Changing Preferences: An Experiment and Estimation of Market-Incentive Effects on Altruism

Undral Byambadalai, Boston University

Ching-to Albert Ma, Boston University

Daniel Wiesen, University of Cologne

Preferences

- Always assumed exogenous
 - **•** as in Arrow-Debreu for example
- Shaped by things economists don't quite understand
 - Except perhaps until recently?
 - Decision theory, behavioral economics?
- Markets and incentives
- Usually studied under GIVEN preferences
- Can markets, incentives change preferences?
 - Compare with: Can culture and upbringing change preferences?

Challenges

- Behaviors observed; not preferences
- Behaviors change due to interaction between preferences and markets and incentives
- How to refute hypothesis that markets and incentives change preferences?
- Resolution:
 - Structural model
 - Game-theoretical model of preferences, markets, incentives
 - Experimental data
 - Structural nonparametric estimation of preferences

January	2020
---------	------

Typical experiments

- Bartling, Weber, and Yao 2015, Quarterly Journal of Economics, "Do Markets Erode Social Responsibility"
 - Buyers; sellers, third parties; production externalities to harm third parties
 - **Do sellers choose more costly production to avoid externality?**
 - Do buyers pay more to get clean products?
 - Posted-price markets
- Falk and Szech 2013, Science, "Morals and Markets"
 - "Mouse paradigm"

Preferences

- Common buzzwords: altruism, prosocial behavior, intrinsic motivation, honesty, other-regarding, etc.
- Identifying changes more likely if preferences are not all about profit or self-interest
- Medical context:
 - Ken Arrow 1963, American Economic Review, "The Welfare Economics of Medical Care"
 - His behavior is supposed to be governed by a concern for the customer's welfare which would not be expected of a salesman
 - Arrow's "His" refers to "The Doctor"
 - Altruism

Experiment and results

- Framing: health care quality
- Incentives: price, cost, patient benefit
- Markets: Monopoly, Duopoly, Quadropoly
- Preferences changed by incentives
- Preferences changed by markets
 - Markets have stronger effects than incentives
 - Subjects become less altruistic; preferences exhibit different variances

January 2020

Theory: market and demand

- Monopoly; all patients must go to one physician
- Duopoly: two physicians, qualities q_1 , q_2
 - Logistic market shares:

$$rac{\exp(bq_1)}{\exp(bq_1)+\exp(bq')}\equiv S(q_1;q')$$

- ullet Quadropoly: four physicians, qualities q_1 , q_2 , q_3 , and q_4
 - Logistic market shares:

$$rac{\exp(bq_1)}{\sum_{i=1}^4 \exp(bq_i)} \quad \cdots \quad \cdots \quad rac{\exp(bq_4)}{\sum_{i=1}^4 \exp(bq_i)}$$

• Demand elasticities: duopoly < quadropoly

Theory: incentives and preferences

- Patient benefit *b*
- \bullet Price p, fixed revenue
- Cost parameter c; unit cost increasing and convex in quality q

• Incentive configuration: (p, c, b)

- ullet Utility: $lpha bq + U(p-cq^2)$ per patient
- Altruism: α_i for physician i
 - distribution of α_i in each incentive configuration and in each market

January 2	2020
-----------	------

Monopoly optimal qualities

- ullet Quality: $\max_q lpha bq + U(p-cq^2)$
- Simple tradeoff
- Benchmark
 - Giving up profit to benefit patient

January 2020

Duopoly Bayes Nash Equilibria

- \bullet Let α be distributed on $[\underline{\alpha},\overline{\alpha}]$, distribution F
- Stratregy: $q: [\underline{\alpha}, \overline{\alpha}] \rightarrow [0, 10]$
- Given rival's strategy q', player *i*'s payoff:

$$[lpha_1 bq_1 + U(p-cq_1^2)] imes \int_{lpha}^{\overline{lpha}} igg[rac{100 \exp(bq_1)}{\exp(bq_1) + \exp(bq'(x))}igg] \mathsf{d}F(x)$$

• Symmetric Bayes-Nash Equilibrium:

$$q^*(lpha) = rgmax_q \left[lpha bq + U(p-cq^2)
ight] imes \int_{lpha}^{\overline{lpha}} 100 S(q_1;q^*(x)) \mathsf{d} F(x)$$

Bayes Nash and monotonicity

Equilibrium strategy $q^*: [\underline{\alpha}, \overline{\alpha}] \to [0, 10]$ monotone increasing in α .

- \bullet From first-order condition for q^{\ast}
- \bullet Invert to get α as a function of q
 - Think first price auction: bid increasing in valuation
 - From Myerson symmetric equilibrium, invert bids to get valuations
- Identification by monotonicity!

Estimation

- \bullet Goal: estimate α distribution from the Bayes-Nash equilibrium q
- \bullet Challenge: unknown α distribution, unknown q distribution
- Resolution: Guerre, Perrigne and Vuong "Optimal Nonparametric Estimation of First-Price Auctions" Econometrica 2000
 - **•** Estimate unknown q distribution by empirical q distribution
 - ${\scriptstyle \bullet}$ Use first-order condition, invert, then estimate α from q
 - Stack up estimated α 's to construct distribution
- GPV Nonparametric Estimation: consistent, asymptoticcally efficient, etc
- Are α distributions different across markets and incentive configurations?

Estimating α by quality distribution

• Replace altruism distribution F by the equilibrium quality distribution G:

$$lpha = rac{2cqU'(p-cq^2){\displaystyle\int_{0}^{10}}S(q;x)\mathsf{d}G(x)-}{\displaystyle U(p-cq^2) imes{\displaystyle\int_{0}^{10}}bS(q;x)[1-S(q;x)]\mathsf{d}G(x)} \ b{\displaystyle\int_{0}^{10}}S(q;x)\mathsf{d}G(x)+ \ bq{\displaystyle\int_{0}^{10}}bS(q;x)[1-S(q;x)]\mathsf{d}G(x)$$

 $\bullet~G$ estimated by empirical quality distribution—GPV

The Experiment

- Within-subject design
 - Monopoly, Duopoly, Quadropoly
 - Price, cost, benefit; each binary
 - \blacksquare total of $3\times 2\times 2\times 2=24$ games for each subject
- When: sessions in October 2017, April 2018
- Where: University of Cologne
- Who: 361 subjects, most of them Cologne students
 - Average age, 24 years; 55% female. Subjects of study: 131 in law and social sciences, 22 in medicine, 42 in arts and humanities, 49 in mathematics and natural sciences, 35 in theology, and 82 others, non-students, unavailable
- What: played normal form games, exactly those above

0 0.00	40.00	
	10.00	0
1 0.10	9.90	1
2 0.40	9.60	2
3 0.90	9.10	3
4 1.60	8.40	4
	7.50	5
6 3.60	6.40	6
7 4.90	5.10	7
8 6.40	3.60	8
	1.90	
10 10.00	0.00	
4 1.60 5 2.50 6 3.60 7 4.90 8 6.40 9 8.10	8.40 7.50 6.40 5.10 3.60 1.90	6 7

Patient type 1			
Capitation: 10			
Quality	Costs	Profit	Patient benefit
0	0.00	10.00	0
1	0.10	9.90	1
2	0.40	9.60	2
3	0.90	9.10	3
4	1.60	8.40	4
5	2.50	7.50	5
6	3.60	6.40	6
7	4.90	5.10	7
8	6.40	3.60	8
9	8.10	1.90	9
10	10.00	0.00	10
Quality Quality Number of patients Profit Patient benefit	Ay Quality Quality 2nd physician	Calculate	
	Your decision	r []	ОК

Capitation: 10					
Quality		Costs	Profit	Pati	ent benefit
0		0.00	10.00		0
1		0.10	9.90		1
2		0.40	9.60		2
3		0.90	9.10		3
4		1.60	8.40		4
5		2.50	7.50		5
6 7		3.60 4.90	6.40 5.10		6 7
8		6.40	3.60		8
9		8.10	1.90		9
10		10.00	0.00		10
	My Quality	Quality second physician	Quality third physician	Quality fourth physician	
Quality	My Quality	Quality second physician	Quality third physician	Quality fourth physician	Calculate
	My Quality	Quality second physician	Quality third physician	Quality fourth physician	Calculate
Quality Number of patients	My Quality	Quality second physician	Quality third physician	Quality fourth physician	Calculate
	My Quality	Quality second physician	Quality third physician	Quality fourth physician	Calculate
Number of patients	My Quality	Quality second physician	Quality third physician	Quality fourth physician	Calculate
Number of patients	My Quality	Quality second physician	Quality third physician	Quality fourth physician	Calculate
Number of patients Profit	My Quality	Quality second physician	Quality third physician	Quality fourth physician	Calculate
Number of patients Profit	My Quality	Quality second physician	Quality third physician	Quality fourth physician	Calculate

Patient type 1				
Capitation: 10				
Quality	C	osts	Profit	Patient benefit
0	(0.00	10.00	0
1).10	9.90	1
2		0.40	9.60	2
3		0.90	9.10	3
4		1.60	8.40	4
5		2.50	7.50	5
6		3.60	6.40	6
7		4.90 3.40	5.10 3.60	7 8
9		3.10	1.90	9
10		0.00	0.00	10
	My Quality	Quality second physician		
Quality	5	4	Calculate	
	73	27		
Number of patients				
Number of patients	547.50	226.80		
	547.50 365.00	226.80 108.00		

Sessions

• Randomly assign subjects to 6 market sequences

- (M-D-Q); (M-Q-D); (D-M-Q); (D-Q-M); (Q-M-D); (Q-D-M)
- Price-cost-benefit, or incentive, configurations order in all markets

• 1st,
$$(p = 10, c = 0.1, b = 1)$$

• 2nd, $(p = 10, c = 0.075, b = 1)$
• 3rd, $(p = 15, c = 0.1, b = 0.5)$
• 4th, $(p = 15, c = 0.1, b = 1)$
• 5th, $(p = 10, c = 0.1, b = 0.5)$
• 6th, $(p = 10, c = 0.075, b = 0.5)$
• 7th, $(p = 15, c = 0.075, b = 1)$
• 8th, $(p = 15, c = 0.075, b = 0.5)$

Other details

- No real patients; quality benefits translate to donation to charity
- Subjects only informed about market on a "need-to-know" basis
- Subjects get aggregated information of actual demands, profits, and patient benefits
- Subjects' profits and patient benefits: by "random choice" method in each market
- Control questions to test subjects' comprehension
- Sessions averaged 90 minutes; subjects earned €14.20 (€18.20 including show-up fee)
- €2,923.60 donated to the Christoffel Blindenmission, in Masvingo, Zimbabwe; enough for 97 cataract surgeries

Estimation

- Linear utility U(x) = x
 - α : marginal rate of substitution between profit and patient benefit
- CARA utility $U(x) = 1 \exp(-rx)$, set r = 0.1 (as robustness check)
- Normalization:
 - **•** Recall 8 incentive configurations in 3 markets
 - For each incentive configuration, choose monopoly as origin
 - Find mean of estimated $\alpha,$ say $\alpha^M_i,~i=$ incentive configuration; M monopoly
 - Display $lpha lpha_i^M$ for all i in all three markets
 - Measure α altruism as deviations from the monopoly mean

Linear Utility: means and standard deviations of normalized α

Incentive configurations	Monopoly		Duopoly		Quadropoly	
	mean	st. dev.	mean	st. dev.	mean	st. dev.
p = 10, c = 0.075, b = 0.5)	0	0.898	-1.335	0.939	-1.579	0.766
p = 10, c = 0.075, b = 1)	0	0.448	-0.812	0.612	-0.985	0.657
p = 10, c = 0.1, b = 0.5)	0	1.117	-1.378	0.903	-2.233	1.710
p = 10, c = 0.1, b = 1)	0	0.559	-0.882	0.725	-1.069	0.822
p = 15, c = 0.075, b = 0.5	0	1.028	-1.980	0.928	-2.382	0.980
p = 15, c = 0.075, b = 1)	0	0.512	-1.244	0.767	-1.471	1.138
p = 15, c = 0.1, b = 0.5)	0	1.308	-2.001	1.327	-2.428	1.147
p = 15, c = 0.1, b = 1	0	0.638	-1.207	0.827	-1.485	1.016

Monopoly p=10, c=0.1, b=1

Monopoly p=10, c=0.1, b=0.5

Monopoly p=15, c=0.1, b=1

ò

Equilibrium qualities

• Three markets

• Eight incentive configurations

4 5 6 quality choice

4

o 1

2

3

7 8

9

10

Counterfactuals

- What would qualities look like if there were no altruism change?
- Impossible to get analytical formulas for Bayes-Nash equilibrium qualities
- Take estimates of altruism parameters in duopoly and quadropoly
 - Feed them into formulas for optimal qualities in monopoly
 - Counterfact qualities

ż

4

quality

quality

ż

Means and standard deviations of qualities

Incentive configurations	Monopoly		Duopoly		Quadropoly	
	mean	st. dev.	mean	st. dev.	mean	st. dev.
(p = 10, c = 0.075, b = 0.5)	4.17	2.99	7.75	1.58	8.26	1.40
(p = 10, c = 0.075, b = 1)	4.15	2.99	7.98	1.59	8.31	1.56
(p = 10, c = 0.1, b = 0.5)	3.79	2.79	6.94	1.35	7.34	1.34
(p = 10, c = 0.1, b = 1)	3.73	2.80	7.09	1.52	7.46	1.34
(p = 15, c = 0.075, b = 0.5)	4.82	3.43	8.82	1.53	9.09	1.32
(p = 15, c = 0.075, b = 1)	4.83	3.41	8.98	1.60	9.15	1.43
(p = 15, c = 0.1, b = 0.5)	4.51	3.27	8.19	1.63	8.55	1.47
(p = 15, c = 0.1, b = 1)	4.44	3.19	8.40	1.62	8.65	1.61

	Low pa	arameter level	High pa		
	(N=1,44)	4, per market)	(N=1,444, per market)		Relative
Parameter	Mean	st. dev.	Mean	st. dev.	difference
Price $(p = 10 \text{ and } p = 15)$					
Monopoly	3.959	2.900	4.652	3.327	0.175
Duopoly	7.442	1.573	8.595	1.625	0.155
Quadropoly	7.841	1.479	8.862	1.484	0.130
Cost ($c = 0.075$ and $c = 0.1$)					
Monopoly	4.493	3.227	4.118	3.038	-0.083
Duopoly	8.380	1.660	7.657	1.662	-0.086
Quadropoly	8.704	1.489	8.000	1.564	-0.081
Patient benefit $(b = 0.5 \text{ and } b = 1)$					
Monopoly	4.323	3.150	4.287	3.128	-0.008
Duopoly	7.925	1.668	8.112	1.726	0.024
Quadropoly	8.310	1.523	8.393	1.608	0.010

Duopoly	3.713***	3.713***		3.713***	3.545***
	(0.158)	(0.158)		(0.158)	(0.157)
Quadropoly	4.046***	4.046***		4.046***	3.987^{***}
	(0.157)	(0.157)		(0.157)	(0.156)
High price $(= 1 \text{ if } p_H = 15)$			0.955^{***}	0.955^{***}	0.693^{***}
			(0.0292)	(0.0292)	(0.0504)
High cost $(= 1 \text{ if } c_H = 0.1)$			-0.601***	-0.601***	-0.375***
			(0.0235)	(0.0235)	(0.0456)
High benefit $(= 1 \text{ if } b_H = 1)$			0.0783^{***}	0.0783^{***}	-0.0360
			(0.0238)	(0.0238)	(0.0429)
Duopoly \times High price					0.461^{***}
					(0.0659)
Quadropoly \times High price					0.328***
					(0.0608)
Duopoly \times High cost					-0.348***
					(0.0558)
Quadropoly \times High cost					-0.328***
					(0.0545)
Duopoly \times High benefit					0.224^{***}
					(0.0560)
Quadropoly \times High benefit					0.119**
					(0.0551)
Market order and session dummies	No	Yes	Yes	Yes	Yes
Constant	4.305***	4.188***	6.558^{***}	3.971***	4.047***
Constant	(0.155)	(0.400)	(0.378)	(0.400)	(0.399)
	(0.100)	(0.400)	(0.010)	(0.400)	(0.000)
Observations	8,664	8,664	8,664	8,664	8,664
Subjects	361	361	361	361	361
\mathbf{R}^2	0.399	0.407	0.046	0.445	0.447

Market orders and between-subject subsample

- Does it matter if subjects experience monopoly before duopoly, etc?
 - Results similar
- Use 1/3 of data to construct between-subject design
 - **•** Take subjects' first market experience
 - Results similar

BMW (Byambadalai, Ma, and Wiesen) questioning the basics

- lacksquare
- Preferences-Markets-Incentives altogether, not independent
- Competition and incentives are like switches
- Why? Or should it be what or how?
- Cognitive demands?
- Reductionism: "Equity theory and fair inequality: A neuroeconomic study" by Cappelen, Proceedings of the National Academy of Science, 2014