Social cost of air pollution:

The Impact of Outdoor Air Pollution on Chinese Expressed Happiness through Social Media

JEL Classifications: Q5, H2

Yiren Wang Duke Univesity international Master of Environmental Policy 2020

COPYRIGHT © IH Digital

Outline:

- 1. Problem identification
- 2. Literature review
- 3. Data & methods
- 4. Results & discussion
- 5. Conclusion

Literature review

- 1. Air pollution and emotions: Zhang and Wang (2019) found out that the control of $PM_{2.5}$ concentrations can help decrease happiness inequality and increase the individuals' levels of happiness in the long term.
- 2. Social media and emotion sharing: The statistical 0.718 (n=74, p<.001) result from Wang et al. (2015) shows a significant correlation between particle pollution levels and pollution-related **messages** in 74 cities in Sina Weibo.
- 3. Sentiment Analysis Methods: On average, 91.48% of language modelbased sentiment classifications can automatically capture writers' opinions and match human perception (Siebert et al 2019).

Problem identification

Air Pollution Impacts on Expressed Happiness

Concentrations of PM2.5 or Air Quality Index 10 thousands of posted Weibo contents data Baidu sentiment analysis Service

2. Air pollution: Ministry of Ecology and Environment, national government;

- 3. Baidu sentiment analysis: <u>http://ai.baidu.com/tech/nlp/sentiment_classify;</u>
- 4. Weather and holiday data: regional governments.

Duke

1.

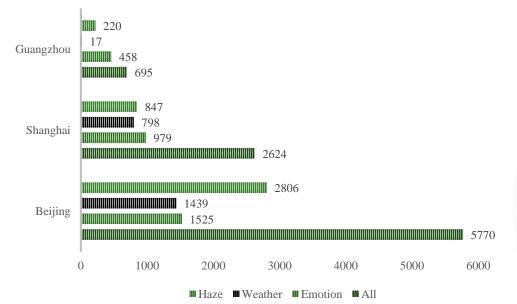
Problem identification

ıke

- 5. Weibo contents: obtain by the web crawler
 - Time selection: from **January to March**;
 - Search items: location (3) + key words (3) = <u>9</u> combinations;

- Random selected: however, retrieve full text documents for the top 50 pages of main posts, **not a quasi-collection** process.
- Stimulation: define, direct mentioned ~ indirect behaviors.
 Haze > weather> emotion

Problem identification


- **Hypothesis:**
 - Air quality worse (AQI increase)
 People's expressed happiness /

Duke

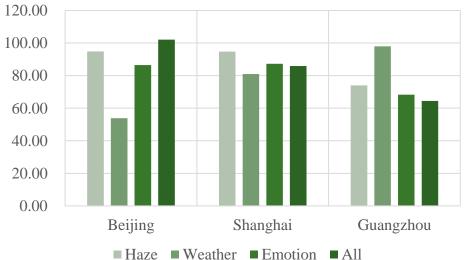
Date and Methods

1. Sample distribution

VALID SAMPLE DISTRIBUTION

Valid samples	Haze	V	Weather	Emotion	All
Beijing		2806	1439) 1525	5 5770
Shanghai		847	798	8 979	2624
Guangzhou		220	17	458	695

9087 valid data;
 Locations:


 63.5% Beijing;
 28.9% Shanghai;

 Keywords

 42.6% Haze;
 24.8% Weather;
 32.6% Emotion.

Date and Methods

Air Quality Index 2.

AVERAGE_AQI

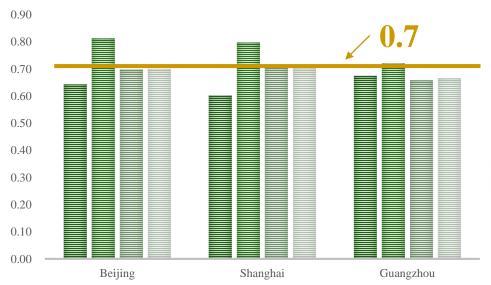
Average_AQI Haze Weather Emotion All 53.82 102.13 86.52 94.79 94.69 80.95 85.92 87.24 74.00 Guangzhou 97.94 64.47 68.31 93.59 85.33 63.76 90.95 AOI classification standard Heavily polluted: Beijing>Shanghai>Guangzhou Trigger or stimulation: Keywords;

- Complain more;
- Guangzhou: lack of data.

. . .

Beijing

All


Shanghai

uke

Date and Methods

Expressed happiness 3.

POSITIVE_PROB

■Haze ■Weather ■Emotion ■All

Positive_prob	Haze	Weather	Emotio	n All	
Beijing		0.64	0.81	0.70	0.70
Shanghai		0.60	0.80	0.71	0.70
Guangzhou		0.68	0.72	0.66	0.67
All		0.64	0.81	0.70	0.70

- **Stable**: 0.67~0.7
- **Expressed Happiness:**
 - Happier: weather, **0.81**;
 - Middle: emotion, 0.70;
 - Less happy: haze, **0.64**.

uke

uke

1. Sentiment & Positive probability

 Table 4: The effect of using sentiment and positive probability

	(1)	(2)		
VARIABLES	Sentiment	Positive prob		
AQI	-0.00205***	-0.00170***		
		-		
	(0.000499)	(0.000526)		
Constant	1.197***	1.370***		
	(0.0497)	(0.0523)		
Observations	9,087	9,087		
** p < 0.01, ** p < 0.05, * p < 0.1				
		Significant		

- Confidence degree (0~1)
 - **Neutral** (!!) Unknown: identification rules

"Positive probability" With six significant digits Certainty?

Locations & Keywords 2.

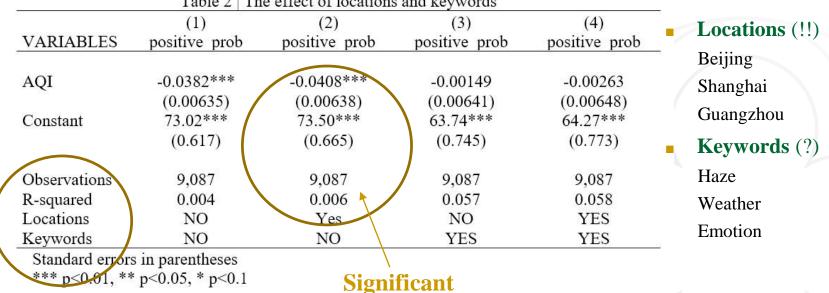
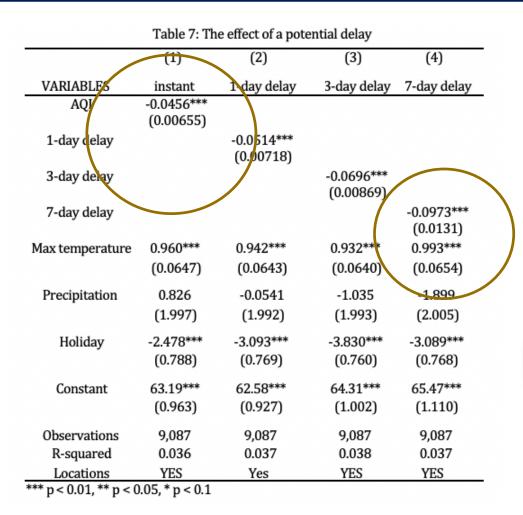


Table 2 | The effect of locations and keywords

Juke

Results


Table 6: The effect of various factors

	(1)	(2)	(3)	(4)	
VARIABLES	positive prob	positive prob	positive prob	positive prob	
AQI	-0.0336***	-0.0456***	-0.00168	-0.00974	
	(0.00646)	(0.00655)	(0.00660)	(0.00690)	
Max temperature	0.663***	0.960***	0.233***	0.402***	
	(0.0571)	(0.0647)	(0.0612)	(0.0730)	
Precipitation	-0.634	0.826	-0.140	0.884	
	(1.989)	(1.997)	(1.955)	(1.970)	
Holiday	-4.273***	-2.478***	-2.724***	-2.052***	
	(0.770)	(0.788)	(0.762)	(0.778)	
Constant	65.10***	63.19***	62.07***	61.55***	
\frown	(0.937)	(0.963)	(0.942)	(0.963)	
Observations	9,087	9,087	9,087	9,087	
R-squared	0.026	0.036	0.060	0.062	
Locations	NO	Yes	NO	YES	
Keywords	NO	NO	YES	YES	

- 3. Parameters:
 - How to understand

 Negative: AQI Holiday
 Positive: Maximum temperature Precipitation

Location matters"Concern" keyword?

5. Potential delay: Time lag effect?
✓ Instant: at the same day: 1_day: the average (instant + 1 day before); 3_day: the average (instant + 3 days before); 7 day: the average (instant + 7 days before).

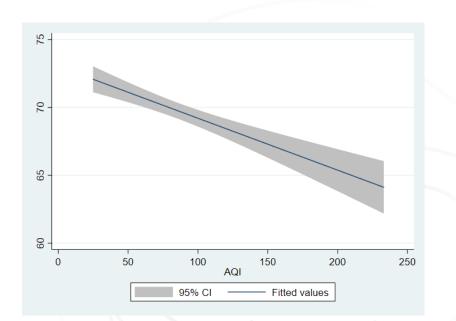
Yes

Table 8-1: The effect of expressed happiness in three cities				Table 8-2: The effect of three different "concern" keywords				
	(1)	(2)	(3)	-		(1)	(2)	(3))
VARIABLES	Beijing	Shanghai	Guangzhou		VARIABLES	Haze	Weather	Emotion
AQI	-0.0355***	-0.0337***	-0.0455***	- \	AQI	-0.0303***	-0.0125*	-0.0466***
	(0.00647)	(0.00646)	(0.00655)			(0.00661)	(0.00692)	(0.00658)
Max temperature	0.731***	0.662***	0.949***		Max temp	0.654***	0.505***	0.963***
	(0.0595)	(0.0571)	(0.0642)			(0.0687)	(8.8721)	(0.0647)
Precipitation	0.423	-0.793	0.517		Precipitation	1.082	0.674	0.868
	(2.005)	(2.000)	(1.983)			(1.980)	(1.977)	(1.997)
Holiday	-3.954***	-4.262***	-2.512***		Holiday	-2.303***	-2.079***	-2.491***
	(0.773)	(0.770)	(0.787)			(0.781)	(0.780)	(0.788)
Constant	62.68***	64.98***	63.05***		Constant	69.30***	62.78***	63.00***
	(1.110)	(0.949)	(0.957)			(1.074)	(0.953)	(0.972)
Observations	9,087	9,087	9,087		Observations	9,087	9,087	9,087
R-squared	0.028	0.027	0.036		R-squared	0.053	0.056	0.037
Keywords	NO	NO	NO		Locations	YES	YES	YES
*** p < 0.01, ** p < 0.05, * p < 0.1				_	*** p < 0.01, ** p	o < 0.05, * p <	0.1	

Limitation

- Data collection
- Only provide 50 pages of results;
- The priority for rankings.
- Sentiment analysis
- Black box: Baidu sentiment analysis service;
- Picture sharing behaviors.

Overestimate or underestimate? Not so sure


Limitation

- □ Time span
- 3 months;
- Close the access permissions.
- □ Heavily polluted:
- AQI (151~235) only composed of 7.51%;
- Provide limited support.

Overestimate or underestimate? Not so sure

Conclusion

- AQI: **significant** effect of the expressed happiness
- 0 (air quality pretty good) to 150 (middle level polluted), the average expressed happiness decreased by 5.73%.

References

- Sha, Y., Yan, J., & Cai, G. (2014, January). Detecting public sentiment over PM2. 5 pollution hazards through analysis of Chinese microblog. In *ISCRAM*.
- Cui, C., Wang, Z., He, P., Yuan, S., Niu, B., Kang, P., & Kang, C. (2019). Escaping from pollution: the effect of air quality on inter-city population mobility in China. *Environmental Research Letters*, *14*(12), 124025.
- He, K., Yang, F., Ma, Y., Zhang, Q., Yao, X., Chan, C. K., Cadle, S., Chan, T. & Mulawa, P. (2001). The characteristics of PM2. 5 in Beijing, China. *Atmospheric Environment*, *35*(29), 4959-4970.
- Ebenstein, A., Fan, M., Greenstone, M., He, G., Yin, P., & Zhou, M. (2015). Growth, pollution, and life expectancy: China from 1991-2012. *American Economic Review*, *105*(5), 226-31.
- Zheng, S., & Kahn, M. E. (2013). Understanding China's urban pollution dynamics. Journal of Economic Literature, 51(3), 731-72.
- Zhang, X., Zhang, X., & Chen, X. (2017). Valuing air quality using happiness data: the case of China. *Ecological economics*, *137*, 29-36.
- Zhang, X., Zhang, X., & Chen, X. (2017). Happiness in the air: how does a dirty sky affect mental health and subjective wellbeing?. *Journal of environmental economics and management*, 85, 81-94.
- Franklin, M., Zeka, A., & Schwartz, J. (2007). Association between PM_{2.5} and all-cause and specific-cause mortality in 27 US communities. *Journal of Exposure Science and Environmental Epidemiology*, *17*(3), 279.
- Darçın, M. (2014). Association between air quality and quality of life. *Environmental Science and Pollution Research*, 21(3), 1954-1959.

References

- Cuñado, J., & De Gracia, F. P. (2013). Environment and happiness: New evidence for Spain. *Social Indicators Research*, *112*(3), 549-567.
- Li, Y., Guan, D., Tao, S., Wang, X., & He, K. (2018). A review of air pollution impact on subjective well-being: Survey versus visual psychophysics. *Journal of cleaner production*, *184*, 959-968.
- Welsch, H. (2002). Preferences over prosperity and pollution: environmental valuation based on happiness surveys. *Kyklos*, 55(4), 473-494.
- Zhang, P., & Wang, Z. (2019). PM2. 5 Concentrations and Subjective Well-Being: Longitudinal Evidence from Aggregated Panel Data from Chinese Provinces. *International journal of environmental research and public health*, *16*(7), 1129.
- Davis, J. J., & O'Flaherty, S. (2012). Assessing the accuracy of automated Twitter sentiment coding. Academy of marketing studies *journal*, 16, 35.
- Zheng, S., Wang, J., Sun, C., Zhang, X., & Kahn, M. E. (2019). Air pollution lowers Chinese urbanites' expressed happiness on social media. *Nature Human Behaviour*, *3*(3), 237.
- He, K., Yang, F., Ma, Y., Zhang, Q., Yao, X., Chan, C. K., Chan, T. & Mulawa, P. (2001). The characteristics of PM2. 5 in Beijing, China. *Atmospheric Environment*, *35*(29), 4959-4970.
- Ebenstein, A., Fan, M., Greenstone, M., He, G., Yin, P., & Zhou, M. (2015). Growth, pollution, and life expectancy: China from 1991-2012. *American Economic Review*, *105*(5), 226-31.

Zheng, S., & Kahn, M. E. (2013). Understanding China's urban pollution dynamics. Journal of Economic Literature, 51(3), 731-72.

