ageing Research (CEPAR)
2University of Pennsylvania
3ShanghaiTech University
4First State Super

31 December, 2019
Outline

1. Introduction
2. The life-cycle model
3. Estimation and Data
4. Next Step
Background

China’s public pension system:

- **Basic Old Age Insurance (BOAI):** employees in firms and public sectors
- Resident Pension: urban and rural residents

Basic Old Age Insurance:

- Coverage in 2018: 418.5 million participants
 - PAYG: 20% of employee’s wage
 - Individual account: 8% of employee’s wage
- Target replacement rate: 59.2%
- Eligibility age:
 - by law: 60 for males, 55 for white collar women and 50 for blue collar women
Motivation

Policy change:
- Gradually raising the public pension age (‘retirement age’) to age 65.
- Main objectives:
 ▶ Improve sustainability of the pension system
 ▶ Encourage people to work longer
Research questions

What are the effects of delaying the pension eligibility age in China on:

- labor force participation
- consumption
- individual welfare

for heterogeneous agents?

The effects of delaying pension age on the fiscal balance of the BOAI
Literature review

One representative agent

But: do not take into account the heterogeneity among workers

Structural models allowing for heterogeneity

- French and Jones, 2011; Laun and Wallenuis, 2015, 2016; Laun et al., 2018; Börsch-Supan et al., 2018

But: focus on the United States and Europe
Literature review

In China

- Giles et al. (2012, 2015): show empirically that there is a strong association between pension eligibility age and exit from the labor force.
- Jin (2016): structural model that studies the labor supply among older women in China and analyzes the effects of increasing the female pension age to 60.

There are currently no micro-level structural models quantifying the impact of the proposed increase in the statutory retirement age in China.
Outline

1. Introduction
2. The life-cycle model
3. Estimation and Data
4. Next Step
The life-cycle model: Overview

Two skill typers: high-skilled and low-skilled: \(s = \{ h, l \} \)

For each group:
- urban males, age 45 with known health, wealth, income; maximum age 100
- derive utility from consumption, incur disutility from working
- bequest motives
- make (binary) labor supply and (continuous) consumption decisions in each period
Health dynamics

Three health states: Similar to Fong et al. (2015)

- **G**: good health, $H_t = g$
 - no limitation in performing any Activities of Daily Living; and
 - self-reported health better than “Poor”
- **P**: poor health, $H_t = p$
- **D**: dead, $H_t = d$

The transition probabilities are modelled as polynomial functions of age
Labor supply

- τ_t denotes the employment status

\[\tau_t = \begin{cases}
1, & \text{if working in period } t; \\
0, & \text{if not working in period } t.
\end{cases} \]

- Compulsory retirement at age 75

\[\tau_t = 0, \text{ for } t + 45 \geq 75. \]
Preference

- Cobb-Douglas function of consumption and leisure:

\[
u(C_t, \tau_t, H_t) = \frac{1}{1 - \gamma} \left[C_t^\alpha \left(1 - \omega(H_t, \tau_t) \left(1 - \alpha \right) \right) \right]^{1 - \gamma}
\]

(3)

- \(\gamma\): relative risk aversion
- \(C_t\): consumption of non-medical goods
- \(\omega(H_t, s)\): loss of leisure from work, total amount normalized to 1

\[
\omega(H_t, s) = \begin{cases}
\omega_1, & \text{for } H_t = g; \\
\omega_2, & \text{for } H_t = p.
\end{cases}
\]

(4)
Bequest motive: De Nardi (2004), French and Johns (2011)

\[v(W_t) = \theta - \gamma \frac{(W_t + \kappa)^{\alpha(1-\gamma)}}{1 - \gamma}, \]

- \(\theta \): strength of the bequest motive
- \(\kappa \): the extent to which bequests are luxury goods

Subjective discount factor: \(\beta \)
Out-of-pocket healthcare expenditure

Following Ameriks et al. (2011) but allow the possibility of zero healthcare expenditure:

\[M_t(s) = \begin{cases}
0, & \text{with probability } p(H_t, s); \\
m(H_t, s), & \text{with probability } 1-p(H_t, s)
\end{cases} \]
(6)

where

\[m(H_t, s) = \begin{cases}
m1, & \text{if } H_t=g; \\
m2, & \text{if } H_t=p; \\
m3, & \text{if } H_t=d;
\end{cases} \]
(7)
Labor income

- Labor earnings L_t in period t (Yu and Zhu, 2013, Capatina, 2015)

$$\log(L_t) = l(H_t, t) + \bar{\mu} + \lambda_t + \mu_t,$$

$$l(H_t, t) = \beta_0(s) + \beta_1(s)t + \beta_2(s)t^2 + \beta_3(s)I_{H_t=p},$$

$$\mu_t = \rho(s)\mu_{t-1} + \eta_t.$$ \hspace{1cm} (8), (9), (10)

- deterministic part $l(H_t, t)$: function of age and health
- stochastic part:
 - ex ante heterogeneity $\bar{\mu} \sim N(0, \sigma_{\bar{\mu}}^2(s))$, given at birth
 - idiosyncratic transitory shock $\lambda_t \sim N(0, \sigma_{\lambda_t}^2(s))$
 - persistent shock μ_t, an AR(1) process with $\eta_t \sim N(0, \sigma_{\eta_t}^2(s))$
Pension income

In practice, pension income $P(t, s)$ depends on
- individual wage history before retirement
- province average wage of all workers
- the ratio of the above two during all working years

In our model: given eligibility age X (the policy parameter, currently 60), pension income is modeled as a linear function of \bar{w}_t and y_t

$$P_t(s) = \begin{cases}
0, & \text{if } t + 45 < X. \\
P(\bar{w}_t, y_t) & \text{if } t + 45 \geq X.
\end{cases} \quad \forall t = 0, 1, 2, \ldots, T - 1.$$ (11)
Pension income

\[y_t = \begin{cases}
 y_{t-1}, & \text{if } t + 45 \geq X. \\
 y_{t-1} + 1, & \text{if } t + 45 < X \text{ and } \tau_t = 1.
\end{cases} \quad \forall t = 0, 1, 2, \ldots, T - 1. \tag{12} \]

\[\bar{w}_t = \begin{cases}
 \frac{\bar{w}_{t-1}y_{t-1}+L_t}{y_t}, & \text{if } t + 45 < x \text{ and } \tau_t = 1. \\
 \bar{w}_{t-1}, & \text{if } t + 45 \geq x.
\end{cases} \quad \forall t = 0, 1, 2, \ldots, T - 1. \tag{13} \]
Budget Constraints

Total income:

\[Y_t = L_t + P_t \quad \forall t = 0, 1, 2, \ldots, T - 1. \] (14)

Consumption floor and government transfer

\[C_t \geq C^f \quad \forall t = 0, 1, 2, \ldots, T - 1, \] (15)

\[G_t = \max \{0, C^f - (W_t + Y_t - M_t)\} \quad \forall t = 0, 1, 2, \ldots, T - 1. \] (16)

Budget constraint for after-consumption wealth

\[\overline{W}_t = W_t + Y_t - M_t + G_t - C_t \geq 0 \quad \forall t = 0, 1, 2, \ldots, T - 1. \] (17)

Wealth dynamics

\[W_{t+1} = \begin{cases} \overline{W}_t(1 + r), & \text{if } G_t = 0 \quad \forall t = 0, 1, 2, \ldots, T - 1; \\ 0, & \text{if } G_t > 0 \quad \forall t = 0, 1, 2, \ldots, T - 1. \end{cases} \] (18)
The optimization problem

- Receive pension income if age $\geq X$
- Pay out-of-pocket healthcare expenditure M_t
- Make labour supply decision τ_t
- Choose consumption C_t (subject to consumption floor C^f)
- State variables: $P_t = \{W_t, H_t, \bar{w}_t, y_t, \mu_{t-1}\}$
- Objective function

$$V_0(P_0) = \max_{\{\tau_t, C_t\}_{t=0}^{T-1}} \left\{ \mathbb{E}_0 \left[\sum_{t=0}^{T-1} \sum_{j=p,g} \pi_0^t(H_0, j) \beta^t [u(C_t, H_t, \tau_t) + \beta \pi_t(j, d) v(W_{t+1})] \right] \right\} , \quad (19)$$

- The Bellman equation: subject to Equations (15), (17), (18) and (2).

$$V_t(P_t) = \max_{\{\tau_t, C_t\}} \left\{ u(C_t, H_t, \tau_t) + \sum_{j=p,g} \pi_t(H_t, j) \beta V_{t+1}(W_{t+1}, H_{t+1} = j, Y_{t+1}) + \pi_t(H_t, d) \beta v(W_{t+1}) \right\} , \quad (20)$$
Outline

1. Introduction
2. The life-cycle model
3. Estimation and Data
4. Next Step
Data

- China Health and Retirement Longitudinal Study (CHARLS): a nationally representative sample of Chinese residents aged 45 and older
- Bi-annual data, 3 waves (2011, 2013, 2015)
- 11,097 person-year observations
Health dynamics: Estimation

Figure: Predicted percentage of men in poor health by age and skill type
Health dynamics: Estimation

Figure: Predicted percentage of men alive by age and skill type
Out-of-pocket healthcare expenditure: in RMB

<table>
<thead>
<tr>
<th>Health Status</th>
<th>High-Skilled</th>
<th>Low-Skilled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>6,166</td>
<td>4,441</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>21,424</td>
<td>14,496</td>
</tr>
<tr>
<td>99th percentile</td>
<td>113,400</td>
<td>60,360</td>
</tr>
<tr>
<td>Proportion of zero OOP costs</td>
<td>50.6%</td>
<td>51.0%</td>
</tr>
<tr>
<td>Bad Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>18,251</td>
<td>13,644</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>54,932</td>
<td>46,163</td>
</tr>
<tr>
<td>99th percentile</td>
<td>137,360</td>
<td>138,800</td>
</tr>
<tr>
<td>Proportion of zero OOP costs</td>
<td>18.9%</td>
<td>22.2%</td>
</tr>
<tr>
<td>Death</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>69,475</td>
<td>36,701</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>71,624</td>
<td>84,837</td>
</tr>
<tr>
<td>99th percentile</td>
<td>200,000</td>
<td>500,000</td>
</tr>
<tr>
<td>Proportion of zero OOP costs</td>
<td>4.9%</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

Notes: The OOP costs for death is estimated from the exit survey of CHARLS 2013.
Initial Conditions

<table>
<thead>
<tr>
<th></th>
<th>High-Skilled</th>
<th>Low-Skilled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wealth (in thousands of RMB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>17.44</td>
<td>10.57</td>
</tr>
<tr>
<td>Wage (in thousands of RMB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>24.73</td>
<td>20.68</td>
</tr>
<tr>
<td>Years worked before age 45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>% in good health</td>
<td>89.95%</td>
<td>85.98%</td>
</tr>
<tr>
<td>% in bad health</td>
<td>10.05%</td>
<td>14.02%</td>
</tr>
<tr>
<td>% working</td>
<td>76.19%</td>
<td>64.84%</td>
</tr>
</tbody>
</table>
Solved numerically by backward induction, EGM (Carroll, 2006) to construct grids for after-consumption wealth

Two-step strategy to estimate our model
 ▶ health transition matrix, mortality rate, out of pocket expenditure, and parameters to approximate pension income
 ▶ all the remaining parameters within the model
Outline

1. Introduction

2. The life-cycle model

3. Estimation and Data

4. Next Step
Next steps

- Calibration: optimal parameters
- Calibration moments: average labor supply, wealth, labor income and variance of log earnings by skill type
- Policy experiment: increase pension age or reduce pension benefit?