Regulating Financial Networks Under Uncertainty

CARLOS RAMÍREZ

FEDERAL RESERVE BOARD

AEA Annual Meeting
Financial Networks, Regulation, and Systemic Risk

This presentation represents the views of the author and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or other members of its staff.
Research Question

• How can policymakers regulate a financial system when they are fundamentally uncertain about its precise structure?

What I do

• Develop a framework to understand the behavior of such policymakers. Within my framework:

 • institutions are linked via an opaque network of exposures.

 • cascades of distress may occur as a result of contagion.

 • policymaker—who imposes preemptive restrictions on certain institutions to maximize expected output—is uncertain about the precise structure of the network.
What do we learn?

- Uncertainty about the precise structure of the network reduces the scope for welfare improving regulations.

- While improving network transparency potentially reduces this uncertainty, it does not necessarily lead to welfare improving interventions.

- Preventing large cascades of distress may be suboptimal.

- Optimal policy is jointly determined by
 - (expected) susceptibility of the network to contagion
 - cost of improving network transparency
 - cost of regulating institutions
 - investors’ preferences.
Motivating Example

$p \quad \quad p$
Motivating Example
Shocks propagate through exposures
Motivating Example

Shocks propagate through exposures
Motivating Example
Shocks propagate through exposures
Motivating Example
Shocks propagate through exposures
Case 1: p is known

Optimal policy: $x_p(c)$

$x_p = 3$
$x_p = 2$
$x_p = 1$
$x_p = 0$

$c = 0$
$c = \frac{1}{3}$
$c = \frac{1}{3} + \frac{4}{9}p$
$c = \frac{1}{3} + \frac{8}{9}p + \frac{2}{3}p^2$
Case 1: p is known

Improving network transparency
Case 1: p is known

What happens if the network architecture changes?
Case 1: p is known

Optimal Policy: $x_p(c)$

Network

$\begin{align*}
x_p &= 3 \\
x_p &= 2 \\
x_p &= 1 \\
x_p &= 0
\end{align*}$

$\begin{align*}
0 &\quad (1/3) \\
(1/3) &\quad (1/3) + (4/9)p \\
(1/3) + (8/9)p &\quad (1/3) + (4/3)p + (2/3)p^2
\end{align*}$
Case 2: p is unknown

- $p \in \{\frac{1}{5}, \frac{4}{5}\}$.
- $\mathbb{P}(p = \frac{1}{5}) = \phi$.
- Smooth ambiguity certainty equivalent

 $$\text{SCE}(x_A) \equiv \mathbb{E}_{\bar{p}} [\text{TO}|x_A] - \left(\frac{\theta}{2}\right) \vee [\mathbb{E}_p (\text{TO}|x_A)]$$

- $\bar{p} = \phi \frac{1}{5} + (1 - \phi) \frac{4}{5}$.
- θ: attitude toward model uncertainty.
Case 2: p is unknown

Optimal policy: $x_A(\phi, \theta)$
Case 2: p is unknown

Improving network transparency

\begin{align*}
\phi & = 0.2 \\
\phi & = 0.4 \\
\phi & = 0.6 \\
\phi & = 0.8 \\
\phi & = 1.0 \\
\kappa & = 0.2 \\
\kappa & = 0.4 \\
\kappa & = 0.6 \\
\kappa & = 0.8 \\
\kappa & = 1.0 \\
\theta & = 1 \\
\theta & = 5 \\
\theta & = 10 \\
\theta & = 20
\end{align*}
Challenges

• What happens if the size of the economy increases?

• How can we deal with arbitrary network architectures?

Potential Solution

• Random networks
General Framework

- \(n \) banks, each endowed with one dollar
- network has an arbitrary architecture
- distribution of contagious exposures across banks is characterized by \(\{p_k\}_{k=0}^{n-1} \), where \(p_k \) denotes the probability that a randomly chosen bank has \(k \) contagious exposures
- Timeline

<table>
<thead>
<tr>
<th>Period 0</th>
<th>Period 1</th>
<th>Period 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planner decides whether to improve net. transparency</td>
<td>Planner restricts banks</td>
<td>Banks react to regulation (change portfolio allocation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shocks spread through the network</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Payoffs are realized</td>
</tr>
</tbody>
</table>
Banks’ problem

• Bank i chooses the fraction of liquid assets in its portfolio, ω_i, to maximize profits.

$$\max_{\omega_i \in \{\omega_L, \omega_H\}} \mathbb{E}[\pi_i] = \mathbb{E}[\omega_i \times R_L + (1 - \omega_i) \times R_I - \beta \omega_i \times \varepsilon_i]$$

s.t. $\omega_H \times e_i \leq \omega_i$ (regulatory constraint)

with $\omega_L < \omega_H$ and $\mathbb{E}[R_L] < \mathbb{E}[R_I]$.

• If i faces a liquidity shock, then $\varepsilon_i = 1$ (otherwise, $\varepsilon_i = 0$)

• Portfolio liquidity matters:

$$\beta_{\omega_i} = \begin{cases} 0, & \text{if } \omega_i = \omega_H \\ \omega_L \times R_L + (1 - \omega_L) \times R_I, & \text{otherwise.} \end{cases}$$

• If i is regulated, then $e_i = 1$ (otherwise, $e_i = 0$)

• Banks underestimate the likelihood of being affected by cascades of liquidity shocks at $t = 2 \rightarrow \omega_i = \omega_L$ if $e_i = 0$.
Welfare effects of regulation

Suppose \(\{p_k\}_k \) is known and the planner restricts a fraction \(x \) of banks.

\[
E \left[\frac{1}{n} \text{TO} \bigg| x \right] = \nu - \nu (1-x) \frac{\langle \phi^x \rangle}{n} - x \Delta \omega E[\Delta R],
\]

costs of contagion regulation losses

where \(\nu \equiv E[R_I] - \omega_L E[\Delta R] \) and \(\langle \phi^x \rangle \equiv \left(\sum_{m=1}^{n(1-x)} m \phi^x_m \right) \).

Increasing \(x \)

\(\uparrow x \Delta \omega E[\Delta R], \)
\(\downarrow (1-x), \) but
\(\uparrow \downarrow \langle \phi^x \rangle \)

Increasing transparency

alters \(\langle \phi^x \rangle \)
Optimal x^*

$$\nu \left(\left(\frac{\langle \phi^{x^*} \rangle}{n} - (1 - x^*) \frac{\partial}{\partial x} \left(\frac{\langle \phi^x \rangle}{n} \right) \right|_{x=x^*} \right) = \Delta \omega \mathbb{E}[\Delta R].$$

marginal benefit

marginal cost

Value of network transparency

$$SVI = (x_r - x_t) \Delta \omega \mathbb{E}[\Delta R] + \nu \left((1 - x_r) \frac{\langle \phi^{x_r} \rangle}{n} - (1 - x_t) \frac{\langle \phi^{x_t} \rangle}{n} \right)$$
The network architecture matters

- Different families of distributions $\{p_k\}_k$ imply differences in connectivity structures.

Poisson

Power-law
Case 1: $\{p_k\}_k$ is known
Optimal fraction of restricted banks

Optimal Intervention with Poisson Distribution
$\nu = 1. \kappa = 1/10.$
Case 1: $\{p_k\}_k$ is known

Value of network transparency

Contour plots of SVI. Poisson Distribution
Case 1: \(\{p_k\}_k \) is known

Optimal fraction of restricted banks

Optimal Intervention with Power-law Distribution

\(\nu = 1. \kappa = 1/10. \)

\[
\Delta \omega(E[\Delta R] + \mu) = 1/2
\]
\[
\Delta \omega(E[\Delta R] + \mu) = 1
\]
\[
\Delta \omega(E[\Delta R] + \mu) = 2
\]
Case 1: \(\{p_k\}_k \) is known

Value of network transparency

Contour plots of SVI. Power-law Distribution
Case 2: \(\{p_k\}_k \) is unknown

Optimal fraction of restricted banks

Optimal Intervention with Poisson Distribution

\(\nu = 1. \Delta \omega E[\Delta R] = 2. \kappa = 1/10. \)
Case 2: $\{p_k\}_k$ is unknown

Value of network transparency

Contour plots of SVI. Poisson Distribution
Case 2: $\{p_k\}_k$ is unknown

Optimal fraction of restricted banks

Optimal Intervention with Power-law Distribution

$\nu = 1. \, \Delta \omega E[\Delta R] = 2. \, \kappa = 1/10.$
Case 2: $\{p_k\}_k$ is unknown

Value of network transparency

Contour plots of SVI. Power-law Distribution

$\Delta \omega E[\Delta R]$

σ^2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 2 4 6 8 10 12 14 16 18 20
Concluding Remarks

- Uncertainty about the precise structure of the network reduces the scope for welfare improving regulations.

- While improving network transparency potentially reduces this uncertainty, it does not necessarily lead to welfare improving interventions.

 - The (social) value of improving network transparency is linked to aggregate characteristics of the network structure.

- Preventing large cascades of distress may be suboptimal.
Caveats

• Model does not capture
 • economic incentives underlying the formation of exposures,
 • reasons some institutions may be more prone to propagating distress

• Emphasis on the relevance of network uncertainty should not be understood as downplaying the important role that
 • leverage
 • size
 • short-term funding
play in the design of optimal policies

• As the network structure interacts with the above variables, policy interventions should be mindful of such interactions
APPENDIX
Case 1: p is known

Optimal policy: $x_c(p)$

$c = \frac{5}{9}$
Motivating Example

Optimal Policy: $x_c(p)$

$c = \frac{5}{9}$
Preventing large cascades of distress with Poisson Distribution
Preventing large cascades of distress with Power-law Distribution

α-axis

β-axis
Value of Information with Poisson Distribution

\(\nu = 1 \)

\[
\Delta \omega(E[\Delta R] + \mu) = \frac{1}{2}
\]

\[
\Delta \omega(E[\Delta R] + \mu) = 1
\]

\[
\Delta \omega(E[\Delta R] + \mu) = 2
\]
Value of Information with Power-law Distribution

\[\nu = 1 \]

\[\Delta \omega(E[\Delta R] + \mu) = \frac{1}{2} \]

\[\Delta \omega(E[\Delta R] + \mu) = 1 \]

\[\Delta \omega(E[\Delta R] + \mu) = 2 \]
Incorporating Ambiguity

- Given I, planner chooses R_I to solve

$$\max_{R_I} \mathbb{E}_{\bar{\alpha}} (TO_\alpha | R_I) - \left(\frac{\theta}{2} \right) \times \nabla f (\mathbb{E}_\alpha (TO_\alpha | R_I)) - \kappa \times 1\kappa$$

where A is the set of plausible values for α and f denotes investors’ subjective beliefs over A, with $\bar{\alpha} \equiv \int_{\alpha \in A} \alpha df$

- The planner chooses $I \in \{I_0, I_1\}$ and R_I to solve

$$\max_{I \in \{I_0, I_1\}} \left\{ \max_{R_{I_0}} \left(\mathbb{E}_{\bar{\alpha}} (TO_\alpha | R_{I_0}) - \frac{\theta}{2} \nabla f (\mathbb{E}_\alpha (TO_\alpha | R_{I_0})) \right), \max_{R_{I_1}} \left(\mathbb{E}_{\bar{\alpha}} (TO_\alpha | R_{I_1}) - \frac{\theta}{2} \nabla f (\mathbb{E}_\alpha (TO_\alpha | R_{I_1})) - \kappa \right) \right\}$$

- Social value of network transparency is now captured by

$$\left[\mathbb{E}_{\bar{\alpha}} (TO_\alpha | x_{I_1}^*) - \mathbb{E}_{\bar{\alpha}} (TO_\alpha | x_{I_0}^*) \right] - \left(\frac{\theta}{2} \right) \times \Delta \nabla \mu,$$
The Rise of Large Cascading Failures

- Large cascading failures arise if
 \[
 \lim_{n \to \infty} \frac{\langle k^2 \rangle}{\langle k \rangle} \leq 2.
 \]

- Preventing large cascading failures
 - When the planner cannot differentiate among banks before implementing policies,
 \[
 x^* = 1 - \frac{\langle k \rangle}{\langle k^2 \rangle - \langle k \rangle}.
 \]
 - When the planner can rank banks based on their future number of susceptible links,
 \[
 K(x^*) \sum_{k=0} k(k-1)p_k = \langle k \rangle \quad \text{and} \quad x^* = 1 - \sum_{k=0} K(x^*)p_k.
 \]