The Effect of Expanding a Neonatal Intensive Care System on Infant Mortality and Long-Term Health Impairments

Tamas Hajdu,¹ Gabor Kertesi,¹ Gabor Kezdi², Agnes Szabo-Morvai¹

¹Institute of Economics Center for Economic and Regional Studies, Hungary

> ²Institute for Social Research University of Michigan

AEA San Diego, Jan 4 2020

Question

What's the effect of the expansion of a NICU/NETS system?

- NICU: Neonatal Intensive Care Unit (level 3)
- NETS: Newborn Emergency Transportation System (to level 3 hospitals)
- on neonatal mortality (< 7 days)
- on infant mortality (< 365 days) likely long-run survival
- on long-run impairment

Why interesting?

Very costly

Data, method, results

Data from Hungary, where system expanded gradually

- National vital statistics
- National census
- Own survey on establishment of new NICUs and coverage of NETS

Method

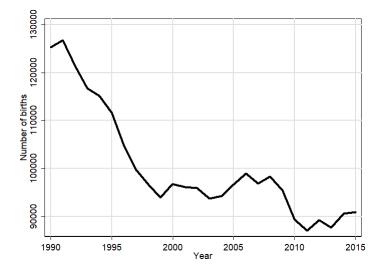
- Identification from longitudinal geographic variation in access
 - longitudinal variation in the distance of the mothers' residence to nearest city with NICU/NETS hospital as instrument for city of birth with NICU hospital or hospital in the NETS

Results

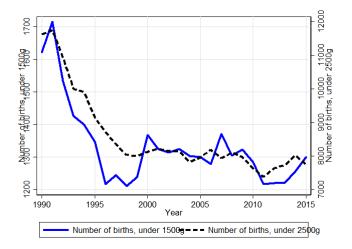
- Substantial effects on reducing mortality
 - \blacktriangleright both for children < 1500g and children 1500g to 2500g
 - effects persist in long run
- No (net) effects on long-term impairment

What do we know so far?

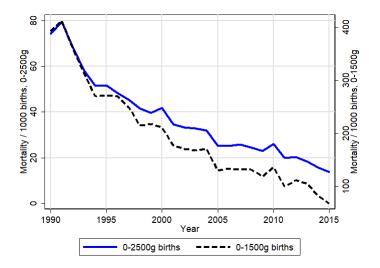
- No existing study asks our question: the effect of geographic expansion of the system
- Many studies asking related questions
- Effect of neonatal intensive care on mortality: most (not all) find strong effects
 - Sosnaud (2019) USA, effect of NICUs, xsec
 - Grytten et al. (2017), effect of specific interventions on mortality, Norway, hospital FE
 - Laswell et al (2010), review, effect of NICU on mortality, xsec studies
 - Cutler (2007) and Bhardwaj et al. (2013), effect on mortality and school outcomes, USA, RD at 1500g
- Effect of in-utero versus ex-utero transfers (NICU versus NETS) on mortality; xsec comparisons
- Studies on the health risks of pre-term births; xsec comparisons

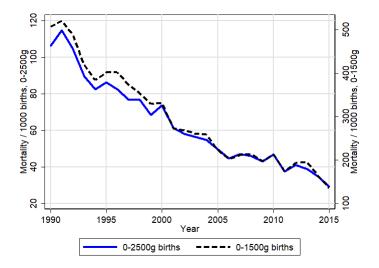

Our contribution

- We directly measure the effect of expanding a NICU system.
- We jointly estimate the effect of NETS and NICUs.
- We consider important outcomes in the same framework:
 - 0-7 day mortality
 - 0-364 day mortality
 - long-run impairment.
- We use a novel identification strategy:
 - Iongitudinal variation of distance
 - due to new establishments in previously under-served areas;
 - an improvement on existing strategies using either longitudinal variation in the place of delivery or xsec variation in distance.


Data

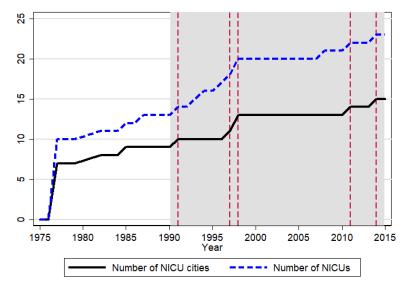
- National vital statistics
 - administrative data with full national coverage for years 1990-2015
 - ★ 2,610,468 live birth events linked with 22,136 neonatal and infant mortality events
 - \star around 3000 municipalities of residence
 - Information: birth weight, gestational age, municipality of delivery and a rich set of covariates
- Census, 2011
 - linked to vital statistics data
 - various types of self-reported long-term impairment (response rate: 80%)
- Own survey on the expansion of NICUs and NETS:
 - openings of level-3 NICU facilities: 6 events
 - establishment of regional NETS and their coverage of hospitals in three points in time
- Two work samples
 - ▶ Mortality: birth year 1990 to 2015, *n* = 223,119 for < 2500*g*
 - ▶ Impairment: birth year 1990 to 2007, *n* = 104,758 for < 2500*g*


Background: Number of births in Hungary

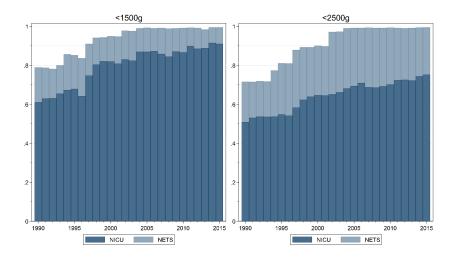

Background: Number of births (< 1500g and < 2500g)

Background: 0-6 day mortality (< 1500g and < 2500g)

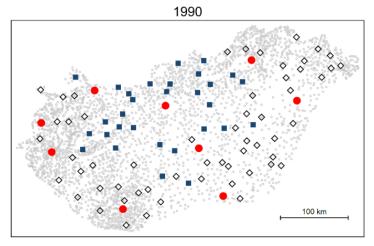
Background: 0-366 day mortality (< 1500g and < 2500g)


Background: Health care in Hungary

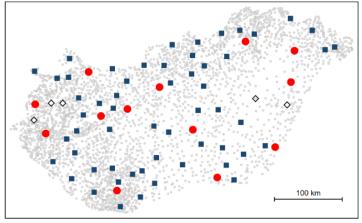
- Universal coverage, mandatory single-payer health insurance
- 7.4% of GDP spent on health care in 2013 (70% public)
- services free of charge (nominally; informal gratuity is wide-spread)
- territorial supply obligation
- patients should receive health care at the assigned lowest level
- choice in where to seek specialized care


Background: the NICU/NETS system in Hungary

- First NICUs in the 1970s (10 in 7 cities)
- Some expansion until 1990 (2 new cities)
- Expansion of NICUs continues after 1990 (6 new cities)
 - < 1500g births: from 60% to 85%</p>
 - < 2500g births: from 50% to 70%</p>
- First NETS with regional coverage in 1990
- More regional NETS and expansion of coverage of existing NETS
- By 2005, all < 1500g and all < 2500g births in NICUs or NETS hospital

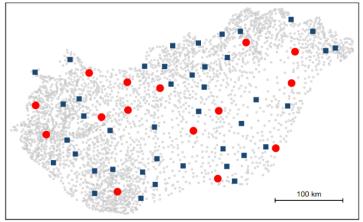

Number of NICUs and number of cities with a NICU hospital

Proportion of births in cities with a NICU and in a hospital connected to NETS


Geographic distribution if NICU and NETS hospitals

- NICU hospital
- hospital without NICU/NETS
- NETS hospital
- settlements without hospital

Geographic distribution if NICU and NETS hospitals


2002

- NICU hospital
- hospital without NICU/NETS
- NETS hospital
- settlements without hospital

Geographic distribution if NICU and NETS hospitals

2015

- NICU hospital
- hospital without NICU/NETS
- NETS hospital
- settlements without hospital

Empirical strategy

 $Y_{ijt} = \beta BNICU_{ijt} + \gamma BNETS_{ijt} + \delta' X_{ijt} + \eta_j + \theta_t + u_{ijt}$

- Subscripts
 - i: newborn child
 - j: municipality of residence of the mother
 - t: year of birth
- Y: outcome variable
 - died within 6 days
 - died within 364 days
 - developed an impairment (age 3-20)
- BNICU whether born in a city with a NICU hospital
- BNETS whether born in a city with a hospital connected to NETS

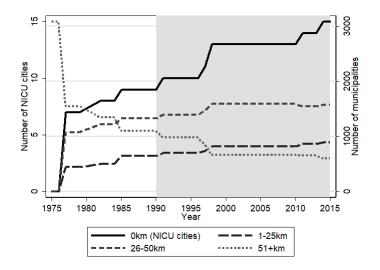
Empirical strategy

$Y_{ijt} = \beta BNICU_{ijt} + \gamma BNETS_{ijt} + \delta' X_{ijt} + \eta_j + \theta_t + u_{ijt}$

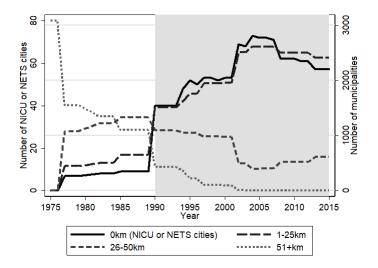
- Fixed-effects
 - η_j municipality of residence FE
 - θ_t year of birth FE
- X: covariates
 - infant's gender, parity, twin, month of birth, mother single/married, twin birth, previous miscarriages, abortions, mothers' age, education, labor market status, whether married, father's age, education, labor market status

Empirical strategy: IV

- Problem: BNICU and BNETS are endogenous
 - when new NICUs open more of the ex-ante risky deliveries are planned there
 - when new NICUs open, more knowledgeable or better-connected mothers with the same ex-ante risk are more likely to plan deliveries there
 - first effect likely dominates (positive bias on mortality)
- Solution: distance of residence as instrument
 - DNICU: distance to nearest city with NICU hospital
 - DNETS: distance to nearest city without a NICU hospital but with a NETS hospital

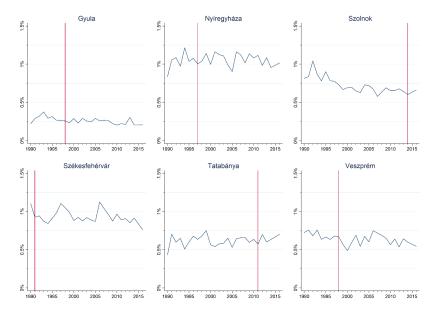

 $BNICU_{ijt} = \pi_1 DNICU_{ijt} + \phi_1 DNETS_{ijt} + \delta'_1 X_{ijt} + \eta_{1j} + \theta_{1t} + u_{1ijt}$ $BNETS_{ijt} = \pi_2 DNICU_{ijt} + \phi_2 DNETS_{ijt} + \delta'_2 X_{ijt} + \eta_{2j} + \theta_{21t} + u_{2ijt}$

Empirical strategy: IV


- Identification from changes in distance
 - DNICU changes when a new NICU hospital opens in new city
 - DNETS changes when a new regional NETS is established or when existing NETS connects a new hospital
- Reduced form:

$$Y_{ijt} = \pi_R DNICU_{ijt} + \phi_R DNETS_{ijt} + \delta'_R X_{ijt} + \eta_{Rj} + \theta_{Rt} + u_{Rijt}$$

Empirical strategy: Distance to NICU cities


Empirical strategy: Distance to NICU or NETS cities

Discussion of the empirical strategy

- Source of identification is changes in distance
 - no endogeneity from time-invariant geographic distribution of mothers and hospitals
 - potential endogeneity only from correlated changes in geographic distribution of mothers and hospitals
- Effect estimates likely lower bounds due to data imperfections
 - timing of change is captured with error (especially for NETS)
 - some cities have both NICU and non-NICU hospitals
 - NICU 2 hospitals in control group (very few)

Net migration to the 6 cities (women age 20-34)

Main results on mortality

TABLE 1—THE EFFECT OF BEING BORN IN A CITY WITH A NICU OR A NETS ON MORTALITY. 2SLS ESTIMATES

	Mor	tality 0-6 days		Morta	ality 0-364 day	s
	<1500g	1500-2499g	<2500g	<1500g	1500-2499g	<2500g
Born in a NICU city	-0.153 (0.038)	-0.010 (0.003)	-0.024 (0.007)	-0.144 (0.042)	-0.021 (0.005)	-0.031 (0.009)
Born in a NETS city	-0.057 (0.040)	-0.009 (0.002)	-0.009 (0.005)	-0.020 (0.043)	-0.011 (0.004)	-0.008 (0.006)
Municipality of residence FE	Y	Y	Y	Y	Y	Y
Birth year FE	Y	Y	Y	Y	Y	Y
Birth month FE	Y	Y	Y	Y	Y	Y
Individual covariates	Y	Y	Y	Y	Y	Y
IV F-stat NICU	78.4	57.3	63.7	78.4	57.3	63.7
IV F-stat NETS	106.5	235.2	231.3	106.5	235.2	231.3
Number of municipalities	2029	2929	2964	2029	2929	2964
Number of observations	34,213	188,611	223,319	34,213	188,611	223,319

Main results on long-term impairment

a Deputy of announced a NICLL on

TABLE 2—THE EFFECT OF BEING BO	RN IN A CITY V	WITH A NICU OR A 2SLS ESTIMA		E PROBABILIT	Y OF LONG-TERM I	MPAIRMENT.	
		Any impairmer		Impairm	npairment due to issues at birth		
	<1500g	1500-2499g	<2500g	<1500g	1500-2499g	<2500g	
Born in a	0.023	0.000	0.004	-0.001	0.008	0.010	
NICU city	(0.048)	(0.009)	(0.009)	(0.050)	(0.007)	(0.007)	
Born in a	-0.023	-0.004	-0.007	-0.011	0.000	-0.003	
NETS city	(0.066)	(0.006)	(0.007)	(0.067)	(0.005)	(0.006)	
Municipality of residence FE	Y	Y	Y	Y	Y	Y	
Birth year FE	Y	Y	Y	Y	Y	Y	
Birth month FE	Y	Y	Y	Y	Y	Y	
Individual covariates	Y	Y	Y	Y	Y	Y	
IV F-stat NICU	50.38	42.70	47.54	50.39	42.29	47.09	
IV F-stat NETS	40.13	230.5	225.2	39.07	230.6	225.2	
Number of municipalities	1173	2719	2763	1168	2719	2762	
Number of observations	9,992	94,106	104,758	9,891	93,726	104,273	

Discussion of main results

- Strong NICU effects on 0-6 day mortality
 - ► 153/1000 live births for BW < 1500g (95% CI [77,229]); corresponding mortality rate 400/1000 in 1990
 - ► 10/1000 live births for 1500g ≤ BW < 2500g (95% CI [4,16]); corresponding mortality rate 25/1000 in 1990
 - 24/1000 live births for BW < 2500g (95% CI [10,38]); corresponding mortality rate 80/1000 in 1990
- Much weaker but often stat.sig. NETS effects on mortality
- Similar effects on 0-364 day mortality as on 0-6 day mortality
 - indicating that lives saved by NICU and NETS are lives saved for a long run
- Zero effects on long-term impairment
 - Either the infants saved by NICU/NETS don't develop impairments and NICUs don't decrease the likelihood of impairment for infra-marginal infants
 - Or the two effects cancel out approximately

Additional results: First stage for mortality

	<1500g		1500-	2499g	<2500g	
	BNICU	BNETS	BNICU	BNETS	BNICU	BNETS
Distance to NICU (10km)	-0.117	0.058	-0.119	0.068	-0.119	0.067
	(0.009)	(0.008)	(0.011)	(0.008)	(0.011)	(0.008)
Distance to NETS (10km)	-0.006	-0.045	0.007	-0.080	0.006	-0.075
	(0.004)	(0.003)	(0.003)	(0.004)	(0.003)	(0.004)
Municipality of resid. FE	Y	Y	Y	Y	Y	Y
Birth year FE	Y	Y	Y	Y	Y	Y
Birth month FE	Y	Y	Y	Y	Y	Y
Individual covariates	Y	Y	Y	Y	Y	Y
Number of municipalities	2029	2029	2929	2929	2964	2964
Number of observations	34,213	34,213	188,611	188,611	223,319	223,319

Additional results: First stage for long-term impairment

	<1500g		1500-2499g		<2500g	
	BNICU	BNETS	BNICU	BNETS	BNICU	BNETS
Distance to NICU (10km)	-0.115 (0.012)	0.046 (0.012)	-0.111 (0.012)	0.058 (0.009)	-0.112 (0.012)	0.058 (0.008)
Distance to NETS (10km)	-0.009 (0.005)	-0.037 (0.004)	0.003 (0.002)	-0.079 (0.004)	0.002 (0.003)	-0.075 (0.004)
Municipality of resid. FE	Y	Y	Y	Y	Y	Y
Birth year FE	Y	Y	Y	Y	Y	Y
Birth month FE	Y	Y	Y	Y	Y	Y
Individual covariates	Y	Y	Y	Y	Y	Y
Number of municipalities	1173	1173	2719	2719	2763	2763
Number of observations	9,992	9,992	94,106	94,106	104,758	104,758

- $\bullet~{\rm OLS}$ estimates are less negative on mortality, sometimes positive on impairment, esp. <1500g
- Non-linear functional forms for the distance variables: similar results
- Including municipality-specific linear trends: results slightly weaker
- Including lead terms; significant effect estimate for year prior to NICU "establishment" but not before; estimates similar for a few years prior to NETS establishment/expansion (reduced form results)
- Excluding cities with multiple hospitals (and their 50-km-radius): similar results
- Estimating effects for pre-term births (< 32 weeks and < 36 weeks : similar results

Conclusions

- Estimated the effect of improved access to neonatal intensive care due to the geographic expansion of the system into previously under-served areas
 - NICUs and NETS
 - on 0-6 day mortality
 - on 0-364 day mortality
 - on long-term impairments
- Making use of the establishment of new NICUs, establishment of regional NETS and increasing their coverage
- Using data from Hungary, 1990-2018
- National vital statistics, National census, own survey on NICU and NETS establishments
- Making use of a novel identification strategy: longitudinal variation in the distance of the mothers' residence to the nearest NICU/NETS city

Conclusions

- We estimated strong effects on 0-6 day mortality
- We estimated similar effects on 0-364 day mortality
 - thus, lives are saved for long-term
- We estimated zero effects for long-term impairment
 - these are the net effect of saving riskier lives and treating infra-marginal infants
- Our estimates are likely lower bounds for the expected benefits of expanding the NICU/NETS system to under-served areas in medium-to-high-income countries

Table A9: OLS (non-instrumented FE) regression results for the effect of being born in a city with a NICU or a NETS on mortality

	N	lortality 0-6 da	ays	Mortality 0-364 days			
	<1500g	1500-2499g	<2500g	<1500g	1500-2499g	<2500g	
Born in a city with NICU	-0.143	0.002	0.009	-0.117	0.005	0.026	
	(0.012)	(0.001)	(0.003)	(0.013)	(0.002)	(0.003)	
Born in a city with NETS	-0.030	-0.004	-0.010	-0.011	-0.006	-0.013	
	(0.013)	(0.001)	(0.002)	(0.014)	(0.002)	(0.003)	
Municipality of resid. FE	Y	Y	Y	Y	Y	Y	
Birth year FE	Y	Y	Y	Y	Y	Y	
Birth month FE	Y	Y	Y	Y	Y	Y	
Individual covariates	Y	Y	Y	Y	Y	Y	
Number of municipalities	2029	2929	2964	2029	2929	2964	
Number of observations	34,213	188,611	223,319	34,213	188,611	223,319	

Table A10: OLS (non-instrumented FE) regression results for the effect of being born in a city with a NICU or a NETS on impairment

	Impairment: any			Impairment: due to issues at birth			
	<1500g	1500-2499g	<2500g	<1500g	1500-2499g	<2500g	
Born in a city with NICU	-0.005	0.008	0.020	-0.021	0.009	0.019	
	(0.021)	(0.003)	(0.003)	(0.019)	(0.003)	(0.003)	
Born in a city with NETS	0.014	-0.004	-0.007	0.002	-0.001	-0.005	
	(0.024)	(0.003)	(0.003)	(0.022)	(0.002)	(0.003)	
Municipality of resid. FE	Y	Y	Y	Y	Y	Y	
Birth year FE	Y	Y	Y	Y	Y	Y	
Birth month FE	Y	Y	Y	Y	Y	Y	
Individual covariates	Y	Y	Y	Y	Y	Y	
Number of municipalities	1173	2719	2763	1168	2719	2762	
Number of observations	9,992	94,106	104,758	9,891	93,726	104,273	

	М	ortality 0-6 da	ays	Mo	Mortality 0-364 days		
	<1500g	1500- 2499g	<2500g	<1500g	1500- 2499g	<2500§	
Born in a city with NICU	-0.144	-0.010	-0.022	-0.136	-0.019	-0.027	
	(0.036)	(0.003)	(0.006)	(0.041)	(0.004)	(0.007)	
Born in a city with NETS	-0.060	-0.008	-0.010	-0.031	-0.009	-0.008	
	(0.038)	(0.002)	(0.004)	(0.040)	(0.003)	(0.005)	
Municipality of resid. FE	Y	Y	Y	Y	Y	Y	
Birth year FE	Y	Y	Y	Y	Y	Y	
Birth month FE	Y	Y	Y	Y	Y	Y	
Individual covariates	Y	Y	Y	Y	Y	Y	
IV F-stat NICU	89.55	224.1	247.6	89.55	224.1	247.6	
IV F-stat NETS	64.31	272.9	270.4	64.31	272.9	270.4	
Number of municipalities	2029	2929	2964	2029	2929	2964	
Number of observations	34,213	188,611	223,319	34,213	188,611	223,31	

Table A11: 2SLS estimates for the effect of being born in a city with a NICU or a NETS on mortality. Distance quartic

Table A13: 2SLS estimates for the effect of being born in a city with a NICU or a NETS on mortality. Municipality of residence linear trends included

	М	ortality 0-6 da	ays	Мо	Mortality 0-364 days			
	<1500g	1500- 2499g	<2500g	<1500g	1500- 2499g	<250		
Born in a city with NICU	-0.121	-0.003	-0.015	-0.158	-0.006	-0.02		
	(0.054)	(0.004)	(0.008)	(0.063)	(0.006)	(0.01		
Born in a city with NETS	-0.015	-0.007	-0.010	0.011	-0.005	-0.0(
	(0.066)	(0.003)	(0.007)	(0.075)	(0.005)	(0.00		
Municipality of resid. FE	Y	Y	Y	Y	Y	Y		
Municipality of resid. trend	Y	Y	Y	Y	Y	Y		
Birth year FE	Y	Y	Y	Y	Y	Y		
Birth month FE	Y	Y	Y	Y	Y	Y		
Individual covariates	Y	Y	Y	Y	Y	Y		
IV F-stat NICU	76.42	74.53	81.35	76.42	74.53	81.3		
IV F-stat NETS	65.17	230.6	221	65.17	230.6	22:		
Number of municipalities	2029	2929	2964	2029	2929	296		
Number of observations	34,213	188,611	223,319	34,213	188,611	223,3		

Table A14: Reduced-form estimates for the effect of the distance of the mother's residence to the closest city with a NICU or a NETS on mortality. Lead terms included to test pre-trends

· · · ·	M	ortality 0-6 d	ays	Mortality 0-364 days			
	<1500g	1500- 2499g	<2500g	<1500g	1500- 2499g	<2500g	
Distance to NICU (10km)							
contemporaneous	0.004	-0.000	-0.000	0.008	-0.002	-0.001	
	(0.006)	(0.000)	(0.001)	(0.006)	(0.001)	(0.001)	
lead 1	0.018	0.001	0.003	0.015	0.005	0.006	
	(0.008)	(0.001)	(0.001)	(0.009)	(0.001)	(0.002)	
leads 2-3	0.001	0.000	0.002	0.000	-0.000	0.002	
	(0.006)	(0.001)	(0.001)	(0.008)	(0.001)	(0.002)	
leads 4-5	-0.005	0.001	-0.002	-0.005	0.000	-0.003	
	(0.008)	(0.001)	(0.001)	(0.008)	(0.001)	(0.002)	
Distance to NETS (10km)							
contemporaneous	0.003	0.000	0.000	-0.000	-0.001	-0.001	
	(0.004)	(0.000)	(0.001)	(0.004)	(0.001)	(0.001)	
lead 1	-0.005	0.000	-0.001	-0.004	0.001	-0.000	
	(0.005)	(0.000)	(0.001)	(0.005)	(0.001)	(0.001)	
leads 2-3	0.005	0.001	0.001	0.005	0.001	0.001	
	(0.005)	(0.001)	(0.001)	(0.005)	(0.001)	(0.001)	
leads 4-5	0.004	-0.000	0.001	0.007	0.000	0.001	
	(0.005)	(0.000)	(0.001)	(0.005)	(0.001)	(0.001)	
Municipality of resid. FE	Y	Y	Y	Y	Y	Y	
Birth year FE	Y	Y	Y	Y	Y	Y	
Birth month FE	Y	Y	Y	Y	Y	Y	
Individual covariates	Y	Y	Y	Y	Y	Y	
Number of municipalities	2029	2929	2964	2029	2929	2964	
Number of observations	34,213	188,611	223,319	34,213	188,611	223,319	

41/36