Changing Preferences: An Experiment and

Estimation of Market-Incentive Effects on Altruism

Undral Byambadalai, Boston University

Ching-to Albert Ma, Boston University

Daniel Wiesen, University of Cologne

Preferences

- Always assumed exogenous
- as in Arrow-Debreu for example
- Shaped by things economists don't quite understand
- Except perhaps until recently?
- Decision theory, behavioral economics?
- Markets and incentives
- Usually studied under GIVEN preferences
- Can markets, incentives change preferences?
- Compare with: Can culture and upbringing change preferences?

Challenges

- Behaviors observed; not preferences
- Behaviors change due to interaction between preferences and markets and incentives
- How to refute hypothesis that markets and incentives change preferences?
- Resolution:
- Structural model
- Game-theoretical model of preferences, markets, incentives
- Experimental data
- Structural nonparametric estimation of preferences

Typical experiments

- Bartling, Weber, and Yao 2015, Quarterly Journal of Economics, "Do Markets Erode Social Responsibility"
- Buyers; sellers, third parties; production externalities to harm third parties
- Do sellers choose more costly production to avoid externality?
- Do buyers pay more to get clean products?
- Posted-price markets
- Falk and Szech 2013, Science, "Morals and Markets"
-"Mouse paradigm"

Preferences

- Common buzzwords: altruism, prosocial behavior, intrinsic motivation, honesty, other-regarding, etc.
- Identifying changes more likely if preferences are not all about profit or self-interest
- Medical context:
- Ken Arrow 1963, American Economic Review, "The Welfare Economics of Medical Care"
- His behavior is supposed to be governed by a concern for the customer's welfare which would not be expected of a salesman
- Arrow's "His" refers to "The Doctor"
- Altruism

Experiment and results

- Framing: health care quality
- Incentives: price, cost, patient benefit
- Markets: Monopoly, Duopoly, Quadropoly
- Preferences changed by incentives
- Preferences changed by markets
- Markets have stronger effects than incentives
- Subjects become less altruistic; preferences exhibit different variances

Theory: market and demand

- Monopoly; all patients must go to one physician
- Duopoly: two physicians, qualities q_{1}, q_{2}
- Logistic market shares:

$$
\frac{\exp \left(b q_{1}\right)}{\exp \left(b q_{1}\right)+\exp \left(b q^{\prime}\right)} \equiv S\left(q_{1} ; q^{\prime}\right)
$$

- Quadropoly: four physicians, qualities q_{1}, q_{2}, q_{3}, and q_{4}
- Logistic market shares:

$$
\frac{\exp \left(b q_{1}\right)}{\sum_{i=1}^{4} \exp \left(b q_{i}\right)} \quad \cdots \quad \cdots \quad \frac{\exp \left(b q_{4}\right)}{\sum_{i=1}^{4} \exp \left(b q_{i}\right)}
$$

- Demand elasticities: duopoly < quadropoly

Theory: incentives and preferences

- Patient benefit b
- Price p, fixed revenue
- Cost parameter c; unit cost increasing and convex in quality q
- Incentive configuration: (p, c, b)
- Utility: $\alpha b q+U\left(p-c q^{2}\right)$ per patient
- Altruism: α_{i} for physician i
- distribution of α_{i} in each incentive configuration and in each market

Monopoly optimal qualities

- Quality: $\max _{q} \alpha b q+U\left(p-c q^{2}\right)$
- Simple tradeoff
- Benchmark
- Giving up profit to benefit patient

Duopoly Bayes Nash Equilibria

- Let α be distributed on $[\underline{\alpha}, \bar{\alpha}]$, distribution F
- Stratregy: $q:[\underline{\alpha}, \bar{\alpha}] \rightarrow[0,10]$
- Given rival's strategy q^{\prime}, player i 's payoff:

$$
\left[\alpha_{1} b q_{1}+U\left(p-c q_{1}^{2}\right)\right] \times \int_{\underline{\alpha}}^{\bar{\alpha}}\left[\frac{100 \exp \left(b q_{1}\right)}{\exp \left(b q_{1}\right)+\exp \left(b q^{\prime}(x)\right)}\right] \mathrm{d} F(x)
$$

- Symmetric Bayes-Nash Equilibrium:

$$
q^{*}(\alpha)=\underset{q}{\operatorname{argmax}}\left[\alpha b q+U\left(p-c q^{2}\right)\right] \times \int_{\underline{\alpha}}^{\bar{\alpha}} 100 S\left(q_{1} ; q^{*}(x)\right) \mathrm{d} F(x)
$$

Bayes Nash and monotonicity

$$
\begin{aligned}
& \text { Equilibrium strategy } q^{*}:[\underline{\alpha}, \bar{\alpha}] \rightarrow[0,10] \text { monotone increas- } \\
& \text { ing in } \alpha .
\end{aligned}
$$

- From first-order condition for q^{*}
- Invert to get α as a function of q
- Think first price auction: bid increasing in valuation
- From Myerson symmetric equilibrium, invert bids to get valuations
- Identification by monotonicity!

Estimation

- Goal: estimate α distribution from the Bayes-Nash equilibrium q
- Challenge: unknown α distribution, unknown q distribution
- Resolution: Guerre, Perrigne and Vuong "Optimal Nonparametric Estimation of First-Price Auctions" Econometrica 2000
- Estimate unknown q distribution by empirical q distribution
- Use first-order condition, invert, then estimate α from q
- Stack up estimated α 's to construct distribution
- GPV Nonparametric Estimation: consistent, asymptoticcally efficient, etc
- Are α distributions different across markets and incentive configurations?

Estimating α by quality distribution

- Replace altruism distribution F by the equilibrium quality distribution G :

$$
\alpha=\frac{2 c q U^{\prime}\left(p-c q^{2}\right) \int_{0}^{10} S(q ; x) \mathrm{d} G(x)-}{U\left(p-c q^{2}\right) \times \int_{0}^{10} b S(q ; x)[1-S(q ; x)] \mathrm{d} G(x)} \text { b(10} S(q ; x) \mathrm{d} G(x)+\quad .
$$

- G estimated by empirical quality distribution-GPV

The Experiment

- Within-subject design
- Monopoly, Duopoly, Quadropoly
- Price, cost, benefit; each binary
- total of $3 \times 2 \times 2 \times 2=24$ games for each subject
- When: sessions in October 2017, April 2018
- Where: University of Cologne
- Who: 361 subjects, most of them Cologne students
- Average age, 24 years; 55\% female. Subjects of study: 131 in law and social sciences, 22 in medicine, 42 in arts and humanities, 49 in mathematics and natural sciences, 35 in theology, and 82 others, non-students, unavailable
- What: played normal form games, exactly those above

Sessions

- Randomly assign subjects to 6 market sequences
- (M-D-Q); (M-Q-D); (D-M-Q); (D-Q-M); (Q-M-D); (Q-D-M)
- Price-cost-benefit, or incentive, configurations order in all markets
- 1st, $(p=10, c=0.1, b=1)$
- 2nd, ($p=10, c=0.075, b=1$)
- 3rd, ($p=15, c=0.1, b=0.5$)
-4th, $(p=15, c=0.1, b=1)$
- 5th, $(p=10, c=0.1, b=0.5)$
- 6th, $(p=10, c=0.075, b=0.5)$
- 7th, $(p=15, c=0.075, b=1)$
- 8th, ($p=15, c=0.075, b=0.5$)

Other details

- No real patients; quality benefits translate to donation to charity
- Subjects only informed about market on a "need-to-know" basis
- Subjects get aggregated information of actual demands, profits, and patient benefits
- Subjects' profits and patient benefits: by "random choice" method in each market
- Control questions to test subjects' comprehension
- Sessions averaged 90 minutes; subjects earned $€ 14.20$ ($€ 18.20$ including show-up fee)
- €2,923.60 donated to the Christoffel Blindenmission, in Masvingo, Zimbabwe; enough for 97 cataract surgeries

Estimation

- Linear utility $U(x)=x$
- α : marginal rate of substitution between profit and patient benefit
- CARA utility $U(x)=1-\exp (-r x)$, set $r=0.1$ (as robustness check)
- Normalization:
- Recall 8 incentive configurations in 3 markets
- For each incentive configuration, choose monopoly as origin
- Find mean of estimated α, say $\alpha_{i}^{M}, i=$ incentive configuration; M monopoly
- Display $\alpha-\alpha_{i}^{M}$ for all i in all three markets
- Measure α altruism as deviations from the monopoly mean

Linear Utility: means and standard deviations of normalized α

Incentive configurations		Monopoly		Duopoly		Quadropoly	
	mean	st. dev.	mean	st. dev.	mean	st. dev.	
$(\boldsymbol{p}=\mathbf{1 0}, \boldsymbol{c}=\mathbf{0 . 0 7 5}, \boldsymbol{b}=\mathbf{0 . 5})$	0	0.898	-1.335	0.939	-1.579	0.766	
$(\boldsymbol{p}=\mathbf{1 0}, \boldsymbol{c}=\mathbf{0 . 0 7 5}, \boldsymbol{b}=\mathbf{1})$	0	0.448	-0.812	0.612	-0.985	0.657	
$(\boldsymbol{p}=\mathbf{1 0}, \boldsymbol{c}=\mathbf{0 . 1}, \boldsymbol{b}=\mathbf{0 . 5})$	0	1.117	-1.378	0.903	-2.233	1.710	
$(\boldsymbol{p}=\mathbf{1 0}, \boldsymbol{c}=\mathbf{0 . 1}, \boldsymbol{b}=\mathbf{1})$	0	0.559	-0.882	0.725	-1.069	0.822	
$(\boldsymbol{p}=\mathbf{1 5}, \boldsymbol{c}=\mathbf{0 . 0 7 5}, \boldsymbol{b}=\mathbf{0 . 5})$	0	1.028	-1.980	0.928	-2.382	0.980	
$(\boldsymbol{p}=\mathbf{1 5}, \boldsymbol{c}=\mathbf{0 . 0 7 5}, \boldsymbol{b}=\mathbf{1})$	0	0.512	-1.244	0.767	-1.471	1.138	
$(\boldsymbol{p}=\mathbf{1 5}, \boldsymbol{c}=\mathbf{0 . 1}, \boldsymbol{b}=\mathbf{0 . 5})$	0	1.308	-2.001	1.327	-2.428	1.147	
$(\boldsymbol{p}=\mathbf{1 5}, \boldsymbol{c}=\mathbf{0 . 1}, \boldsymbol{b}=\mathbf{1})$	0	0.638	-1.207	0.827	-1.485	1.016	

Duopoly
$\mathrm{p}=10, \mathrm{c}=0.075, \mathrm{~b}=0.5$

Duopoly
$\mathrm{p}=10, \mathrm{c}=0.1, \mathrm{~b}=0.5$

Duopoly
$\mathrm{p}=10, \mathrm{c}=0.075, \mathrm{~b}=1$

Duopoly
$p=10, c=0.1, b=1$

Duopoly
$p=15, c=0.075, b=0.5$

Duopoly
$p=15, c=0.1, b=0.5$

Duopoly
$p=15, c=0.075, b=1$

Duopoly
$p=15, c=0.1, b=1$

Quadropoly
$p=10, c=0.075, b=0.5$

Quadropoly
$p=10, c=0.1, b=0.5$

Quadropoly
$p=10, c=0.075, b=1$

Quadropoly
$p=10, c=0.1, b=1$

Quadropoly
$p=15, c=0.075, b=0.5$

Quadropoly
$p=15, c=0.075, b=1$

Quadropoly
$p=15, c=0.075, b=1$

Quadropoly $p=15, c=0.1, b=1$

Equilibrium qualities

- Three markets
- Eight incentive configurations

Counterfactuals

- What would qualities look like if there were no altruism change?
- Impossible to get analytical formulas for Bayes-Nash equilibrium qualities
- Take estimates of altruism parameters in duopoly and quadropoly
- Feed them into formulas for optimal qualities in monopoly
- Counterfact qualities

Monopoly quality from Duopoly alpha $p=10, c=0.075, b=1$

Monopoly quality from Duopoly alpha $\mathrm{p}=10, \mathrm{c}=0.1, \mathrm{~b}=1$

Monopoly quality from Quadropoly alpha $p=10, c=0.1, b=0.5$

Monopoly quality from Quadropoly alpha $p=10, c=0.1, b=1$

Means and standard deviations of qualities

Incentive configurations	Monopoly		Duopoly		Quadropoly	
	mean	st. dev.	mean	st. dev.	mean	st. dev.
$(\boldsymbol{p}=\mathbf{1 0}, \boldsymbol{c}=\mathbf{0 . 0 7 5}, \boldsymbol{b}=\mathbf{0 . 5})$	4.17	2.99	7.75	1.58	8.26	1.40
$(\boldsymbol{p}=\mathbf{1 0}, \boldsymbol{c}=\mathbf{0 . 0 7 5}, \boldsymbol{b}=\mathbf{1})$	4.15	2.99	7.98	1.59	8.31	1.56
$(\boldsymbol{p}=\mathbf{1 0}, \boldsymbol{c}=\mathbf{0 . 1}, \boldsymbol{b}=\mathbf{0 . 5})$	3.79	2.79	6.94	1.35	7.34	1.34
$(\boldsymbol{p}=\mathbf{1 0}, \boldsymbol{c}=\mathbf{0 . 1}, \boldsymbol{b}=\mathbf{1})$	3.73	2.80	7.09	1.52	7.46	1.34
$(\boldsymbol{p}=\mathbf{1 5}, \boldsymbol{c}=\mathbf{0 . 0 7 5}, \boldsymbol{b}=\mathbf{0 . 5})$	4.82	3.43	8.82	1.53	9.09	1.32
$(\boldsymbol{p}=\mathbf{1 5}, \boldsymbol{c}=\mathbf{0 . 0 7 5}, \boldsymbol{b}=\mathbf{1})$	4.83	3.41	8.98	1.60	9.15	1.43
$(\boldsymbol{p}=\mathbf{1 5}, \boldsymbol{c}=\mathbf{0 . 1}, \boldsymbol{b}=\mathbf{0 . 5})$	4.51	3.27	8.19	1.63	8.55	1.47
$(\boldsymbol{p}=\mathbf{1 5}, \boldsymbol{c}=\mathbf{0 . 1}, \boldsymbol{b}=\mathbf{1})$	4.44	3.19	8.40	1.62	8.65	1.61

Parameter	Low parameter level ($\mathrm{N}=1,444$, per market)		High parameter level ($\mathrm{N}=1,444$, per market)		Relative difference
	Mean	st. dev.	Mean	st. dev.	
Price ($p=10$ and $p=15$)					
Monopoly	3.959	2.900	4.652	3.327	0.175
Duopoly	7.442	1.573	8.595	1.625	0.155
Quadropoly	7.841	1.479	8.862	1.484	0.130
Cost ($\boldsymbol{c}=0.075$ and $\boldsymbol{c}=0.1$)					
Monopoly	4.493	3.227	4.118	3.038	-0.083
Duopoly	8.380	1.660	7.657	1.662	-0.086
Quadropoly	8.704	1.489	8.000	1.564	-0.081
Patient benefit ($b=0.5$ and $b=1)$					
Monopoly	4.323	3.150	4.287	3.128	-0.008
Duopoly	7.925	1.668	8.112	1.726	0.024
Quadropoly	8.310	1.523	8.393	1.608	0.010

Duopoly	3.713***	$3.713^{* * *}$		$3.713^{* * *}$	$3.545^{* * *}$
	(0.158)	(0.158)		(0.158)	(0.157)
Quadropoly	$4.046^{* * *}$	$4.046^{* * *}$		$4.046^{* * *}$	$3.987^{* * *}$
	(0.157)	(0.157)		(0.157)	(0.156)
High price ($=1$ if $\boldsymbol{p}_{\boldsymbol{H}}=\mathbf{1 5}$)			$0.955^{* * *}$	$0.955^{* * *}$	$0.693 * * *$
			(0.0292)	(0.0292)	(0.0504)
High cost ($=1$ if $\boldsymbol{c}_{\boldsymbol{H}}=\mathbf{0 . 1}$)			-0.601***	-0.601***	$-0.375^{* * *}$
			(0.0235)	(0.0235)	(0.0456)
High benefit ($=\mathbf{1}$ if $\boldsymbol{b}_{\boldsymbol{H}}=\mathbf{1}$)			$0.0783^{* * *}$	$0.0783^{* * *}$	-0.0360
			(0.0238)	(0.0238)	(0.0429)
Duopoly \times High price					$0.461 * * *$
					(0.0659)
Quadropoly \times High price					$0.328^{* * *}$
					(0.0608)
Duopoly \times High cost					-0.348***
					(0.0558)
Quadropoly \times High cost					-0.328***
					(0.0545)
Duopoly \times High benefit					$0.224^{* * *}$
					(0.0560)
Quadropoly \times High benefit					0.119**
					(0.0551)
Market order and session dummies	No	Yes	Yes	Yes	Yes
Constant	$4.305^{* * *}$	4.188***	$6.558^{* * *}$	$3.971^{* * *}$	$4.047^{* * *}$
	(0.155)	(0.400)	(0.378)	(0.400)	(0.399)
Observations	8,664	8,664	8,664	8,664	8,664
Subjects	361	361	361	361	361
\boldsymbol{R}^{2}	0.399	0.407	0.046	0.445	0.447

Market orders and between-subject subsample

- Does it matter if subjects experience monopoly before duopoly, etc?
- Results similar
- Use $1 / 3$ of data to construct between-subject design
- Take subjects' first market experience
- Results similar

BMW (Byambadalai, Ma, and Wiesen) questioning the basics

- Preferences-Markets-Incentives altogether, not independent
- Competition and incentives are like switches
- Why? Or should it be what or how?
- Cognitive demands?
- Reductionism: "Equity theory and fair inequality: A neuroeconomic study" by Cappelen, Proceedings of the National Academy of Science, 2014

