The Benchmark Inclusion Subsidy

Anil Kashyap	Natalia Kovrijnykh	Jian Li	Anna Pavlova
Chicago Booth and Bank of England	Arizona State University	University of Chicago	London Business School

*The views here are those of the authors only and not necessarily of the Bank of England

Global Assets Under Management

■ Asia-Pacific ■ Europe ■ Latin America ■ Middle East and Africa ■ North America ○ CAGR Sources: PwC AWM Research Centre analysis. Past data based on Lipper, ICI, EFAMA, City UK, Hedge Fund Research and Preqin

Source: PWC, Asset and Wealth Management Revolution, 2017

Benchmarking in Asset Management

- Money managed against leading benchmarks
 - 1. S&P 500
 - 2. FTSE-Russell (multiple indices)
 - 3. MSCI All Country World Index
 - 4. MSCI EAFE
 - 5. CRSP

≈\$10 trillion
≈\$8.6 trillion
≈\$3.2 trillion
≈\$1.9 trillion
≈\$1.3 trillion

- Existing research: asset pricing implications of benchmarking
- No analysis of implications of benchmarking for corporate decisions

This Paper

- Performance evaluation relative to a benchmark creates incentives for portfolio managers to hold the benchmark portfolio
 - Inelastic demand, independent of variance
- Firms inside the benchmark end up effectively subsidized by portfolio managers
- The value of a project differs for firms inside and outside the benchmark
 - > Higher for a firm inside the benchmark
 - > The difference is the "benchmark inclusion subsidy"

This Paper (cont.)

- Firms inside and outside the benchmark have different decision rules for M&A, spinoffs & IPOs
- The "benchmark inclusion subsidy" varies with a host of firm/investor characteristics
 > Gives novel cross-sectional predictions

All of this is in contrast to what we teach in Corporate Finance

Simplified Model: Environment

- Two periods, t = 0, 1
- Three risky assets, 1, 2, and y, with uncorrelated cash flows D_i $D_i \sim N(\mu_i, \sigma_i^2), i = 1, 2, y$

- Asset price denoted by S_i
- Riskless asset, with interest rate r = 0

Simplified Model: Investors

- Two types of investors
 - > Direct investors (fraction λ_D)
 - > Portfolio (fund) managers (fraction λ_M)
- All investors have CARA utility:

 $U(W) = -Ee^{-\gamma W}$

W is terminal wealth (compensation for portfolio managers) γ is absolute risk aversion

 Absent portfolio managers, this is a standard model and the CAPM holds

Compensation of Portfolio Managers

- Portfolio managers' compensation: $w = a r_x + b(r_x r_b) + c$
 - r_x performance of portfolio manager's portfolio
 - r_{b} performance of benchmark
 - a sensitivity to absolute performance
 - b sensitivity to relative performance
 - c independent of performance (e.g., based on AUM)

See Ma, Tang, and Gómez (2019) for evidence

Optimal Portfolios

Direct investors' optimal portfolio:

 $x_i^D = \frac{\mu_i - S_i}{\gamma \sigma_i^2}$ (standard mean-variance)

Portfolio managers' optimal portfolio:

9

Suppose firm 1 is **inside** the benchmark

$$x_1^M = \frac{1}{a+b} \frac{\mu_1 - S_1}{\gamma \sigma_1^2} + \frac{b}{a+b}$$

Suppose firm 2 is outside the benchmark

$$x_2^M = \frac{1}{a+b} \frac{\mu_2 - S_2}{\gamma \sigma_2^2}$$

• Inelastic demand for $\frac{b}{a+b}$ shares of firm 1 (or whatever is in the benchmark)

Asset Prices

- Market clearing: $\lambda_M x_i^M + \lambda_D x_i^D = 1$
- Asset prices:

$$S_{1} = \mu_{1} - \gamma \Lambda \sigma_{1}^{2} \left(1 - \lambda_{M} \frac{b}{a+b} \right) \text{ (benchmark)}$$

$$S_{2} = \mu_{2} - \gamma \Lambda \sigma_{2}^{2} \text{ (non-benchmark)}$$

$$S_{y} = \mu_{y} - \gamma \Lambda \sigma_{y}^{2} \text{ (non-benchmark)}$$

10 where $\Lambda = \left[\frac{\lambda_M}{a+b} + \lambda_D\right]^{-1}$ modifies the market's effective risk aversion

Suppose y is Acquired by Firm 2

- This merger leaves y outside of the benchmark
- New optimal portfolios:

$$x_{2}^{D'} = \frac{\mu_{2} + \mu_{y} - S_{2}'}{\gamma(\sigma_{2}^{2} + \sigma_{y}^{2})}$$
$$x_{2}^{M'} = \frac{1}{a+b} \frac{\mu_{2} + \mu_{y} - S_{2}'}{\gamma(\sigma_{2}^{2} + \sigma_{y}^{2})}$$

(Direct investors)

(Portfolio managers)

• New price of non-benchmark stock 2:

$$S'_{2} = \mu_{2} + \mu_{y} - \gamma \Lambda \left(\sigma_{2}^{2} + \sigma_{y}^{2}\right) = S_{2} + S_{y}$$

Suppose y is Acquired by Firm 1

- This merger moves y inside the benchmark
- New optimal portfolios:

$$\kappa_1^{D'} = \frac{\mu_1 + \mu_y - S'_1}{\gamma \left(\sigma_1^2 + \sigma_y^2\right)}$$
 (Direct investors)

$$x_1^{M'} = \frac{1}{a+b} \frac{\mu_1 + \mu_y - S_1'}{\gamma \left(\sigma_1^2 + \sigma_y^2\right)} + \frac{b}{a+b} \quad \text{(Portfolio managers)}$$

New price of stock 1

$$S_{1}' = \mu_{1} + \mu_{y} - \gamma \Lambda \left(\sigma_{1}^{2} + \sigma_{y}^{2}\right) \left(1 - \lambda_{M} \frac{b}{a+b}\right)$$
$$= S_{1} + S_{y} + \gamma \Lambda \sigma_{y}^{2} \lambda_{M} \frac{b}{a+b} > S_{1} + S_{y}$$

benchmark inclusion subsidy (increasing in σ_y^2)

More General Model

- Assume N assets, with K inside the benchmark
- Allow <u>correlation</u> among all assets

- Compare investments in *y* by firms *in* and *out*. Assume $\sigma_{in} = \sigma_{out} = \sigma$ and $\rho_{in,y} = \rho_{out,y} = \rho_y$.
- Then the benchmark inclusion subsidy is

$$\Delta S_{in} - \Delta S_{out} = \gamma \Lambda (\sigma_y^2 + \rho_y \sigma \sigma_y) \lambda_M \frac{b}{a+b}$$

Additional Implications

- Benchmark inclusion subsidy: $\gamma \Lambda (\sigma_y^2 + \rho_y \sigma \sigma_y) \lambda_M \frac{b}{a+b}$
- No subsidy for riskless projects
- Subsidy larger if project is
 - > more correlated with cash flows from existing assets (high ρ_y)
 - > if risk aversion is big (high γ)
- Subsidy larger with more AUM (λ_M)

or for large "b" (= passive management)

Quantifying the Subsidy

 Suppose twin firms that are just inside and outside the benchmark are contemplating the same project

$$\Delta S_{in} = -I + \frac{\mu_y}{1 + r_{in}} \text{ and } \Delta S_{out} = -I + \frac{\mu_y}{1 + r_{out}}$$

• Seek to quantify
$$r_{out} - r_{in}$$

- Infer the inelastic demand from institutional ownership data
 - benchmark = S&P 500 is 83%
 - all stocks in the market 67%

Source: FactSet/LionShares, 2017

Quantifying the Subsidy (cont.)

• Size of the subsidy, $r_{out} - r_{in}$, in basis points

		Institutional Ownership of Market		
Institutional Ownership of Benchmark		59%	67%	75%
	75%	67	35	0
	83%	133	94	51
	91%	260	215	159

Consistent with Calomiris et al. (2019)

Related Empirical Evidence

- Consistent with the index effect though also brings many additional cross-sectional predictions
- Benchmark ≠ Index, benchmark matters
 - Sin stocks, Hong and Kacperczyk (2009)
- Benchmark firms invest more, employ more people, and accept riskier projects
 - Bena, Ferreira, Matos, and Pires (2017)
- Bigger subsidy, when λ_M is larger
 - Chang, Hong, and Liskovich (2015)

Conclusions

- Benchmark inclusion subsidy matters for a host of corporate actions
 - Investment, M&A, spinoffs, IPOs
- We project it to grow
 - projected growth in assets under management
 - shifting demand from active equity to passive
- Benchmark construction determines which firms get a subsidy